第八章 机器学习习题解答
- 格式:doc
- 大小:716.00 KB
- 文档页数:5
机器学习模拟题与参考答案一、单选题(共114题,每题1分,共114分)1.机器学习这个术语是由( )定义的?A、Arthur SamuelB、Guido van RossumC、James GoslingD、以上都不是正确答案:A2.在一个线性回归问题中,我们使用 R 平方(R-Squared)来判断拟合度。
此时,如果增加一个特征,模型不变,则下面说法正确的是?A、如果 R-Squared 增加,则这个特征有意义B、如果R-Squared 减小,则这个特征没有意义C、仅看 R-Squared 单一变量,无法确定这个特征是否有意义。
D、以上说法都不对正确答案:C3.在SVM中, margin的含义是()A、损失误差B、间隔C、幅度D、差额正确答案:B4.下列哪种方法可以用来缓解过拟合的产生:( )。
A、正则化B、增加更多的特征C、以上都是D、增加模型的复杂度正确答案:A5.当数据分布不平衡时,我们可采取的措施不包括( )。
A、对数据分布较少的类别过采样B、对数据分布较多的类别欠采样C、对数据分布较少的类别赋予更大的权重D、对数据分布较多的类别赋予更大的权重正确答案:D6.同质集成中的个体学习器亦称()A、异质学习器B、同质学习器C、基学习器D、组件学习器正确答案:C7.以下哪些是无序属性()A、{小,中,大}B、闵可夫斯基距离C、{飞机,火车、轮船}D、{1,2,3}正确答案:C8.下列关于过拟合的说法错误的是A、过拟合是指模型在训练集上表现很好,但是在交叉验证集和测试集上表现一般B、解决过拟合可以采用Dropout方法C、解决过拟合可以采用参数正则化方法D、数据集扩增不能用来解决过拟合问题正确答案:D9.神经网络算法有时会出现过拟合的情况,那么采取以下哪些方法解决过拟合更为可行()。
A、减少训练数据集中数据的数量B、增大学习的步长C、为参数选取多组初始值,分别训练,再选取一组作为最优值D、设置一个正则项减小模型的复杂度正确答案:D10.下列是机器学习中降维任务的准确描述的为A、依据某个准则对项目进行排序B、将其映射到低维空间来简化输入C、预测每个项目的实际值D、对数据对象进行分组正确答案:B11.对于在原空间中线性不可分问题,支持向量机()。
第八章机器学习8.2答:(1)学习是一项复杂的智能活动,学习过程与推理过程是紧密相连的学习中所用的推理越多,系统的能力越强(2)机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问“机器”——计算机(电子,以后还可能是中子计算机、光子计算机或神经计算机等)8.3答:机器学习系统的结构及基本功能当监督环节为示教人时,为示教式学习系统;当监督环节为监督器时,为自学式学习系统。
①知识库存储(记忆)、积累知识·长期记忆(LTM)先验知识背景如事物的基本概念和定义、定律和公理,博弈的基本规则等·中期记忆(MTM)环境事物的各种具体知识·短期记忆(STM)环境变化的信息和数据事实库或“黑板②学习元学习系统的核心环节·采集环境信息息选例环节或直接采集·接受监督指导监督环节的示教、指导信息或评价准则·进行学习推理获得有关问题的解答和结论·修改知识库将推理结果输入知识库,对知识增删改③执行元识别、论证、决策、判定模式分类器、专家咨询解释系统、智能控制机构、机械手/人等如执行元行动结果直接引起环境的变化 “在线”学习系统机器人规划、生产过程控制、机器博弈等④监督环节人:示教者;监督器:评价准则或检验标准·工作执行效果评价——接受来自执行元环节的反馈信息,对系统的工作执行效果进行评价和检验·制定评价标准——接受来自环境变化的信息,制定和修订评价标准和检验标准·监督学习环节——根据评价和检验的结果,对学习环节进行示教、训练或指导·控制选例环节——根据环境变化信息及工作执行效果的反馈,控制选例环节,选取其它事例或样本⑤选例环节作用是从环境中选取有典型意义的事例或样本,作为系统的训练集或学习对象。
如挑选典型病历,以便提高学习效率,加速学习过程。
选例环节可以由人或机器来实现⑥环境系统获取知识和信息的来源,执行的对象和人物等。
