实验四传热实验
- 格式:doc
- 大小:176.00 KB
- 文档页数:5
可编辑修改精选全文完整版实验四 传热实验一 实验内容测定单壳程双管程列管式换热器的总传热系数二 实验目的1 了解影响传热系数的工程因素和强化传热操作的工程途径。
2 学会传热过程的调节方法。
三 实验基本原理工业上大量存在的传热过程(指间壁式传热过程)都是由固体内部的导热及冷热流体与固体表面间的给热组合而成。
传热过程的基本数学描述是传热速率方程式和热量衡算式。
热流密度q 是反应具体传热过程速率大小的特征量。
对q 的计算需引入壁面温度,而在实际计算时,壁温往往是未知的。
为实用方便,希望避开壁温,直接根据冷热流体的温度进行传热速率计算在间壁式换热器中,热量序贯的由热流体传给壁面左侧、再由壁面左侧传导至壁面右侧、最后由壁面右侧传给冷流体。
在定态条件下,忽略壁面内外面积的差异,则各环节的热流密度相等,即q =Q A =T−T W 1ɑh =T W −t w δɑh =t w −t 1ɑc ①由①式可以得到q =T−t1ɑh +δh +1ɑc =推动力阻力 ②由上式,串联过程的推动力和阻力具有加和性。
上式在工程上常写为Q=KA(T-t) ③式中K=11ɑh +δh +1ɑc ④式④为传热过程总热阻的倒数,称为传热系数,是换热器性能好坏的重要指标。
比较①和④两式可知,给热系数α同流体与壁面的温差相联系,而传热系数K 则同冷热体的温差相联系。
由于冷热流体的温差沿加热面是连续变化的,且此温度差与冷热流体的温度呈线性关系,故将③式中(T-t )的推动力用换热器两端温差的对数平均温差来表示,即Q=KA Δt m ⑤热量衡算方程式Q=q mc C pc (t 2-t 1)=q mh C ph (T 1-T 2) ⑥KA Δt m = q mc C pc (t 2-t 1) ⑦Δt m =(T 1−t 2)−(T 2−t 1)ln T 1−t 2T 2−t 1 ⑧ K=qmcCpc(t2−t1)A Δtm ⑨在换热器中,若热流体的流量q mh 或进口温度T 1发生变化,而要求出口温度T 2保持原来数值不变,可通过调节冷却介质流量来达到目的。
实验四 传热系数测定实验1.实验目的(1)观察水蒸汽在水平管外壁上的冷凝现象;(2)测定空气-水蒸汽在套管换热器中的总传热系数;(3)测定空气在圆形直管内强制对流时的传热膜系数及其与雷诺数Re 的关系。
2.基本原理在套管换热器中,环隙通以水蒸汽,内管管内通以空气,水蒸汽冷凝放热以加热空气,在传热过程达到稳定后,有如下热量衡算关系式(忽略热损失):()()mW i i m i i p t t S t S K t t C V Q -=∆=-=αρ12由此可得总传热系数mi P i t S t t C V K ∆-=)(12ρ空气在管内的对流传热系数(传热膜系数) m w i P i t t S t t C V )()(12--=ρα上式中 Q :传热速率,w ;V :空气体积流量(以进口状态计),m 3/s ; ρ: 空气密度(以进口状态计),kg/m 3; C P :空气平均比热,J/(kg ·℃);K i :以内管内表面积计的总传热系数,W/(m 2·℃); αi : 空气对内管内壁的对流传热系数,W/(m 2·℃); t 1、t 2 :空气进、出口温度,℃; S i :内管内壁传热面积,m 2;Δt m :水蒸气与空气间的对数平均温度差,℃;2121ln)()(t T t T t T t T t m -----=∆ T :蒸汽温度(取进、出口温度相同),℃。
(t w -t )m :空气与内管内壁间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- t w1、t w2 :内管内壁上进、出口温度,℃。
当内管材料导热性能很好,且管壁很薄时,可认为内管内外壁温度相同,即测得的外壁温度视为内壁温度。
流体在圆形直管内作强制湍流(流体流动的雷诺数Re >10000)时,对流传热系数αi与雷诺数Re 的关系可近似写成 ni A Re =α式中A 和n 为常数。
实验四 传热实验通过对以空气和水蒸气为介质的套管换热器实验研究,可以掌握传热系数K 、传热膜系数2α的测定方法,加深对其概念和影响因素的理解;学会用最小二乘法确定关联式m A Nu Re =中常数A 、m 的值。
通过对普通套管换热器和强化套管换热器的比较,了解工程上强化传热的措施。
一. 实验内容(任选一个)1.强化传热措施的探讨。
采用计算机数据在线采集系统,测定普通套管换热器和强化套管换热器的传热系数K ;用作图法或最小二乘法关联出m A Nu Re =中常数A 、m 的值。
通过对普通套管换热器和强化套管换热器的实验结果比较,说明强化传热的原理并对强化传热的其它措施进行探讨。
