机械诱发非晶Finemet合金的纳米晶化
- 格式:pdf
- 大小:247.46 KB
- 文档页数:4
This brochure describes characteristics of FINEMET ® and gives examples of applications Nanocrystalline soft magnetic materialInformation in this brochure does not grant patent right, copyrightDo not duplicate in part or in its entirety this brochure without This brochure and its contents are subject to change without Please inquire about our handling manual for specific applicationsUnits 2212-14, 22/F., Miramar Tower, 132 Nathan Road, Tsimshatsui,Kowloon, Hong KongTel.+852-2724-4183 Fax.+852-2311-209512 Gul Avenue, Singapore 629656Tel.+65-6861-7711 Fax.+65-6861-9554Bangkok BranchUnit 13B, 13th Floor, Ploenchit Tower, 898 Ploenchit Road,Lumpini, Pathumwan, Bangkok 10330, Thailand Tel.+66-2-263-0889~0890 Fax.+66-2-263-0891Immermannstrasse 14-16, 40210 Dusseldorf, Germany Tel.+49-211-16009-67 Fax.+49-211-16009-30Chicago Office2101 S. Arlington Heights Road Suite 116Arlington Heights, IL 60005-4142Tel.847-364-7200 Fax.847-364-7279or intellectual property rights of Hitachi Metals or that of third parties. Hitachi Metals disclaims all liability arising out using information in this brochure for any case of patent right, copyright or intellectual property rights of third parties.written permission from Hitachi Metals, Ltd.notice; specific technical characteristics are subject to consultation and agreement.of FINEMET ®, these manuals detail the exact guaranteed characteristics of FINEMET ® for a specific application.Information System Components Company2-1 Shibaura 1-chome, Seavans North Bldg. Minato-ku, Tokyo 105-8614, JapanTel.+81-3-5765-4058 Fax.+81-3-5765-8319Kansai Sales Office5-29 Kitahama 3-chome, Nissei Yodoyabashi building Chuo-ku, Osaka 541-0041, JapanTel.+81-6-6203-9751 Fax.+81-6-6222-3414Chubu-Tokai Sales Office13-19 Nishiki 2-chome, Takisada building, Naka-ku Nagoya-shi, Aichi, 460-0003, JapanTel.+81-52-220-7470 Fax.+81-52-220-7486NOTICE OF DISCLAIMERNorth AmericaEuropeSouth-East AsiaHong KongAbove contact addresses are as of July 2010. The addresses are subject to change without notice.If your telephone call and/or fax cannot get through, please contact us as follows:Hitachi Metals, Ltd. Corporate Communication Group .Tel. +81-3-5765-4076 Fax. +81-3-5765-8312 E-mail : hmcc@hitachi-metals.co.jp(Thailand)EMI filters/Common mode chokesMagnetic shielding sheetsElectromagnetic wave absorbersCurrent sensors/Magnetic sensorsMagnetic amplifier/Pulsed power coresSurge absorbers/High voltage pulsetransformersHigh frequency power transformersActive filters/Smoothing choke coilsAccelerator cavityHigh permeabilityHigh squarenessLow magnetstrictionExcellenttemperaturecharacteristicsLow core lossHigh saturationflux density® through a transmission®1) Satisfy both high saturation magnetic flux density and highpermeability2) Low core loss3) Low magnetostriction4) Excellent temperature characteristics and small aging effects5) Excellent characteristics over wide frequency range6) Flexibility to control magnetic properties“B-H curve shape”during annealingHigh saturation magnetic flux density comparable to Fe-basedamorphous metal. High permeability comparable to Co-basedamorphous metal.1/5th the core loss of Fe based amorphous metal and approxi-mately the same core loss as Co-based amorphous metal.Less affected by mechanical stress. Very low audio noise emission.Small permeability variation (less than ±10%) at a temperaturerange of -50°C~150°C. Unlike Co-based amorphous metals, agingeffects are very small.High permeability and low core loss over wide frequency range,which is equivalent to Co-based amorphous metal.Three types of B-H curve squareness, high, middle and lowremanence ratio, corresponding to various applications.The limit of theconventionalspecial materialThe precursor of FINEMET® is amorphous ribbon (non-crystalline)obtained by rapid quenching at one million °C/second from themolten metal consisting of Fe, Si, B and small amounts of