机器学习:模型与算法智慧树知到课后章节答案2023年下浙江大学浙江大学第一章测试1.sigmoid函数的值域为?()。
答案:(0,1)2.哪些属于监督学习重要元素?()。
答案:标注数据;学习模型;损失函数3.分析不同变量之间存在关系的研究叫回归分析。
()答案:对4.强可学习和弱可学习是等价的。
()答案:对5.下面的说法正确的是()。
答案:逻辑回归只能处理二分类问题第二章测试1.下面的说法正确的是()。
答案:K均值聚类算法实质上是最小化每个类簇的方差。
2.哪一项是皮尔逊相关系数的性质?()。
答案:X与Y协方差的绝对值小于等于13.下面的说法正确的有()。
答案:EM算法分为求取期望和期望最大化两个步骤。
;在K均值聚类算法中,欧式距离与方差量纲相同。
4.K均值聚类属于监督学习。
()答案:错5.特征人脸方法的本质是用称为“特征人脸”的特征向量按照线性组合形式表达每一张原始人脸图像。
()答案:对第三章测试1.下列哪一项不是运用半监督学习的原因()。
答案:为获得更高的机器学习性能2.在半监督学习中下列哪种说法是错误的()。
答案:“聚类假设的推广,对输出值没有限制”属于聚类假设的范畴。
3.半监督学习方法有:()。
答案:基于图表的半监督学习;半监督SVM;生成方法4.在有标记数据极少的情形下往往比其他方法性能更好是半监督学习生成式方法流程的优点。
()答案:对5.基于图表的半监督学习不用占有太大内存。
()答案:错第四章测试1.下列说法正确的是()。
答案:感知机网络只有输入层/输出层,无隐藏层。
2.一元变量所构成函数f在x处的梯度为()答案:3.常用的池化操作有::()。
答案:最大池化;平均池化4.One-hot向量可以刻画词与词之间的相似性()答案:错5.前馈神经网络中存在反馈。
()答案:错第五章测试1.下列说法错误的是()。
答案:循环神经网络不能处理任意长度的序列2.下列说法正确的是()。
答案:如果一个完全连接的RNN有足够数量的sigmoid型隐藏神经元,它可以以任意的准确率去近似任何一个非线性动力系统个。
机器学习考试题目答案1.简描述机器学习概念?TomMitCheI1:"对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习J 我们遇到的大部分事情一般包括分类问题与回归问题。
如房价的预测,股价的预测等属于分类问题。
一般的处理过程是:首先,1)获取数据;2)提取最能体现数据的特征;3)利用算法建模;4)将建立的模型用于预测。
如人脸识别系统,首先我们获取到一堆人脸照片,首先,对数据进行预处理,然后提取人脸特征,最后用算法如SVM或者NN等。
这样,我们就建立了一个人脸识别系统,当输入一张人脸,我们就知道这张面孔是否在系统中。
这就是机器学习的整个流程,其次还包括寻找最优参数等。
机器学习主要分为:监督学习:数据集是有标签的,大部分机器学习模型都属于这一类别,包括线性分类器、支持向量机等等;无监督学习:跟监督学习相反,数据集是完全没有标签的,主要的依据是相似的样本在数据空间中一般距离是相近的,这样就能通过距离的计算把样本分类,这样就完全不需要IabeI,比如著名的kmeans算法就是无监督学习应用最广泛的算法;半监督学习:半监督学习一般针对的问题是数据量超级大但是有标签数据很少或者说标签数据的获取很难很贵的情况,训练的时候有一部分是有标签的而有一部分是没有的;强化学习:一直激励学习的方式,通过激励函数来让模型不断根据遇到的情况做出调整;2.循环神经网络的基本原理?RNNS的目的是用来处理序列数据。
在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。
但是这种普通的神经网络对于很多问题却无能无力。
例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
RNNS之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。
具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