2.测定不同流速下的普通套管换热器或强化套管换热器的传热膜系数2α,用作图法或最小二乘法关联出m A Nu Re =中常数A 、m 的值,并对实验结果进行比较。
二.实验原理:对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成:n m C Nu Pr Re = (1) 系数C 与指数m 和n 则需由实验加以确定。
对于气体,Pr 基本上不随温度而变,可视为一常数,因此,式(1)可简化为:m A Nu Re = (2) 式中: λαd Nu 2= μρdu =Re 通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温(因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等),根据所测的数据,经过查物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法(最小二乘法)确定关联式m A Nu Re =中常数A 、m 的值。
三.实验装置与主要技术数据(一) 实验装置1.流程实验装置的流程如图1所示。
装置的主体是两根平行的套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
实验用的蒸汽发生器为电加热釜,加热电压可由固态调节器调节。
空气由旋涡气泵提供,使用旁路调节阀调节流量。
实验四传热实验一、实验目的1.通过对空气一水蒸气简单套管换热器的实验研究,掌握对流传热系数勺的测左方法,加深对苴概念和影响因素的理解。
并应用线性回归分析方法,确左关联式严丹如中常数A、川的值。
2.通过对管程内部插有螺旋线圈的空气一水蒸气强化套管换热器的实验研究,测左其准数关联式NzBR 严中常数B、加的值和强化比Ni叫、了解强化传热的基本理论和基本方式。
二.实验内容与要求实验4-1实验4-2实脸内容与要求①测泄5~6个不同流速下简单套管换热器的对流传热系数血。
②对勺的实验数据进行线性回归,求关联式NxAR^P"中常数A. m 的值。
①测左5~6个不同流速下强化套管换热器的对流传热系数%。
②对4的实验数据进行线性回归,求关联式Nu=BRe m中常数B、加的值。
③同一流量下,按实验一所得准数关联式求得Me, 计算传热强化比Nu/Nu0o三、实验原理实验4-1普通套管换热器传热系数及其准数关联式的测定1.对流传热系数%的测定对流传热系数勺可以根据牛顿冷却疋律,用实验来测泄。
因为所以传热管内的对流传热系数勺a热冷流体间的总传热系数K = Q /(△. xsj (W/m2• °C )(4-1)式中:勺一管内流体对流传热系数,W/(m2-°C):©—管内传热速率,W:S L管内换热面积,n*:△g—对数平均温差,°C。
对数平均温差由下式确立:(4-2) 式中:切,G—冷流体的入口、出口温度,0心一壁而平均温度,°C;因为换热器内管为紫铜管,英导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用h来表示,由于管外使用蒸汽,近似等于热流体的平均温度。
管内换热面积:Sj 二码厶(4-3)式中:山一内管管内径,m;乙一传热管测量段的实际长度,m。
由热量衡算式:Q 二(4-4)其中质量流量由下式求得:叱=匕空(4-5)3600式中:冷流体在套管内的平均体积流M. m5/h:cpi—冷流体的進压比热,kJ / (kg・°C):PL冷流体的密度,kg/m3o切和。
化工原理实验报告(传热)
实验名称:传热实验
实验目的:掌握传热原理,测定传热系数。
实验原理:传热是指热能从物体的高温区域传递到物体的低温区域的过程。
传热方式
主要有三种,分别是传导、对流和辐射。
传导是指物质内部由高温区传递热量到低温区的过程。
传导的速率与传导材料的种类、厚度、温度差等因素有关。
对流是指由于物流的运动而引起的热量传递过程。
对流的速率与流动速度、流动形式
等因素有关。
辐射是指物体之间通过电磁波传递热量的过程。
辐射的速率与物体温度、表面特性等
因素有关。
实验仪器:传热实验装置、数显恒温槽、数显搅拌器、功率调节器、电热水壶、测温仪、电阻丝、保温材料等。
实验步骤:
1、将传热实验装置放入数显恒温槽内,开启电源,将温度恒定在80℃左右。
2、将试样加热,使其温度达到与恒温槽内温度一致。
3、将试样放入传热实验装置中,开始实验。
4、在实验过程中,保持搅拌器的匀速转动,确保传热速率的稳定。
5、记录实验数据,计算传热系数。
实验结果:
本实验测定的传热系数为:λ=10.2 W/m•K
通过本次实验,我们掌握了传热原理和测定传热系数的方法,同时也了解了传导、对
流和辐射三种传热方式的特点及其影响因素。
实验结果表明,传热系数是物体传热速率的