Cu andNb. These crystallized alloys have grains which are extremelyuniform and small, “about ten nanometers in size”. Amorphousmetals which contain certain alloy elements show superior softmagnetic properties through crystallization. It was commonlyknown that the characteristics of soft magnetic materials are“larger crystal grains yield better soft magnetic properties”.Contrary to this common belief, soft magnetic material consistingof a small, “nano-order”, crystal grains have excellent softmagnetic properties.Energy savingVolume reductionresHigh frequency useHigh performanceNoise reductionWhat is FINEMET® ?Hitachi Metals, Ltd. produces various types of softmagnetic materials, such as Permalloy, soft ferrite,amorphous metal, and FINEMET®, and we use thesematerials in our product’s applications. We continuallyimprove our material technology and develop newapplications by taking advantage of the unique charac-teristics these materials provide. FINEMET®is a goodexample. It is our hope, FINEMET®will be the bestsolution for your application.Features and Typical Applications of FINEMET®EMI filters/Common mode chokesMagnetic shielding sheetsElectromagnetic wave absorbersCurrent sensors/Magnetic sensorsMagnetic amplifier/Pulsed power coresSurge absorbers/High voltage pulsetransformersHigh frequency power transformersActive filters/Smoothing choke coilsAccelerator cavityHigh permeabilityHigh squarenessLow magnetstrictionExcellenttemperaturecharacteristicsLow core lossHigh saturationflux densityRapid quenchingNano structure controlAnnealingMeasurementElectromagneticcircuit designingElectromagnetic andelectro circuit designingTechnologyPicture of FINEMET® through a transmissionelectron microscopeFeatures of FINEMET®1) Satisfy both high saturation magnetic flux density and highpermeability2) Low core loss3) Low magnetostriction4) Excellent temperature characteristics and small aging effects5) Excellent characteristics over wide frequency range6) Flexibility to control magnetic properties“B-H curve shape”during annealingHigh saturation magnetic flux density comparable to Fe-basedamorphous metal. High permeability comparable to Co-basedamorphous metal.1/5th the core loss of Fe based amorphous metal and approxi-mately the same core loss as Co-based amorphous metal.Less affected by mechanical stress. Very low audio noise emission.Small permeability variation (less than ±10%) at a temperaturerange of -50°C~150°C. Unlike Co-based amorphous metals, agingeffects are very small.High permeability and low core loss over wide frequency range,which is equivalent to Co-based amorphous metal.Three types of B-H curve squareness, high, middle and lowremanence ratio, corresponding to various applications.The limit of theconventionalspecial materialFe-Al-SiMn-Zn ferriteCo based amorphousFe based amorphousPermalloySi-steelFINEMET®Relationship between relative permeability and saturationflux density of various soft magnetic materialsFeaturesNanocrystalline Fe-based Soft Magnetic Material with High Saturation Flux Density,High Relative Permeability and Low Core LossH, M, L or S implies B-H squarenessExamples of DC B-H curveThe precursor of FINEMET® is amorphous ribbon (non-crystalline)obtained by rapid quenching at one million °C/second from themolten metal consisting of Fe, Si, B and small amounts of Cu andNb. These crystallized alloys have grains which are extremelyuniform and small, “about ten nanometers in size”. Amorphousmetals which contain certain alloy elements show superior softmagnetic properties through crystallization. It was commonlyknown that the characteristics of soft magnetic materials are“larger crystal grains yield better soft magnetic properties”.Contrary to this common belief, soft magnetic material consistingof a small, “nano-order”, crystal grains have excellent softmagnetic properties.B-H Curve Control for FINEMET®Energy savingVolume reductionHigh frequency useHigh performanceNoise reductionSuperior