一、单选题1、下列哪位是人工智能之父?()A.Marniv Lee MinskyB.HerbertA.SimonC.Allen NewellD.John Clifford Shaw正确答案:A2、根据王珏的理解,下列不属于对问题空间W的统计描述是()。
A.一致性假设B.划分C.泛化能力D.学习能力正确答案:D3、下列描述无监督学习错误的是()。
A.无标签B.核心是聚类C.不需要降维D.具有很好的解释性正确答案:C4、下列描述有监督学习错误的是()。
A.有标签B.核心是分类C.所有数据都相互独立分布D.分类原因不透明正确答案:C5、下列哪种归纳学习采用符号表示方式?()A. 经验归纳学习B.遗传算法C.联接学习D.强化学习正确答案:A6、混淆矩阵的假正是指()。
A.模型预测为正的正样本B.模型预测为正的负样本C.模型预测为负的正样本D.模型预测为负的负样本正确答案:B7、混淆矩阵的真负率公式是为()。
A.TP/(TP+FN)B.FP/(FP+TN)C.FN/(TP+FN)D.TN/(TN+FP)正确答案:D8、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,准确率是()。
A.1/4B.1/2C.4/7D.4/6正确答案:B9、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,精确率是()。
A.1/4B.1/2C.4/7D.2/3正确答案:C10、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,召回率是()。
A.1/4B.1/2C.4/7D.2/3正确答案:D11、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,F1-score是()。
A.4/13B.8/13C.4/7D.2/30.00/2.00正确答案:B12、EM算法的E和M指什么?()A.Expectation-MaximumB.Expect-MaximumC.Extra-MaximumD.Extra-Max正确答案:A13、EM算法的核心思想是?()A.通过不断地求取目标函数的下界的最优值,从而实现最优化的目标。
机器学习(慕课版)习题答案全集机器学习(慕课版)习题答案目录第一章机器学习概述 (2)第二章机器学习基本方法 (5)第三章决策树与分类算法 (9)第四章聚类分析 (13)第五章文本分析 (17)第六章神经网络 (22)第七章贝叶斯网络 (26)第八章支持向量机 (31)第九章进化计算 (32)第十章分布式机器学习 (34)第十一章深度学习 (35)第十二章高级深度学习 (37)第十三章推荐系统 (39)第一章机器学习概述1.机器学习的发展历史上有哪些主要事件?机器学习发展分为知识推理期、知识工程期、浅层知识期和深度学习几个阶段,可从几个阶段选择主要历史事件作答。
2.机器学习有哪些主要的流派?它们分别有什么贡献?符号主义:专家系统、知识工程贝叶斯派:情感分类、自动驾驶、垃圾邮件过滤联结主义:神经网络进化主义:遗传算法行为类推主义3.讨论机器学习与人工智能的关系机器学习是人工智能的一个分支,作为人工智能核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题4.讨论机器学习与数据挖掘的关系数据挖掘是从大量的业务数据中挖掘隐藏、有用的、正确的知识促进决策的执行。
数据挖掘的很多算法都来自于机器学习,并在实际应用中进行优化。
机器学习最近几年也逐渐跳出实验室,解决从实际的数据中学习模式,解决实际问题。
数据挖掘和机器学习的交集越来越大,机器学习成为数据挖掘的重要支撑技术5.讨论机器学习与数据科学、大数据分析等概念的关系数据科学主要包括两个方面:用数据的方法研究科学和用科学的方法研究数据。
前者包括生物信息学、天体信息学、数字地球等领域;后者包括统计学、机器学习、数据挖掘、数据库等领域。
大数据分析即是后者的一个部分。
一般使用机器学习这个工具做大数据的分析工作,也就是说机器学习是我们做大数据分析的一个比较好用的工具,但是大数据分析的工具并不止机器学习,机器学习也并不只能做大数据分析。