量化表示,对于不同的物体和温度差,传热系数是不同的,因此在具体实际应用中需要根
据实际情况进行调整。
实验四:传热(空气—蒸汽)实验一、实验目的1.了解间壁式换热器的结构与操作原理;2.学习测定套管换热器总传热系数的方法;3.学习测定空气侧的对流传热系数;4.了解空气流速的变化对总传热系数的影响。
二、实验原理对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为:(4-1)对于强制湍流而言,Gr准数可以忽略,故(4-2)本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。
用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
这样,上式即变为单变量方程再两边取对数,即得到直线方程:(4-3)在双对数坐标中作图,找出直线斜率,即为方程的指数m。
在直线上任取一点的函数值代入方程中,则可得到系数A,即:(4-4)用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联结果。
应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。
对于方程的关联,首先要有Nu、Re、Pr的数据组。
其准数定义式分别为:实验中改变冷却水的流量以改变Re准数的值。
根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。
进而算得Nu准数值。
牛顿冷却定律:(4-5)式中:α—传热膜系数,[W/m2·℃];Q—传热量,[W];A—总传热面积,[m2];△tm—管壁温度与管内流体温度的对数平均温差,[℃]。
传热量Q可由下式求得:(4-6)W—质量流量,[kg/h];Cp—流体定压比热,[J/kg·℃];t1、t2—流体进、出口温度,[℃];ρ—定性温度下流体密度,[kg/m3];V—流体体积流量,[m3/s]。
三、实验设备四、实验步骤1.启动风机:点击电源开关的绿色按钮,启动风机,风机为换热器的管程提供空气2.打开空气流量调节阀:启动风机后,调节进空气流量调节阀至微开,这时换热器的管程中就有空气流动了。
最新实验报告_实验四实验目的:本实验旨在探究特定条件下物质的热传导性能,并验证傅里叶定律在实际应用中的有效性。
通过实验测定不同温度梯度下的物质热传导率,加深对热传导现象的理解。
实验原理:热传导是热能通过物质内部分子振动和自由电子的碰撞传递的过程。
根据傅里叶定律,单位时间内通过单位面积的热量与温度梯度成正比,数学表达式为:q = -kAΔT/Δx,其中q是热流量,k是热传导率,A是传热面积,ΔT是温度差,Δx是传热距离。
实验设备:1. 恒温水浴2. 热传导率测量仪3. 标准样品(如铜、铝块)4. 温度传感器5. 保温材料6. 数据采集系统实验步骤:1. 准备实验设备,确保所有设备均处于良好工作状态。
2. 将标准样品放置在测量仪中央,确保样品与测量仪接触良好。
3. 使用恒温水浴设定两个不同的温度,分别作为实验的高温端和低温端。
4. 将温度传感器固定在样品的两端,以便准确测量温度差。
5. 开始实验,记录不同时间间隔的温度数据。
6. 根据温度数据和傅里叶定律计算热传导率。
7. 改变温度梯度,重复步骤5和6,获得不同温度梯度下的热传导率。
8. 使用数据采集系统整理和分析实验数据,绘制温度梯度与热传导率的关系图。
实验结果:实验数据显示,在一定范围内,随着温度梯度的增加,热传导率呈现上升趋势。
通过对比不同材料的实验结果,可以得出材料的热传导性能与其内部结构和分子振动特性有关。
结论:本次实验成功验证了傅里叶定律在描述热传导现象时的有效性,并通过对不同材料的热传导率进行测定,进一步理解了影响热传导性能的因素。
实验结果对于材料科学和热能工程领域具有一定的参考价值。
组成句子的各个部分叫句子成分。
英语句子成分有主语,谓语,表语,宾语,宾语补足语,定语,状语等。
顺序一般是主语,谓语,宾语,宾语补足语,而表语,定语,状语的位置要根据情况而定。
1、主语主语表示句子主要说明的人或事物,一般由名词,代词,数词,不定式等充当。
He likes watching TV.他喜欢看电视。
2、谓语谓语说明主语的动作,状态或特征。
一般可分为两类:1),简单谓语由动词(或短语动词)构成。
可以有不同的时态,语态和语气。
We study for the peo ple.我们为人民学习。
2),复合谓语:情态动词+不定式I can speakalit tleEng lish.我可以说一点英语。
3、表语表语是谓语的一部分,它位于系动词如be之后,说明主语身份,特征,属性或状态。
一般由名词,代词,形容词,副词,不定式,介词短语等充当。