to Conventional MaterialFINEMET®Annealing ConditionsMicrostructure of FINEMET ®For safety and the proper usage, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.Amorphous crystallizationFINEMET Rapidly quenched The early stage ofThe early stage of FINEMET The diagram shows the typical annealing conditions for M type.Air cooling or A below picture shows the microstructure of FINEMET Microstructure of FINEMETManufacturing Process of FINEMET ®Crystallization Process of FINEMET ®A below diagram shows the process for the creation of amorphousribbon for FINEMET ® and a typical FINEMET ® core. The amorphous ribbon is the precursor material of FINEMET ®. This ribbon, “which is about 18µm in thickness”, is cast by rapid quenching, called “single roll method”, then the amorphous ribbon is wound into a toroidal core. Finally, the heat treatment is applied to the core for crystallization in order to obtain excellent soft magnetic properties of FINEMET ®.Amorphous metal as a starting point, Amorphous Cu-rich area thenucleation of bcc Fe from Cu bcc Fe (-Si) shows the crystallization process. At the final stage of this crystallization process, the grain growth is suppressed by the stabilized remaining amorphous phase at the grain boundaries. This stabilization occurs because the crystallization temperature of the remaining amorphous phase rises and it becomes more stable through the enrichment of Nb and B. Synergistic effects of Cu addition, “which causes the nucleation of bcc Fe” and Nb addition, “which suppresses the grain growth” creates a uniform and very fine nanocrystalline microstructure.Manufacturing Process and Microstructure of FINEMET ®For safety and the proper usage, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.Single roll methodCasting Rapid quenchingApply rapid quenching to high temperature melt consists of Fe, as a main phase, Si, B, Cu and Nb.Thickness: ~18 µmmetal ribbonRibbon winding(Configuration)CoreAnnealingNanoGrain size: ~10nm® coreAmorphousamorphous phaseCu-rich area (Cu cluster)AmorphousannealingCrystallizationAmorphous phase(Nb, B-rich area) (High Tx)crystallizationRemaining amorphous phase(Nb, B-rich area)® after proper annealingThis process requires proper heat treatment conditions according to the desired magnetic properties.Example of annealing for M typeHeat treatment in inert gas atmosphere (N 2 or Ar)RoomtemperatureT e m p e r a t u r efurnance coolingTime® through a transmission electron microscope.FINEMET ® consists of ultra fine crystal grains of 10nm order. Main phase is bcc Fe (-Si) and remaining amorphous phase around the crystal grains.®Frequency CharacteristicsR e l a t i v e p e r m e a b i l i t y µrR e l a t i v e p e r m e a b i l i t y µrTheThe graph shows real part (µBasic PropertiesGrain Size and Coersive Force of Soft Magnetic MaterialsIn the conventional soft magnetic materials, “whose grain size is far larger than 1µm”, it was well known that soft magnetic properties become worse and coercive force increases when crystal grain size becomes smaller. For example, coercive force is thought to be inversely proportional to D.Therefore, main efforts to improve the soft magnetic properties were directed to make the crystal grain size larger and/or to make the magnetic domain size smaller by annealing and working.However, FINEMET ® demonstrated a new phenomenon; reduction of grain size, “to a nano-meter level”, improves the soft magnetic properties drastically.In this nano-world, the coercive force is directly proportional to D on the order of D 2 to D 6. This is absolutely contrary to the conventional concepts for improving the soft magnetic properties.Relationship between crystal grain diameter (D) and coercive force (H c )C o e r s i v e f o r c e H c (A /m )Grain diameter D (nm)FINEMET Physical PropertiesThe table shows physical properties of annealed FINEMET ®material. FINEMET ® has resistivity as high as amorphous metals, and has much