第二十三讲 分解质因数
- 格式:docx
- 大小:13.93 KB
- 文档页数:3
分解质因数的标准形式-概述说明以及解释1.引言1.1 概述分解质因数是数学中一个重要的概念和方法,用于将一个数表示为若干个质数的乘积。
这个过程可以帮助我们深入了解一个数的因数结构,进一步探索数的性质和特征。
分解质因数也是解决很多数学问题的基础,如求最大公约数、最小公倍数,以及求解关于整数的方程等等。
在分解质因数的过程中,我们将一个数分解为一系列质数的乘积。
质数是指除了1和本身外没有其他因数的数,如2、3、5、7等。
而合数则是除了1和本身外还具有其他因数的数,如4、6、8等。
通过将一个复杂的数分解为质数的乘积,我们可以简化计算过程,更好地理解和分析数的性质。
分解质因数的标准形式能够帮助我们更方便地表示和理解一个数的分解结果。
在这种形式中,我们按照质数的升序排列,并用幂的形式表示质因数的重复次数。
比如,将60分解质因数的标准形式为:2^2 * 3 * 5。
这种形式准确、简洁地描述了一个数的因数分解结果,方便我们进行进一步的计算和分析。
分解质因数不仅在数学领域具有重要意义,在实际应用中也有广泛的应用。
例如,在密码学中,分解质因数被用于RSA加密算法,保证信息的安全传输。
此外,分解质因数也可以帮助我们解决一些实际问题,如寻找最大公约数、寻找因式分解等。
未来,随着计算机技术的发展,分解质因数的方法和应用将进一步拓展,为我们提供更多的数学工具和方法。
总之,分解质因数作为数学中一项重要的方法和概念,通过将一个数表示为质数的乘积,帮助我们更好地理解数的性质和结构。
分解质因数的标准形式能够准确、简洁地表示一个数的因数分解结果,方便我们进行进一步的计算和分析。
这一方法在数学领域和实际应用中都具有广泛的意义和应用前景。
1.2文章结构文章结构部分的内容:文章结构是指文章整体组织的框架和布局。
一个良好的文章结构可以使读者更好地理解文章的内容,同时也能够让作者更清晰地表达自己的思想和观点。
本文将按照以下结构来组织内容:1. 引言:介绍分解质因数的标准形式的背景和意义,概述本文的主要内容和目的。
《分解质因数》优秀教案《分解质因数》优秀教案(精选5篇)作为一位优秀的人民教师,通常需要准备好一份教案,教案是实施教学的主要依据,有着至关重要的作用。
那么优秀的教案是什么样的呢?以下是店铺整理的《分解质因数》优秀教案,欢迎阅读与收藏。
《分解质因数》优秀教案篇1教学目标(一)理解质因数、分解质因数的意义。
(二)会把一个合数分解质因数,掌握用短除式分解质因数。
(三)培养学生观察分析,概括的能力。
教学重点和难点(一)质因数与分解质因数的意义。
(二)用短除式分解质因数。
教学用具投影片。
教学过程设计(一)复习准备1、请说出1~12这些数中的质数和合数。
(投影片)学生口答后,投影出示答案:①2,3,5,7,11是质数;②4,6,8,9,10,12是合数。
2、说一说质数与合数的区别?3、请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。
这节课就来研究要求连乘式子里的因数都是质数的情况。
(二)学习新课1、质因数的意义,分别质因数的意义和方法。
(1)板书例3 6,28和60可以写成哪几个质数相乘的形式?教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。
教师:用算式如何表示,学生口答后老师板书;6=2×3。
教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。
问:4老师为什么没圈?(4不是质数,继续分解。
) 板书;2,2,圈上。
请用算式表示。
板书;28=2×2×7。
教师:请用上面的方法把60分成几个质数相乘的形式。
老师巡视中请一位同学板书出塔式分解式和算式。
(2)教师:请观察,(指塔式分解式和算式)每个合数都写成什么形式?(每个合数都写成了几个质数相乘的形式。
)教师:这些质数,在式子里与原来的合数是什么关系?(这些质数都是原来合数的因数。
《分解质因数》说课稿笨笨的工作室分解质因数教研活动分解质因数一、说教材(一)教材分析分解质因数是在学习倍数、因数,2、3、5的数的特征,质数、合数等知识后学习的有一个概念性知识。
质因数和分解质因数的概念是结合例2的具体数给出的,这样是为了避免抽象的数学概念给学生学习造成困难,结合具体的例子学习数学概念是一个好的方法。
分解质因数可将数直接进行分解,也可用短除法。
由于用短除法来分解质因数,对学生来说是一个新知识,教科书通过对话框蒋方法进行叙述,并将分解过程完整地呈现出来。
提倡算法多样化时要注意,让学生用自己熟悉的方法区解决新的问题固然是好的,但在解决新问题时产生的新方法更需要学生区学习和掌握。
因此在例2后的“试一试”教材安排用短除法分解质因数,这是学生以前未知的方,应该加以训练。
(二)教学目标知识目标:1、使学生理解和掌握将一个合数分解质因数的数学意义;能掌握多种方法进行分解,进而理解其意义;2、让学生学会用树枝法和短除法进行正确的分解;3、在解决问题中,深入自然数的另一层面。
能力目标:培养学生观察、推理、迁移的能力及有条理的口头表达能力。
情感目标:培养学生善于动脑的良好学习习惯和对数学的学习兴趣,培养他们创新的意识。
(三)教学重点、难点重点、:理解分解质因数的意义,掌握方法,并在过程中理解一个数的质因数的意义。
难点:掌握判定相乘的几个数既是质数又是因数的方法。
二、说教法与学法教法:点拨引入,组织探究,启发巩固。
学法:动手实践,自主探索,合作学习。
三、说教学程序设计(1)分组活动,激发学生的学习兴趣。