My sister is a nurse.我姐姐是护士。
4、宾语宾语表示动作行为的对象,跟在及物动词之后,能作宾语的有名词,代词,数词,动词不定式等。
We like English.我们喜欢英语。
有些及物动词可以带两个宾语,往往一个指人,一个指物,指人的叫间接宾语,指物的叫直接宾语。
He gave me some ink.他给了我一点墨水。
有些及物动词的宾语后面还需要有一个补足语,意思才完整,宾语和它的补足语构成复合宾语。
如:We make him our monitor.我们选他当班长。
5、定语在句中修饰名词或代词的成分叫定语。
用作定语的主要是形容词,代词,数词,名词,副词,动词不定式,介词短语等。
形容词,代词,数词,名词等作定语时,通常放在被修饰的词前面。
He is a new student.他是个新生。
但副词,动词不定式,介词短语等作定语时,则放在被修饰的词之后。
The bike in the room is mine.房间里的自行车是我的。
6、状语修饰动词,形容词,副词以及全句的句子成分,叫做状语。
实验四 传热实验
一、实验目的
⒈ 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
⒉ 通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu 0,了解强化传热的基本理论和基本方式。
二、 实验内容与要求
三、实验原理
实验4-1 普通套管换热器传热系数及其准数关联式的测定
⒈ 对流传热系数i α的测定
对流传热系数i α可以根据牛顿冷却定律,用实验来测定。
因为i α<<o α ,所以传热管内的对流
传热系数≈i α 热冷流体间的总传热系数()i m i s t Q K ⨯∆=/ (W/m 2·℃)
i
m i
i S t Q ⨯∆≈
α (4-1) 式中:i α—管内流体对流传热系数,W/(m 2·℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; mi t ∆—对数平均温差,℃。
对数平均温差由下式确定:
)
()(ln )
()(2121i w i w
i w i w mi t t t t t t t t t -----=
∆ (4-2)
式中:t i1,t i2—冷流体的入口、出口温度,℃;
t w —壁面平均温度,℃;
因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示,由于管外使用蒸汽,近似等于热流体的平均温度。
管内换热面积:
i i i L d S π= (4-3)
式中:d i —内管管内径,m ;
L i —传热管测量段的实际长度,m 。
由热量衡算式:
)(12i i pi i i t t c W Q -= (4-4)
其中质量流量由下式求得:
3600
i
i i V W ρ=
(4-5) 式中:V i —冷流体在套管内的平均体积流量,m 3 / h ; c pi —冷流体的定压比热,kJ / (kg ·℃); ρi —冷流体的密度,kg /m 3。
c pi 和ρi 可根据定性温度t m 查得,2
2
1i i m t t t +=为冷流体进出口平均温度。
t i1,t i2, t w , V i 可采取一定的测量手段得到。
⒉ 对流传热系数准数关联式的实验确定
流体在管内作强制湍流,被加热状态,准数关联式的形式为
n i m
i
i A Nu Pr Re =. (4-6)
其中: i i
i i d Nu λα=
, i i i i i d u μρ=Re , i
i pi i c λμ=Pr 物性数据λi 、c pi 、ρi 、μi 可根据定性温度t m 查得。
经过计算可知,对于管内被加热的空气,普兰特准数Pr i 变化不大,可以认为是常数,则关联式的形式简化为:
4.0Pr Re i m
i
i A Nu = (4-7)
这样通过实验确定不同流量下的Re i 与i Nu ,然后用线性回归方法确定A 和m 的值。
实验4-2、强化套管换热器传热系数、准数关联式及强化比的测定
强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。
强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。
螺旋线圈的结构图如图3-1所示,螺旋线圈由直径3mm 以下的铜丝和钢丝按一定节距绕成。
将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。
在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。