lower magnetostriction and about 570°C higher Curie temperature than Fe-based amorphous metal.Standard Magnetic CharacteristicsMagnetic properties of FINEMET ® and conventional materials (Non-cut toroidal core)*Note1: B s , B r / B s , H c : DC magnetic properties (H m =800A/m, 25°C), µr (1kHz): relative permeability (1kHz, H m =0.05A/m, 25°C)µr (100kHz): relative permeability (1kHz, H m =0.05A/m, 25°C), P cv : core loss (100kHz, B m =0.2T, 25°C),: Saturation magnetostriction, T c : Curie temperature *Note2: Above properties are taken measurement by Hitachi Metals Ltd.Frequency Dependence of Relative PermeabilityThe graph shows frequency dependence of relative permeability for FT -3M (medium square ratio of BH curve), Co-based amorphous metal, Fe-based amorphous metal and Mn-Zn ferrite. FT-3M has much higher permeability than Fe based amorphous metals and Mn- Zn ferrite, and has permeability as high as Co-based amorphous metals over a wide frequency range.Frequency(kHz)Frequency(kHz)Frequency(kHz)Frequency Dependence of Relative Permeability (After resin molding)graph shows frequency dependence of relative permeability for resin molded FT -3M.FT-3M and Co-based amorphous cores show small permeability degradation after the resin molding due to their small magnetostriction.Complex Relative Permeability and Impedance Relative Permeabilityr ’) and imaginary part(µr ”) of the complex relative permeability and the impedance relative permeability (µrz ) for FT -3M material. µr ” becomes larger than µr ’ 50kHz.Relationship between µrz , µ’ and µ’’ isPhysical properties of FINEMET ® materialTemperature CharacteristicsThe graph shows B Temperature Dependence of Saturation Flux DensityThe graph shows temperature dependence of saturation flux density (B s ) for FT -3. FT -3 has very small temperature dependence of saturation flux density. The decreasing rate of saturation flux density is less than 10% at range from 25°C to 150°C.*Note: This data shows value of annealed (crystallized)material.Because B s value for H type, M type and L typeare same, the data does not describes BH type.Temperature Dependence of Relative PermeabilityThe graph shows temperature dependence of relative permeability at 10kHz for FT-3M and FT-3L. The variation of relative permeability isvery small at a temperature range from 0°C to 150°C, “which is within ±10% of the average value”.Aging Effect on Relative PermeabilityThe graph shows aging effects at 100°C on relative permeability at 1kHz for FT -3M, FT -3L and Co-based amorphous metal. The relative permeability of Co-based amorphous metal decrease rapidly as the aging time increasing, however FT -3M, FT -3L are quite stable.Sa t u r a t i o n f l u x d e n s i t y B s (T )Temperature(°C)Temperature(°C)R e l a t i v e p e r m e a b i l i t y µr (X 104)R e l a t i v e p e r m e a b i l i t y µr (X 104)Data (k W /m 3Core LossThe graph shows frequency dependence of core loss for nonresin molded cores made of FT -3M, Fe-based amorphous metal, Co-based amorphous metal and Mn-Zn ferrite.FT -3M cores show lower core loss than Mn-Zn ferrite and Fe-based cores, and has the same core loss as Co-based amorphous core.The graph shows frequency dependence of core loss for the resin molded cores made of FT -3M. FT -3M core shows stable core loss over wide frequency range with lower core loss than ferrite cores and have the same core loss as Co- based amorphous core.B m Dependence of Core Lossm dependence of core loss for FT -3H, 3M and 3L at 20kHz. FT -3M and 3L show lower core loss than FT-3H. As B m becomes higher, core loss difference among those materials becomes smaller.Frequency Dependence of Core Loss (Before resin molding)Frequency Dependence of Core Loss (After resin molding)*Note: may vary depending on resin and/ormolding conditionsC o r e l o s s P c v 3)C o r e l o s s P c v (k W /m )C o r e l o s s P c v (k W /m 3)Frequency(kHz)Frequency(kHz)Flux density B m (T)Size reduction