量子力学所有简答题答案-精选.pdf
- 格式:pdf
- 大小:337.28 KB
- 文档页数:7
量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。
2. 描述态叠加原理的内容。
答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。
系统的态函数可以表示为这些可能状态的叠加。
3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。
4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。
5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。
6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。
7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。
8. 描述量子力学中的隧道效应。
答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。
这是量子力学中粒子波性质的体现。
9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。
10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。
量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
《量子力学》题库一、简答题1 试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为: ων ==h Ek n h p ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来.等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量.2 简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
按这种解释,描写粒子的波是几率波。
3 根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。
答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。
4 设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。
试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。
答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。
或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中.在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。
5 什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。
在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。
6 什么是全同性原理和泡利不相容原理?两者的关系是什么? 答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。
量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。
6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。
8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。
10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。
18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。
19何谓选择定则。
20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。
22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。
《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。
答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。
它是一种量子效应,是微观粒子波粒二象性的体现。
例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。
2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。
()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。
3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。
若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。
将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。
线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。
5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。
答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。
简答题1.什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。
这类光致电变的现象被人们统称为光电效应。
或光照射到金属上,引起物质的电性质发生变化。
这类光变致电的现象被人们统称为光电效应。
光电效应规律如下:1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。
当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。
2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。
3.光电效应的瞬时性。
实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。
4.入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。
爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。
逸出电子的动能、光子能量和逸出功之间的关系可以表示成:221mv A h +=ν这就是爱因斯坦光电效应方程。
其中,h 是普朗克常数;f 是入射光子的频率。
2.写出德布罗意假设和德布罗意公式。
德布罗意假设:实物粒子具有波粒二象性。
德布罗意公式:νωh E == λhk P ==3.简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。
几率波满足的条件。
波函数在空间中某一点的强度和在该点找到粒子的几率成正比。
因为它能根据现在的状态预知未来的状态。
波函数满足归一化条件。
4.以微观粒子的双缝干涉实验为例,说明态的叠加原理。
量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,粒子的波动性由哪个物理量描述?A. 动量B. 位置C. 能量D. 波函数答案:D2. 海森堡不确定性原理表明,哪两个物理量的乘积不能同时精确确定?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度答案:A3. 薛定谔方程是描述量子系统时间演化的基本方程,它属于以下哪种类型的方程?A. 线性微分方程B. 非线性微分方程C. 代数方程D. 积分方程答案:A4. 在量子力学中,哪个原理表明一个量子系统的状态可以表示为不同状态的叠加?A. 叠加原理B. 波粒二象性原理C. 不确定性原理D. 泡利不相容原理答案:A5. 量子力学中的“隧道效应”是指什么现象?A. 粒子通过势垒的概率不为零B. 粒子在势垒中的速度增加C. 粒子在势垒中的动能减少D. 粒子在势垒中的势能增加答案:A二、填空题(每题2分,共10分)1. 量子力学中的波函数必须满足______条件,即波函数的平方模表示粒子在空间某点的概率密度。
答案:归一化2. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,这四个量子数分别是主量子数n、角量子数l、磁量子数m和______。
答案:自旋量子数3. 在量子力学中,粒子的动量和位置不能同时被精确测量,这是由______不确定性原理所描述的。
答案:海森堡4. 量子力学中的波函数ψ(r,t)描述了粒子在空间位置r和时间t的概率分布,其中ψ*(r,t)ψ(r,t)表示粒子在位置r的概率密度,这里的ψ*(r,t)表示波函数的______。
答案:复共轭5. 量子力学中的粒子波动性可以通过德布罗意波长λ来描述,其公式为λ=h/p,其中h是普朗克常数,p是粒子的______。
答案:动量三、简答题(每题10分,共20分)1. 简述量子力学中的波粒二象性。
答案:量子力学中的波粒二象性指的是微观粒子既表现出波动性也表现出粒子性。
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。
答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。
答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。
答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。
答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。
答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。
求该粒子在基态时的能量和波函数。
答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。
2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。
求该粒子的能级和相应的波函数。
答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。