由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。
螺旋线圈是以线圈节距H 与管内径d 的比值以及管壁粗糙度(h d /2)为主要技术参数,且长径比是影响传热效果和阻力
系数的重要因素。
科学家通过实验研究总结了形式为m
B Nu Re 的经验公式,其中B 和m 的值因螺旋丝尺寸不同而不同。
在本实验中,采用实验3-1中的实验方法确定不同流量下的Re i 与i Nu ,用线性回归方法可确定B 和m 的值。
单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:0Nu Nu ,其中Nu 是强化管的努塞尔准数,Nu 0是普通管的努塞尔准数,显然,强化比0Nu Nu >1,而且它的值越大,强化效果越好。
需要说明的是,如果评判强化方式的真正效果和经济效益,则必须考虑阻力因素,阻力系数随着换热系数的增加而增加,从而导致换热性能的降低和能耗的增加,只有强化比较高,且阻力系数较小的强化方式,才是最佳的强化方法。
四、实验装置
⒈ 实验流程图及基本结构参数:
图4-1 螺旋线圈强化管内部结构
20
21
图4-2 空气-水蒸气传热综合实验装置流程图
1—普通套管换热器;2—内插有螺旋线圈的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口;14—传热系数分布实验套盒(本实验不使用);15—紫铜管;16—加水口; 17—放水口;18—液位计;19—热点偶温度测量实验测试点接口;20—普通管测压口;21—强化管测压口
如图3-2所示,实验装置的主体是两根平行的套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
实验的蒸汽发生釜为电加热釜,内有2根2.5kW 螺旋形电加热器,用200伏电压加热(可由固态调压器调节)。
气源选择XGB-2型旋涡气泵,使用旁路调节阀调节流量。
蒸汽空气上升管路,使用三通和球阀分别控制气体进入两个套管换热器。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热
器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,由另一端蒸汽出口自然喷出,达到逆流换热的效果。
空气经支路控制阀7后,进入蒸汽发生器上升主管路上的热电偶和传热系数分布实验管,可完成热电偶原理实验。
装置结构参数表3-1所示。
⒉ 实验的测量手段 ⑴ 空气流量的测量
空气主管路由孔板与差压变送器和二次仪表组成空气流量计,孔板流量计为标准设计,其流量计算
式为:
表4-1 实验装置结构参数
第⑦、⑧套实验装置:0
080
.23t
t P
V ρ∆= (4-8)
式中:P ∆—孔板流量计两端压差,KPa ;
R —孔板流量计两端压差,mH 2O 柱;
t 0—流量计处温度(本实验装置为空气入口温度),℃; ρ0—t 0时的空气密度,kg/m 3。
由于被测管段内温度的变化,还需对体积流量进行进一步的校正:
2732730
t t V V m
t i ++⨯
= (4-9)
⑵温度的测量
实验采用铜-康铜热电偶测温,温度与热电势的关系为:
T(℃)=8.5009+21.25678×E(mv) (4-10)
图4-3 传热实验中冷流体进出口温度及壁温的测量线路图
五、注意事项
⒈由于采用热电偶测温,所以实验前要检查冰桶中是否有冰水混合物共存。
检查热电偶的冷端,是否全部浸没在冰水混合物中。
⒉检查蒸汽加热釜中的水位是否在正常范围内。
特别是每个实验结束后,进行下一实验之前,如果发现水位过低,应及时补给水量。
⒊必须保证蒸汽上升管线的畅通。
即在给蒸汽加热釜电压之前,两蒸汽支路控制阀(见图4-2所示)之一必须全开。
在转换支路时,应先开启需要的支路阀,再关闭另一侧,且开启和关闭控制阀必须缓慢,防止管线截断或蒸汽压力过大突然喷出。
⒋必须保证空气管线的畅通。
即在接通风机电源之前,三个空气支路控制阀之一和旁路调节阀(见图4-2所示)必须全开。
在转换支路时,应先关闭风机电源,然后开启和关闭控制阀。
⒌调节流量后,应至少稳定5~10分钟后读取实验数据。
⒍实验中保持上升蒸汽量的稳定,不应改变加热电压,且保证蒸汽放空口一直有蒸汽放出。
六、报告内容
⒈实验4-1的原始数据表、数据结果表(换热量、传热系数、各准数以及重要的中间计算结果)、准数关联式的回归过程、结果与具体的回归方差分析,并以其中一组数据的计算举例。
⒉实验4-2的原始数据表、数据整理表(换热量、传热系数、各准数、Nu0和强化比,还包括重要的中间计算结果)、准数关联式的回归结果。
⒊在同一双对数坐标系中绘制实验4-1、实验4-2的Nu~Re的关系图。
七、思考题
1、实验中两组套管换热器有何不同,相同流量下哪套对流传热系数大?。