and lower core lossFINEMET ® F3CC Series Cut CoreThe core loss of FINEMET ® F3CC Series cut core has less than 1/3rd the core loss of Fe based amorphous metal, and less than 1/8th the core loss of silicon steel at 10kHz, B m =0.1T. FINEMET ® has significantly lower core loss and thus makes it possible to reduce the size of the core for high frequency power transformer etc. Also, the magnetostriction of FINEMET ® is 10-7 order and, as a result, cores made from this material will make very little audible noise when compared to cut cores made from Fe based amorphous metal.FINEMET ® pulsed power cores use a thin ceramic insulation which has a high break down voltage. FINEMET ® pulsed power cores are suitable for saturable cores and step-up pulse transformer cores that are used in high voltage pulsed power supplies for Excimer lasers and accelerators, and for cavity cores used in induction accelerators and RF accelerators.Comparison of core materials applied in saturable cores for magnetic pulse compression circuitSize reduction and lower core lossPulsed Power CoresPulse duration compression ratio: 5.0 (input pulse duration 0.5µs, output pulse duration 0.1µs)K: Packing factor B m : Maximum operation flux densityc m(Electro Magnetic Interference)Volume reduction with high permeabilityCommon Mode Chokes for *EMI FiltersHigh voltage surge suppression with high saturation flux densityFINEMET ® Saturable CoresCompared with Mn-Zn ferrite, FINEMET ® has higher impedancepermeability (µrz ) and much smaller temperature dependence of permeability over a wider frequency range.Consequently, the volume of FINEMET ® core can be reduced to 1/2 the size of a Mn-Zn ferrite core while maintaining the same performance at operating temperature of 0°C~100°C.Also, it has approximately three times higher saturation flux density than Mn-Zn ferrite and as a result it is hardly saturated by pulse noise.FINEMET ® saturable cores are made of FT -3H material. Having high saturation characteristics, the cores can offer high performance in noise suppression and size reduction in low voltage high current magamp circuit of Magamp system switch mode power supply.FINEMET ® beads are made of FINEMET ® FT -3M material. As below table describes, the saturation magnetic flux density is twice as high as that of Co-based amorphous metal and Ni-Zn ferrite, and the pulse permeability and the core loss are comparable to Co-based amorphous metal. Because of the high curie temperature (570°C), FINEMET ® beads shows excellent performance at high temperature. These cores are suitable for suppression of reverse recovery current from the diode and ringing or surge current from switching circuit.Comparison of impedance relative permeablilityI m p e d a n c e r e l a t i v e p e r m e a b i l i t y µr zFrequency(kHz)Comparison of magnetic and physical properties among FT -3H, FT -3M and conventional materials*: DC magnetic properties at 800A/m **: Pulse width 0.1 µs, operating magnetic flux density B=0.2TMajor Application of FINEMET ®C o r e l o s s P (W /k g )Flux density (kHz)。
Finemet型FeCuNbSiB系纳米软磁合金的新进展纳米晶软磁合金现在主要有三类:名为Finemet的FeCuNbSiB系合金(1988年发明);名为Nanoperm的FeMBCu系合金(M=Nb、Zr系元素、1990年发明);名为Hitperm 的FeCoZrBSi系合金(1998年发明)。
图1示出纳米晶软磁合金与其它软磁材料的性能比较[1]。
在我国目前已广泛应用并商品化的合金是Finemet型合金,2000年的产量约300吨[2]。
Finemet合金是日立金属公司的Y.Yoshizawa等人发明的。
最早公布的合金成份、商品牌号及性能见表1[3]。
Finemet合金的标准成份是,它与商品牌号FT-1的Bs值不同,因此二者的成份应略有不同。
合金在不同Br状态的磁性(见表2)[4-6]比商品牌号FT-1也优越(对比表1和2)。
现在日立金属公司的Finemet系列产品合金有三个牌号(FT-1、2、3)9种磁性能(见表3),Bs值分别为1.35,1.45和1.23T。
最近Y.Yoshizawa等人公布了最新研究结果见图2[7]、图3[8]和表4[8、9]。
调整了Cu、Nb和Si、Fe含量,获得了不同Bs值,而磁导率(H=0.05A/M)更高的Finemet型合金。
在Cu0.6at%和Nb=2.6at%,B=9 at%,Si≤9.5at%的FeCuNbSiB系合金中还可在获得Bs ~1.5T,≥10万;Bs ~1.55T,≥3.5万的合金(见图4)[8];Fe78.8Cu0.6Nb2.6Si9B9合金在530℃横向磁场退火1小时后的仅为2W/kg;此外在无磁场退火后50Hz下的μm可达60万;横向磁场处理后在H≤10A/M内μr可恒定在10万左右[8]。
新的系合金的磁性能比过去的系要好。
德国V AC公司引进了Finemet型成份为合金的专利技术[10],并在此基础上开发了牌号为Vitroperm 500F、800F、850F三个低Br扁平磁滞回线的商品合金,其性能见表5,磁导率特性曲线见图5,损耗曲线见图6。