解忧书店 JieYouBookshop第一章单元测试1【单选题】 (5分)对西瓜的成熟度进行预测得到结果为0.51,这属于()学习任务。
A.其余选项都不是B.聚类C.回归D.分类2【单选题】 (5分)在学习过程中,X表示数据集,Y是所有标记的集合,也称为()。
A.样本集合B.属性集合C.输出空间D.函数3【单选题】 (5分)机器学习算法在学习过程中可能获得多个不同的模型,在解决“什么样的模型更好”这一问题时遵循“若有多个假设与观察一致,则选最简单的那个”,即()原则。
A.奥卡姆剃刀B.没有免费的午餐C.迪米特法则D.里氏替换4【单选题】 (5分)机器学习是整个人工智能的核心,机器学习算法的特征之一就是()。
A.类别B.模型C.特征D.数据5【单选题】 (5分)模型的泛化能力是指A.适用于训练集样本的能力B.适用于测试集样本的能力C.适用于新样本的能力D.适用于验证集样本的能力6【多选题】 (5分)下列关于学习算法的说法正确的是A.在某些问题上表现好的学习算法,在另一些问题上却可能不尽人意B.学习算法自身的归纳偏好与问题是否相配通常并不起决定性的作用C.学习算法必须有某种偏好,才能产出它认为“正确”的模型D.要谈论算法的相对优劣,必须要针对具体的学习问题7【多选题】 (5分)获得假设(模型)空间时,从特殊到一般的过程属于A.泛化B.归纳C.特化D.演绎8【多选题】 (5分)机器学习可以应用在下列哪些领域()A.搜索引擎B.天气预报C.商业营销D.自动驾驶汽车9【多选题】 (5分)根据训练数据是否拥有标记信息,学习任务可以分为()。
A.分类B.聚类C.无监督D.回归E.半监督F.监督10【判断题】 (5分)演绎是从一般到特殊的"特化"过程,即从基础原理推演出具体状况A.对B.错11【判断题】 (5分)分类预测的是离散值A.错B.对12【判断题】 (5分)分类和回归是无监督学习A.对B.错13【判断题】 (5分)奥卡姆剃刀原则:即“若有多个假设与观察一致,选最简单的一个”。
人工智能机器学习技术练习(习题卷8)第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]基于二次准则函数的H-K算法较之于感知器算法的优点是()?A)计算量小B)可以判别问题是否线性可分C)其解完全适用于非线性可分的情况答案:B解析:2.[单选题]构建回归树的时间复杂度最重要的因素是()A)特征中类别的个数B)label列值域C)样本总量答案:A解析:3.[单选题]()是指为最小化总体风险,只需在每个样本上选择能使特定条件风险最小的类别标记。
A)支持向量机B)间隔最大化C)线性分类器D)贝叶斯判定准则答案:D解析:4.[单选题]下列选择 Logistic回归中的 One-Vs-All方法中,()是真实的。
A)我们需要在n类分类问题中适合n个模型B)我们需要适合n-1个模型来分类为n个类C)我们需要只适合1个模型来分类为n个类D)以上答案都不正确答案:A解析:如果存在n个类,那么n个单独的逻辑回归必须与之相适应,其中每个类的概率由剩余类的概率之和确定。
5.[单选题](__)不属于相关分析。
A)正相关B)负相关C)线性相关D)误差相关答案:D解析:6.[单选题]移动运营商对客户进行细分,设计套餐和营销活动可以使用下面哪种机器学习方法( )。
A)贝叶斯分类器B)关联方法C)聚类算法D)多层前馈网络7.[单选题]下面是三个散点图(A,B,C,从左到右)和和手绘的逻辑回归决策边界。
alt="" >上图中哪一个显示了决策边界过度拟合训练数据?A)AB)BC)CD)这些都没有答案:C解析:由于在图3中,决策边界不平滑,表明其过度拟合数据。
8.[单选题]半监督学习包括。