新课程理念倡导教学应让学生在愉悦的教学情境中学习,在情境中实践,注重学生实践和创新能力的培养。
本堂课我设计了学生四人一组分组活动,首先每一个学生独立发言,说出20以内的每一个质数,然后要求每组学生分别说出42可以写成哪几个质数相乘的形式的,学生非常感兴趣。
在合作学习时,我让四人一组,一人主持,一人记录,然后组内每个学生发表自己的看法。
小学数学五年级奥数第23讲分解质因数(一)第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。
练习一1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。
练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。
例题3 将下面八个数平均分成两组,使这两组数的乘积相等。
2、5、14、24、27、55、56、99分析 14=2×7 55=5×1124=2×2×2×3 56=2×2×2×727=3×3×3 99=3×3×11可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。
第二十三讲分解质因数
专题简析:
一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。
其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。
例题1把18个苹果平均分成若干份,每份大于1个,小于18个。
一共有多少种不同的分法?
分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。
练习一
1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。
有哪几种分法?
2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?
3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。
例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。
共有多少种分法?
分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。
练习二
1,把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。
2,四个连续奇数的和是19305,这个四奇数分别是多少?
3,把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。
甲说:“我的三个数的积是48。
”乙说:“我的三个数的和是16。
”丙说:“我的三个数的积是63。
”甲、乙、丙各拿了哪几张卡片?
例题3将下面八个数平均分成两组,使这两组数的乘积相等。
2、5、14、24、27、55、56、99
分析 14=2×7 55=5×11
24=2×2×2×3 56=2×2×2×7
27=3×3×3 99=3×3×11
可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。
因为要把这八个数分成两组,且积相等,所以,每组数中应含有四个2,三个3,一个5,一个7和一个11。
经排列为(5、99、24、14)和(55、27、56、2)。
练习三
1,下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。
□□×□□=1288
2,有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?
3,把40、45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。
例题4 王老师带领一班同学去植树,学生恰好分成4组。
如果王老师和学生每人植树一样多,那么他们一共植了539棵。
这个班有多少个学生?每人植树多少棵?
分析根据每人植树棵数×人数=539棵,把539分解质因数。
539=7×7×11,如果每人植7棵,这个班就有7×11-1=76人;如果每人植树11棵,这个班共有7×7-1=48人。
练习四
1,3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。
已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。
2,小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。
小青买的电影票是几排几座?
3,把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920。
这篮苹果共有多少个?
例题5 下面的算式里,□里数字各不相同,求这四个数字的和。
□□×□□=1995
分析要使两个两位数的积等于1995,那么,这两个数的积应和1995有相同的质因数。
1995=3×5×7×19,可以有35×57=1995和21×95=1995。
因为要满足“数字各不相同”的条件,所以取21×95=1995,这四个数字的和是:2+1+9+5=17。
练习五
1,在下面算式的框内,各填入一个数字,使算式成立。
□□□×□=1995
2,有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。
3,有三个自然数a,b,c,已知a×b=35,b×c=55,a×c=77,求三个数之积是多少?。