全球第二大非晶合金带材生产商毛利率可能高达100%全球第二大非晶合金带材生产商―安泰科技非晶带材毛利率可能高达100%非晶带材技术壁垒非常高,目前全世界仍仅有安泰科技和日本日立金属能够生产。
安泰科技高管透露,公司4万吨非晶带材项目将在今年3月底全部建成投产,将成为全球第二大非晶合金带材生产商,2010年非晶带材销售计划为1.2万吨以上,成本在1.5 万元/吨以下,销售价格为2.8-3.1万元/吨,也就是说毛利率可能高达100%。
安泰科技从事非晶材料的研制已经有20年时间,安泰科技目前还处在追赶者的地位,但所幸的是安泰科技在追赶者中遥遥领先,因为除了日立金属和安泰科技外,世界上基本上没有第三家公司可以批量生产非晶带材的技术和工艺。
按照安泰科技刚刚开始的扩产计划,未来三年内,非晶产能也将扩展到5万吨。
一旦产能能够顺利扩展沫来非晶材料市场将只属于日立金属和安泰科技两家所有。
对于非晶带材市场来说,中国需求一直被压抑着。
非晶变压器的推广一直处于缓慢迈步状况。
市场普遍认为,此前非晶带材全球仅有日立金属一家供应商,处于产业战略的考虑,在国内厂商实现量产之前,国内的需求一直被压抑。
截止08年底的数据显示,OECD组织已经有超过15%的配电变压器更换为非晶合金变压器,而同期国内市场仅仅1%实现了更换。
市场前景可见一斑。
显然,随着安泰科技非晶带材的量产,国内长期压抑的需求将得以释放。
目前,非晶带材的热试已经成功,2010年产量3.5万-4 万吨,公司目前积极扩充产能,到2011年产能将达到10万吨,发改委之所以没有出台扶持策,主要就是因为公司前期没有量产,随着公司4万吨项目的推进,发改委有望出台策强推公司产品。
目前非晶产品的完全成本在1.3万元/吨,随着产量上去,成本有望进一步降低到1.2万元/吨以下。
简单测算下,如果2009年产能可以达到3.5万吨,按照3万元/吨的销售价格,考虑所得税和销售费用率,每吨利润1.4万元,非晶带材项目明年利润可贡献4.5-5亿。
非晶纳米晶合金材料的工艺技术、产业化和应用张甫飞(宝钢集团特钢技术中心,上海 200940)摘要:介绍了国内外利用快淬技术制备非晶纳米晶合金材料的产业现状以及这一领域材料工艺技术的研究开发动态和非晶纳米晶材料的应用情况。
关键词:非晶纳米晶材料;工艺;性能;产业化;应用Application, Industrialization and Technology of Amorphous & Nanocrystalline AlloyZHANG Fu-feiBaoSteel Special Steel Technical Center, Shanghai 200940, ChinaAbstract: The current industrial situation of amorphous & nanocrystalline alloy made by rapidly quenching technology is introduced, including the recent research, development and application inthis field.Key words: amorphous & nanocrystalline; process; properties; industrialization; application自从1960年Duwez教授等人发明液态金属快淬技术制取Au-Si非晶合金和1966年发明Fe-P-C 非晶软磁合金以来,美国、日本、德国、前苏联和中国等相继开展了非晶合金的研究工作,并在20世纪70~80年代形成非晶合金研究开发的第一次热潮。
由于非晶合金制备工艺简单独特、材料性能优异等显著优点,应用范围不断扩大,四十多年来一直是冶金和材料领域的研究热点之一。
尤其在1988年日本Yashizawa教授等人在非晶化的基础上发明了纳米晶合金,从而开创了软磁材料的新纪元,大大促进了非晶材料制备设备、工艺技术的发展和材料开发应用,推动了非晶纳米晶产业的发展[1~3, 8]。
finemet非晶合金的bh曲线Finemet非晶合金是一种具有极高饱和磁感应强度和低磁误差的软磁材料,常被应用于电力变压器、电感器和电感元件等领域。
该合金的BH曲线特性对其在磁性器件设计和应用中起着重要的指导作用。
本文将介绍Finemet非晶合金的BH曲线特性以及影响因素,并探讨其在实际应用中的意义。
一、Finemet非晶合金的BH曲线特性Finemet非晶合金的BH曲线是描述其磁滞回线特性的关键指标之一。
BH曲线展示了材料在不同磁场强度下通过磁化和去磁化过程中的磁感应强度和磁场强度的关系。
Finemet非晶合金的BH曲线通常呈现出良好的线性特性,其起伏较小,磁滞损耗低,对频率响应的影响也较小。
这使得Finemet非晶合金在高频电感器件和高效能电力变压器等领域具有广泛应用潜力。
二、影响Finemet非晶合金BH曲线的因素1. 成分配比:Finemet非晶合金的成分配比对其BH曲线特性具有很大影响。
合金内部的铁基元素和非磁基元素的比例、添加元素的种类及含量等都会对BH曲线造成影响。
合适的成分配比可以调节合金的晶体结构和磁畴尺寸,从而改善合金的磁滞特性。
2. 热处理工艺:热处理工艺是影响Finemet非晶合金BH曲线的重要因素之一。
适当的退火处理和淬火处理可以改善合金的磁滞特性和饱和磁感应强度。
热处理过程中的温度、时间和冷却速率等参数的选择对于Finemet非晶合金的磁性能具有决定性的影响。
3. 加工工艺:Finemet非晶合金的加工过程也会对其BH曲线特性产生影响。
加工过程中的拉伸、切割和退火等工艺对合金的磁化和去磁化过程中的磁滞特性和饱和磁感应强度有着重要影响。
合理的加工工艺可以提高Finemet非晶合金的性能和稳定性。
三、Finemet非晶合金BH曲线的实际应用意义Finemet非晶合金的BH曲线特性对于电感器件和电力变压器等磁性器件的设计和应用具有重要意义。
1. 设计优化:了解Finemet非晶合金的BH曲线特性,可以指导磁性器件的设计优化。
纳米晶finemet磁芯纳米晶Finemet磁芯是一种应用于电子设备中的重要磁性材料。
它具有优异的磁导率和低磁滞损耗,被广泛应用于电源变压器、电感器、滤波器等领域。
本文将详细介绍纳米晶Finemet磁芯的结构、性能及其在电子设备中的应用。
纳米晶Finemet磁芯的结构主要由铁基合金构成,其中含有大量的纳米晶颗粒。
这些纳米晶颗粒具有很小的尺寸,通常在几十纳米到几百纳米之间。
纳米晶的存在使得Finemet磁芯具有优异的磁导率和低磁滞损耗。
此外,Finemet磁芯还具有优异的饱和磁感应强度和热稳定性,使得其在高温环境下依然能够保持稳定的性能。
纳米晶Finemet磁芯具有许多优秀的性能。
首先,它具有高的饱和磁感应强度,可以在较小的体积内存储大量的磁能。
其次,纳米晶Finemet磁芯的磁导率高,能够有效地传导磁场。
这使得它在电源变压器等高频应用中具有良好的性能。
此外,纳米晶Finemet磁芯还具有低的磁滞损耗,能够减少能量损耗,提高转换效率。
最后,纳米晶Finemet磁芯具有优异的热稳定性,能够在高温环境下稳定工作。
纳米晶Finemet磁芯在电子设备中有广泛的应用。
首先,它常用于电源变压器中,用于转换和调节电压。
由于Finemet磁芯具有高的饱和磁感应强度和低的磁滞损耗,可以在较小的体积内实现高效的电能转换。
其次,纳米晶Finemet磁芯还可以用于电感器和滤波器中,用于抑制电磁干扰和滤波。
再者,纳米晶Finemet磁芯还可以用于传感器中,用于检测和测量磁场。
它的高磁导率和低磁滞损耗使其能够实现高灵敏度和高精度的磁场测量。
纳米晶Finemet磁芯是一种在电子设备中应用广泛的重要磁性材料。
它具有优异的磁导率和低磁滞损耗,能够在高温环境下稳定工作。
纳米晶Finemet磁芯在电源变压器、电感器、滤波器等领域有广泛的应用,能够提高电能转换效率、抑制电磁干扰和实现高精度的磁场测量。
在未来的发展中,纳米晶Finemet磁芯有望实现更高的性能和更广泛的应用。