A)主动学习B)回归学习C)聚类学习D)直推学习答案:D解析:9.[单选题]在统计语言模型中,通常以概率的形式描述任意语句的可能性,利用最大相似度估计进行度量,对于一些低频词,无论如何扩大训练数据,出现的频度仍然很低,下列哪种方法可以解决这一问题()A)一元切分B)一元文法C)数据平滑D)N元文法答案:C解析:10.[单选题]将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?A)频繁模式挖掘B)分类和预测C)数据预处理D)数据流挖掘答案:C11.[单选题]图像数据分析的常用方法不包括( )A)图像变换B)图像编码和压缩C)图像增强和复原D)图像数据采集答案:D解析:12.[单选题]下列关于数据的说法,不正确的是()A)数据的类别有多种多样B)数据库中的一列代表一个特征C)一组数据平均值不会受异常值影响D)数据点之间的距离满足d_ij+d_jk≥d_ik答案:C解析:13.[单选题]关于ZooKeeper的说法不正确是()A)采用层次化的数据结构B)采用类似于LINUX命令进行数据访问C)具备临时节点和永久节点D)永久节点会随客户端会话的结束而结束其生命周期答案:D解析:14.[单选题]下面数据结构能够支持随机的插入和删除操作、并具有较好的性能的是A)链表和哈希表B)数组和链表C)哈希表和队列D)堆栈和双向队列答案:A解析:15.[单选题]下面关于数据科学与统计学的关系描述不正确的有(__)。
(完整word版)机器学习练习题与答案《机器学习》练习题与解答1.⼩刚去应聘某互联⽹公司的算法⼯程师,⾯试官问他“回归和分类有什么相同点和不同点”,他说了以下⾔论,请逐条判断是否准确。
1)回归和分类都是有监督学习问题[单选题] [必答题]○对○错参考答案:对。
解析:这道题只有⼀个同学做错。
本题考察有监督学习的概念。
有监督学习是从标签化训练数据集中推断出函数的机器学习任务。
有监督学习和⽆监督学习的区别是:机器学习算法的图谱如下:在回归问题中,标签是连续值;在分类问题中,标签是离散值。
具体差别请看周志华《机器学习》书中的例⼦,⼀看便懂:2.背景同上题。
请判断2)回归问题和分类问题都有可能发⽣过拟合 [单选题] [必答题]○对○错答案:对解析:这题有两个同学做错。
过拟合的英⽂名称是 Over-fitting(过拟合)。
为了说清楚“过”拟合,⾸先说⼀下“拟合”【拟合的⼏何意义】:从⼏何意义上讲,拟合是给定了空间中的⼀些点,找到⼀个已知形式未知参数的连续曲线或曲⾯来最⼤限度地逼近这些点。
⼀个直观的例⼦,是下⾯的电阻和温度的例⼦。
我们知道在物理学中,电阻和温度是线性的关系,也就是R=at+b。
现在我们有⼀系列关于“温度”和“电阻”的测量值。
⼀个最简单的思路,取两组测量值,解⼀个线性⽅程组,就可以求出系数a、b了!但是理想是丰满的,现实是残酷的!由于测量误差等的存在,我们每次测量得到的温度值和电阻值都是有误差的!因此,为了提⾼测量精度,我们会测量多次,得到多组的值,这样就相当于得到⼆维平⾯上的多个点,我们的⽬标是寻找⼀条直线,让这条直线尽可能地接近各个测量得到的点。
拟合的数学意义:在数学的意义上,所谓拟合(fit)是指已知某函数的若⼲离散函数值{f1,f2,…,fn}(未必都是准确值,有个别可能是近似甚⾄错误值),通过调整该函数中若⼲待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最⼩⼆乘意义)最⼩。
第八章机器学习
8.2答:
(1)学习是一项复杂的智能活动,学习过程与推理过程是紧密相连的学习中所用的推理越多,系统的能力越强
(2)机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问“机器”——计算机(电子,以后还可能是中子计算机、光子计算机或神经计算机等)
8.3答:机器学习系统的结构及基本功能
当监督环节为示教人时,为示教式学习系统;当监督环节为监督器时,为自学式学习系统。
①知识库存储(记忆)、积累知识
·长期记忆(LTM)先验知识背景如事物的基本概念和定义、定律和公理,博弈的基本规则等·中期记忆(MTM)环境事物的各种具体知识
·短期记忆(STM)环境变化的信息和数据事实库或“黑板
②学习元学习系统的核心环节
·采集环境信息息选例环节或直接采集
·接受监督指导监督环节的示教、指导信息或评价准则
·进行学习推理获得有关问题的解答和结论
·修改知识库将推理结果输入知识库,对知识增删改
③执行元识别、论证、决策、判定