纳米金属材料:进展和挑战1引言40多年往常, 科学家们就认识到实际材料中得无序结构是不容忽视得.许多新发觉得物理效应,诸如某些相转变、量子尺寸效应和有关得传输现象等,只出现在含有缺陷得有序固体中.事实上,假如多晶体中晶体区得特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料得性能将不仅依靠于晶格原子得交互作用,也受其维数、尺度得减小和高密度缺陷操纵.有鉴于此,hgleitcr认为,假如能够合成出晶粒尺寸在纳米量级得多晶体,即要紧由非共格界面构成得材料[例如,由50%(in vol.)得非共植晶界和50%(in vol.)得晶体构成],其结构将与一般多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystalline materials).后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)得材料广义定义为"纳米材料"或"纳米结构材料"(nanostructured materials).由于其独特得微结构和奇异性能,纳米材料引起了科学界得极大关注,成为世界范围内得研究热点,其领域涉及物理、化学、生物、微电子等诸多学科. 目前,广义得纳米材料得要紧包括:l)清洁或涂层表面得金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成得纳米复合材料.wwwm通过最近十多年得研究与探究,现已在纳米材料制备方法、结构表征、物理和化学性能、有用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽.本文要紧从材料科学与工程得角度,介绍与评述纳米金属材料得某些研究进展.2纳米材料得制备与合成材料得纳米结构化能够通过多种制备途径来实现.这些方法可大致归类为"两步过程"和"一步过程"."两步过程"是将预先制备得孤立纳米颗粒因结成块体材料.制备纳米颗粒得方法包括物理气相沉积(pvd)、化学气相沉积(cvd)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液得热分解和沉淀等,其中,pvd法以"惰性气体冷凝法"最具代表性."一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直截了当制备出块体纳米材料.诸如,非晶材料晶化、快速凝固、高能机械球磨、严峻塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等.目前,关于制备科学得研究要紧集中于两个方面:l)纳米粉末制备技术、理论机制和模型.目得是改进纳米材料得品质和产量;2)纳米粉末得固结技术.以获得密度和微结构可控得块体材料或表面覆层.3纳米材料得奇异性能1)原子得扩散行为原子扩散行为妨碍材料得许多性能,诸如蠕变、超塑性、电性能和烧结性等.纳米晶co得自扩散系数比cu得体扩散系数大14~16个量级,比cu得晶界自扩散系数大3个量级.wurshum 等最近得工作表明:fe在纳米晶n中得扩散系数远低于早期报道得结果.纳米晶pd得界面扩散数据类似于一般得晶界扩散,这非常可能是由于纳米粒子固结成得块状试样中得残留疏松得妨碍.他们还报道了fe在非晶fesibnbcu(finemete)晶化形成得复相纳米合金(由fe3si纳米金属间化合物和晶间得非晶相构成)中得扩散要比在非晶合金中快10~14倍,这是由于存在过剩得热平衡空位.fe在fe-si纳米晶中得扩散由空位调节操纵.2)力学性能目前,关于纳米材料得力学性能研究,包括硬度、断裂韧性、压缩和拉伸得应力一应变行为、应变速率敏感性、疲劳和蠕变等差不多相当广泛.所研究得材料涉及不同方法制备得纯金属、合金、金属间化合物、复合材料和陶瓷.研究纳米材料本征力学性能得关键是获得内部没有(或非常少)孔隙、杂质或裂纹得块状试样.由于试样内有各种缺陷,早期得许多研究结果已被最近取得得结果所否定.样品制备技术得日臻成熟与进展,使人们对纳米材料本征力学性能得认识不断深入.许多纳米纯金属得室温硬度比相应得粗晶高2~7倍.随着晶粒得减小,硬度增加得现象几乎是不同方法制备得样品得一致表现.早期得研究认为,纳米金属得弹性模量明显低于相应得粗晶材料.例如,纳米晶pd得杨氏和剪切模量大约是相应全密度粗晶得70%.然而,最近得研究发觉,这完全是样品中得缺陷造成得,纳米晶pd和cu得弹性常数与相应粗晶大致相同,屈服强度是退火粗晶得10~15倍.晶粒小子50nm得cu韧性非常低,总延伸率仅1%~4%,晶粒尺寸为110nm得cu延伸率大于8%.从粗晶到15urn,cu得硬度测量值满足hallpetch关系;小于15nm后,硬度随晶粒尺寸得变化趋于平缓,尽管硬度值非常高,但仍比由粗晶数据技hallpetch关系外推或由硬度值转换得可能值低非常多.只是,纳米晶cu得压缩屈服强度与由粗晶数据得hallpetch关系外推值和测量硬度得值(hv/3)特别吻合,高密度纳米晶cu牙d pd 得压缩屈服强度可达到1gpa量级.尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性.但迄今为止,得到得纳米金属材料得韧性都非常低.晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料.要紧缘故是纳米晶体材料中存在各类缺陷、微观应力及界面状态等.用适当工艺制备得无缺陷、无微观应力得纳米晶体cu,其拉伸应变量可高达30%,讲明纳米金属材料得韧性能够大幅度提高.纳米材料得塑性变形机理研究有待深入.纳米晶金属间化合物得硬度测试值表明,随着晶粒得减小,在初始时期(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化得歪率减缓或者发生软化.由硬化转变为软化得行为是相当复杂得,但这些现象与样品得制备方法无关.材料得热处理和晶粒尺寸得变化可能导致微观结构和成份得变化,如晶界、致密性、相变、应力等,都可能妨碍晶粒尺寸与硬度得关系.研究纳米晶金属间化合物得要紧动机是探究改进金属间化合物得室温韧性得可能性.bohn等首先提出纳米晶金属化合物几种潜在得优越性.其中包括提高强度和韧性.haubold及合作者研究了igc法制备得nial得力学性能,但仅限于单一样品在不同温度退火后得硬度测量.smith 通过球磨nial得到晶粒尺寸从微米级至纳米级得样品,进行了"微型盘弯曲试验",观看到含碳量低得材料略表现出韧性,而含碳多得材料没有韧性.最近choudry等用"双向盘弯曲试验"研究了纳米晶nial,发觉晶粒小于10nm时,屈服强度高干粗晶nial,且在室温下有韧性,对形变得贡献要紧源于由扩散操纵得晶界滑移.室温压缩实验显示由球磨粉末固结成得纳米晶fe-28al-2cr具有良好得塑性(真应变大于1.4),且屈服强度高(是粗晶得1o倍).测量tial (平均晶粒尺寸约10nm)得压缩蠕变(高温下测量硬度随着恒载荷加载时刻得变化)表明,在起始得快速蠕变之后,第二时期蠕变特别缓慢,这意味着发生了扩散操纵得形变过程.低温时(低于扩散蠕变开始温度),纳米晶得硬度变化非常小.观看到得硬度随着温度升高而下落,缘故之一是压头载荷使样品进一步致密化,而要紧是因为材料流变加快.mishra等报道,在750~950°c,10-5~10-3s-1得应变速率范围,纳米晶ti-47.5al-3cr(g-tial)合金得形变应力指数约为6,讲明其形变机制为攀移位错操纵.值得注意得是,最近报道了用分子动力学计算机模拟研究纳米材料得致密化过程和形变.纳米cu丝得模拟结果表明,高密度晶界对力学行为和塑性变形过程中得晶界迁移有显著妨碍.纳米晶(3~5nm)ni在低温高载荷塑性变形得模拟结果显示,其塑性变形机制主是界面得粘滞流淌、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同得.3)纳米晶金属得磁性早期得研究发觉.纳米晶fe得饱和磁化强度试比一般块材a-fe约低40%.wagner等用小角中子散射(sans)实验证实纳米晶fe由铁磁性得晶粒和非铁磁性(或弱铁磁性)得界面区域构成,界面区域体积约占一半.纳米晶fe得磁交互作用不仅限于单个晶粒,而且能够扩展越过界面,使数百个晶粒磁化排列.daroezi等证实球磨形成得纳米晶fe和ni得饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶得饱和磁化曲线形状不同于微米晶材料.随着晶粒减小,矫顽力显著增加.schaefer等报道,纳米晶ni中界面原子得磁拒落低至034mb/原子(块状ni为0.6mb/原子),界面组份得居里温度(545k)比块状晶体ni得(630k)低.最近得研究还发觉,制备时残留在纳米晶ni中得内应力对磁性得妨碍非常大,纳米晶ni得饱和磁化强度与粗晶ni差不多相同. yoshizawa等报道了快淬得fecunbsib非晶在初生晶化后,软磁性能良好,可与被莫合金和最好得co基调合金相媲美,且饱和磁化强度非常高(bs约为1.3t).其典型成份为fe735cu1nb3si135b9称为"finemet".性能最佳得结构为a-fe(si)相(12~20nm)镶嵌在剩余得非晶格基体上.软磁性能好得缘故之一被认为是铁磁交互作用.单个晶粒得局部磁晶体各向异性被有效地落低.其二是晶化处理后,形成富si得a-fe相,他和磁致伸缩系数ls下落到2′10-6.继finemet之后, 90年代初又进展了新一族纳米晶软磁合金fe-zr-(cu)-b-(si)系列(称为'nanoperm").退火后,这类合金形成得bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7t,磁导率达到48000(lkhz).铁芯损耗低,例如,fe86zr7b6cu1合金得铁芯损耗为66mw·g-1(在1t, 50hz条件下),比目前做变压器铁芯得fe78si9b13非晶合金和bccfe-3.5%si合金小45%和95%,有用前景特别诱人.4)催化及贮氢性能在催化剂材料中,反应得活性位置能够是表面上得团簇原子,或是表面上吸附得另一种物质.这些位置与表面结构、晶格缺陷和晶体得边角紧密相关.由于纳米晶材料能够提供大量催化活性位置,因此非常适宜作催化材料.事实上,早在术语"纳米材料"出现前几十年,差不多出现许多纳米结构得催化材料,典型得如rh/al2o3、pt/c之类金属纳米颗粒弥散在情性物质上得催化剂.已在石油化工、精细化工合成、汽车排气许多场合应用.sakas等报道了纳米晶5%(in mass)li-mgo(平均直径5.2nm,比表面面积750m2·g-1)得催化活性.它对甲烷向高级烃转化得催化效果非常好,催化激活温度比一般li浸渗得mgo至少低200°c,尽管略有烧结发生,纳米材料得平均活性也比一般材料高3.3倍.ying及合作者利用惰性气氛冷凝法制成高度非化学当量得ceo2-x纳米晶体,作为co还原so2、co氧化和ch4氧化得反应催化剂表现出非常高得活性.活化温度低于超细得化学当量ceo2基材料.例如,选择性还原so2为s得反应,可在500°c实现100%转换,而由化学沉淀得到得超细ceo2粉末,活化温度高达600°c.掺杂cu得cu-ceo2-x纳米复合材料能够使so2得反应温度落低到420°c.另外,ceo2-x纳米晶在so2还原反应中没有活性滞后,且具有超常得抗co2毒化能力.还能使co完全转化为co2得氧化反应在低于100°c时进行,这对冷起动得汽车排气操纵特别有利.值得注意得是如此得催化剂仅由较廉价得金属构成,毋须添加资金属元素.feti和mg2ni是贮氢材料得重要候选合金.其缺点是吸氢非常慢,必须进行活化处理, 即多次地进行吸氢----脱氢过程.zaluski等最近报道,用球磨mg和ni粉末可直截了当形成化学当量得mg2ni,晶粒平均尺寸为20~30nm,吸氢性能比一般多晶材料好得多.一般多晶mg2ni 得吸氢只能在高温下进行(假如氢压力小于20pa,温度必须高于250°c),低温吸氢则需要长时刻和高得氢压力,例如200°c、120bar(lbar=0.1mpa),2天.纳米晶mg2ni在200°c以下, 即可吸氢,毋须活化处理. 300°c第一次氢化循环后,含氢可达~34%(in mass).在以后得循环过程中,吸氢比一般多晶材料快4倍.纳米晶feti得吸氢活化性能明显优于一般多晶材料.一般多晶feti得活化过程是:在真空中加热到400~450℃,随后在约7pa得h2中退火、冷却至室温再暴露于压力较高(35~65pa)得氢中,激活过程需重复几次.而球磨形成得纳米晶feti只需在400℃真空中退火05h,便足以完成全部得氢汲取循环.纳米晶feti合金由纳米晶粒和高度无序得晶界区域(约占材料得20%~30%)构成.4纳米材料应用示例目前纳米材料要紧用于下列方面:l)高硬度、耐磨wc-co纳米复合材料纳米结构得wc-co差不多用作爱护涂层和切削工具.这是因为纳米结构得wc-co在硬度、耐磨性和韧性等方面明显优于一般得粗晶材料.其中,力学性能提高约一个量级,还可能进一步提高.高能球磨或者化学合成wc-co纳米合金差不多工业化.化学合成包括三个要紧步骤:起始溶液得制备与混和;喷雾干燥形成化学性均匀得原粉末;再经流床热化学转化成为纳米晶wc-co粉末.喷雾干燥和流床转化差不多用来批量生产金属碳化物粉末.wc-co粉末可在真空或氢气氛下液相烧结成块体材料.vc或cr3c2等碳化物相得掺杂,能够抑制烧结过程中得晶粒长大.2)纳米结构软磁材料finemet族合金差不多由日本得hitachi special metals,德国得vacuumschmelze gmbh和法国得imply等公司推向市场,已制造销售许多用途特别得小型铁芯产品.日本得alps electric co.一直在开发nanoperm族合金,该公司与用户合作,不断扩展纳米晶fe-zr-b合金得应用领域. 3)电沉积纳米晶ni电沉积薄膜具有典型得柱状晶结构,但能够用脉冲电流将其破裂.精心地操纵温度、ph值和镀池得成份,电沉积得ni晶粒尺寸可达10nm.但它在350k时就发生反常得晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和zener粒子打轧效应,可实现结构得稳定.例如,添加千分之几得磷、流或金属元素足以使纳米结构稳定至600k.电沉积涂层脉良好得操纵晶粒尺寸分布,表现为hall-petch强化行为、纯ni得耐蚀性好.这些性能以及可直截了当涂履得工艺特点,使管材得内涂覆,尤其是修复核蒸汽发电机特别方便.这种技术差不多作为eectrosleevetm工艺商业化.在这项应用中,微合金化得涂层晶粒尺寸约为100nm,材料得拉伸强度约为锻造ni得两倍,延伸率为15%.晶间开裂抗力大为改善.4)al基纳米复合材料al基纳米复合材料以其超高强度(可达到16gpa)为人们所关注.其结构特点是在非晶基体上弥散分布着纳米尺度得a-al粒子,合金元素包括稀土(如y、ce)和过渡族金属(如fe、ni).通常必须用快速凝固技术(直截了当淬火或由初始非晶态通火)获得纳米复合结构.但这只能得到条带或雾化粉末.纳米复合材料得力学行为与晶化后得非晶合金相类似,即室温下超常得高屈服应力和加工软化(导致拉神状态下得塑性不稳定性).这类纳米材料(或非晶)能够固结成块材.例如,在略低于非晶合金得晶化温度下温挤.加工过程中也能够完全转变为晶体,晶粒尺寸明显大干部份非晶得纳米复合材料.典型得al基体得晶粒尺寸为100~200nm,镶嵌在基体上得金属间化合物粒子直径约50nm.强度为08~1gpa,拉伸韧性得到改善.另外,这种材料具有非常好得强度与模量得结合以及疲劳强度.温挤al基纳米复合材料差不多商业化,注册为gigastm.雾化得粉末能够固结成棒材,并加工成小尺寸高强度部件.类似得固结材料在高温下表现出非常好得超塑性行为:在1s-1得高应变速率下,延伸率大于500%.5结语在过去十多年里,尽管纳米材料得研究差不多取得了显著进展,但许多重要咨询题仍有待探究和解决.诸如,如何获得清洁、无孔隙、大尺寸得块体纳米材料,以真实地反映纳米材料得本征结构与性能?如何开发新得制备技术与工艺,实现高品质、低成本、多品种得纳米材料产业化?纳米材料得奇异性能是如何依靠于微观结构(晶粒尺寸与形貌、晶界等缺陷得性质、合金化等)得?反之,如何利用微观结构得设计与操纵, 进展具有新颖性能得纳米材料,以拓宽纳米材料得应用领域?某些传统材料得局域纳米化能否为其注入新得生命力?如何实现纳米材料得功能与结构一体化?如何使纳米材料在必要得后续处理或使用过程中保持结构与性能得稳定性?等等.这些差不多咨询题是进一步深入研究纳米材料及事实上用化得关键,也是纳米材料研究被称为"高风险与高回报并存"得缘故.我国系统开展纳米材料得科学研究始于80年代末,通过近十年得努力,差不多做出了一批高水平、有国际妨碍得工作.整体水平和实力紧步美、日、德等要紧西方国家之后,受到国际学术界得高度重视.然而,在激烈得国际竞争形势下,急需以现有工作为基础,以若干学科为突破目标,集中人力、物力、财力得投入,使我国在这一领域得研究水平上一个新台阶.致谢:作者在从事纳米材料得研究中得到国家自然科学基金委(国家自然科学基金资助课题:59001447,59321001,59431021,59771019,59471014,59431022)、国家科委("攀登打算":纳米材料科学)、。
纳米晶金属软磁合金新材料1坡莫合金等已有100多年的发展历史;近二十多年来先后发展起来的非晶态合金和纳米晶合金等新型软磁合金材料,发展为纳米晶态,从而把软磁合金新材料的研发与应用推向了一个新的高潮。
致力于研究同时具有高饱和磁感应强度、高磁导率、低损耗的软磁材料,谓之“二高一低”的“理想”软磁材料,但、小型、节能方向发展,既对软磁材料提出新的挑战,又给软磁材料提供了一个发展机遇。
正是在这种大背景情况下Fe基纳米晶软磁合金新材料,并命名新合金牌号为Finemet。
结构新颖、不同于晶态和非晶态,而且具有综合的优异软磁特性、即具有较高饱和磁感应强度、高磁导率、低损耗等染等特点。
因而可以讲,Finemet合金的出现是软磁材料的一个突破性进展,它解决了人们长期努力研究而未能解决细化到1—20纳米(nm)、而饱和磁致伸缩系数和磁晶各向异性常数又同时趋于零的途径;(2)改变了以往各类软能与成本相矛盾的状况;首次实现了人们长期渴望追求的“二高一低”“理想”软磁材料的愿望。
史,从来没有一种甚至一类软磁材料能全面地或基本上满足软磁材料的全部技术要求。
而纳米晶软磁合金通过不同方求,并具有性能、工艺及成本等全方位的优势,因而它一问世,便获得了迅速发展与应用。
日立金属公司公布Finem 达5000万日元,并计划Finemet材料的年产量达600吨以上,广泛用于电子工业大量需求的磁性元器件。
德国真空熔炼itroperm纳米晶软磁合金牌号,据悉其年产量也在200吨级以上,广泛用作磁芯和磁性元器件。
代研发纳米晶软磁合金以来,发展很快,已在电力工业、电子工业、电力电子技术、计算机、通讯、仪器仪表及国防合金材料的年产量约为300吨;近几年市场需求增长很快,预计目前纳米晶软磁合金材料的年产量可达800吨左右,来,在如此短的时间内获得这样广泛的发展与应用是不多见的。
而纳米晶软磁合金除了具有急冷工艺技术发展的深刻是它具有生命力的标志。
纳米晶金属软磁合金材料作为功能材料,其产量或用量远不能与结构材料相比,但其发挥的产、应用纳米晶金属软磁合金材料,对发展我国高新技术产业、促进和提升传统产业、带动和支持相关产业的发展和纳米晶金属软磁合金新材料2具有优异的软磁特性:克仁等人,在研究降低Fe基非晶态合金磁致伸缩系数以提高其软磁性能时,发现了Finemet这种纳米晶新材料。