模式分类器、专家咨询解释系统、智能控制机构、机械手/人等
如执行元行动结果直接引起环境的变化 “在线”学习系统
机器人规划、生产过程控制、机器博弈等
④监督环节人:示教者;监督器:评价准则或检验标准
·工作执行效果评价——接受来自执行元环节的反馈信息,对系统的工作执行效果进行评价和检验
·制定评价标准——接受来自环境变化的信息,制定和修订评价标准和检验标准
·监督学习环节——根据评价和检验的结果,对学习环节进行示教、训练或指导
·控制选例环节——根据环境变化信息及工作执行效果的反馈,控制选例环节,选取其它事例或样本
⑤选例环节
作用是从环境中选取有典型意义的事例或样本,作为系统的训练集或学习对象。
如挑选典型病历,以便提高学习效率,加速学习过程。
选例环节可以由人或机器来实现
⑥环境
系统获取知识和信息的来源,执行的对象和人物等。
如,医疗专家系统的病员、病历档案、医生、诊断书等;模式识别系统的文字、图象、物景;博弈系统的对手、棋局;智能控制系统的被控对象和生产过
程等。
8.4答:
(1).机械学习模型
机械学习——一种最简单的机器学习方法
机械学习是最基本的学习过程,任何学习系统都必须记住它们获取的知识
机械学习系统:知识的获取是以较为稳定和直接的方式进行的,不需要系统进行过多的加工
机械学习就是记忆,即把新的知识存储起来,供需要时检索调用,而不需要计算和推理
归纳过程可以简化成推导过程
直接使用求根公式计算一个一元二次方程的根自学
(2).机械学习的主要问题
①存储组织信息
②环境的稳定性与存储信息的适用性问题。
密切监视外界环境的变化,不断地更换所保存
的信息;核对。
③存储与计算之间的权衡。
预估算;“选择忘却”技术
8.5答:
(1)示例学习:
病态细胞的分类识别例如图,
•正例——三个病细胞(P1, P2, P3),
•反例——二个正常细胞(N1, N2);
•每个细胞由二个细胞体组成
* 细胞体表示为三元组:(核数、尾数、染色状),
* P1:{(2, 2, 深) (1, 1, 浅)}。
•学习任务——从例子集中归纳出有病状X的细胞
A. 概念描述的搜索和获取
概念描述
•假设不必给每个特性(属性)都指明应取值:
* 没有给出值的特性(以?指示)——对于该概念的描述无关紧要;
* 病细胞假设(a):{(2, ?, ?) (?, 1, 深)},一个细胞体有二个胞核;另一个有一个尾巴,且染色是深的。
•病细胞假设空间的半序图(图6.5)
•假设之间的关系弧指示泛化/特化关系,
•假设空间上的一个泛化/特化关系(图6.4),
* 假设(b)不考虑细胞体是否有尾巴,比假设(a)复盖更多的例子;
* 假设(b)比假设(a)泛化;
* 假设(a)比假设(b)特化。
•底层假设——最特化(具体)的概念描述:
* 所有特性都给定特别值,对应于例子空间中的一个例子。
•顶层假设——最泛化的概念描述:
* 不指定任何具体的特性值,
* 表示为{(? ? ?),(? ? ?)}。
•假设空间中的搜索方式
•特化搜索——从最泛化的假设(概念描述)出发,每次取用一个新的例子,就产生一些特化的描述,直到将初始最泛化的假设特化为解描述。
•泛化搜索——从最特化的假设(相应于例子空间中的一个例子)开始,每次取用一个新的例子时,就产生一些泛化的描述,直到产生出足够泛化的解描述。
•大多数示例学习方法都采用这二种方法或这二个方法的结合。
B.逐步泛化的学习策略
•采用宽度优先、自底向上的搜索方式:
•将第一个正例(P1)作为初始假设(H1)——极端特化的假设;
•正例(P2)用于指导系统生成泛化的假设(H2和H3):
* 多个泛化的假设——不同的映射会导致不同的假设,- 假设H1中包含了二个对象(细胞体);
* 采用保守原则——最低限度的泛化,:- 新的假设刚好覆盖现有的假设/例子。
•反例(N1)用来剪裁过于泛化的假设:
H3是过于泛化的假设,因为其蕴涵了反例N1。
基本策略:
•遇见正例就泛化某些假设以保证假设的完全描述性,
•遇见反例则删去某些假设以保证假设的一致描述性,
•直至得到一个既完全又一致的解描述(假设)为止。
•这个解描述作为满足给定例子集的概念定义——学习系统获得的新知识。
3 / 5。