2017年秋季新版浙教版九年级上学期第1章、二次函数单元复习单元复习试卷5
- 格式:doc
- 大小:436.50 KB
- 文档页数:4
第一章二次函数姓名:_______________班级:_______________学号:_______________(总分:100分考试时间:60分钟考试难度:0.60)一、填空题(每空3分,共15分)1、二次函数的最小值是.2、如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米。
(第2题图)(第5题图)3、将抛物线向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为。
4、自由下落物体的高度(米)与下落的时间(秒)的关系为.现有一铁球从离地面米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.5、已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使成立的的取值范围是.二、选择题(每题3分,共30分)6、正比例函数的图像经过二、四象限,则抛物线的大致图像是()7、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4(第7题图)(第8题图)8、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④.其中正确的有( )A.1个B.2个C.3个D.4个9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b10、某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.1.6 m B.100 m C.160 m D.200 m(第10题图)(第11题图)11、如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长()A.0.4米 B. 0.16米 C. 0.2米 D.0.24米12、绿茵场上,足球运动员将球踢出,球的飞行高度(米)与前行距离(米)之间的关系为:,那么当足球落地时距离原来的位置有( )A.25米B.35米C.45米D.50米13、已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A. 有最小值,且最小值是B. 有最大值,且最大值是C. 有最大值,且最大值是D. 有最小值,且最小值是14、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米(第14题图)(第15题图)15、我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图2236所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为()A.1.5 m B.1.625 m C.1.66 m D.1.67 m三、解答题(每题11分,共55分)16、已知:在Rt△ABO中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为轴,建立如图所示平面直角坐标系,点B在第一象限内,将Rt△ABO沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P 作轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为很等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.17、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。
浙教版九年级上册数学二次函数一、单选题1.二次函数得顶点坐标是()A.B.C.D.2.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)3.抛物线经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①;②>;③若n>m>0,则时的函数值小于时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A.①②B.③④C.②③④D.①②③④5.飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为()A.500米B.600米C.700米D.800米6.已知二次函数(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则D.若x<n时,都有y随着x的增大而减小,则7.已知:二次函数,其中正确的个数为()①当时,y随x的增大而减小;②若图象与x轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则 .A.1个B.2个C.3个D.4个8.二次函数的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.10.如图,二次函数(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.(1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P(m,2),求m的值;(3)若O为坐标原点,求直线OP的解析式;(4)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.。
第一章 二次函数单元测试卷(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 . 16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm+ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
【期末专题复习】浙教版九年级数学上册第一章二次函数单元检测试卷一、单选题(共10题;共30分)1.抛物线的对称轴是( )A. B. C. D.2.函数中是二次函数的为( )A. y=3x−1B. y=C. -D. -3.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A. 它的图象与x轴有两个交点B. 方程x2﹣2mx=3的两根之积为﹣3C. 它的图象的对称轴在y轴的右侧D. x<m时,y随x的增大而减小4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:① b2-4ac>0 ② a>0 ③ b>0④ c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A. 2个B. 3个C. 4个D. 5个5.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A. b2>4acB. ax2+bx+c≤6C. 若点(2,m)(5,n)在抛物线上,则m>nD. 8a+b=06. 函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-2=0的根的情况是()A. 有两个不相等的实数根B. 有两个异号的实数根C. 有两个相等的实数根D. 没有实数根7.将抛物线y=2x2﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A. (2,1)B. (1,2)C. (1,﹣1)D. (1,1)8.若点P1(1,y1),P2(2,y2),P3(1,y3),都在函数的图象上,则()A. y2<y1<y3B. y1<y2<y3C. y2>y1>y3D. y1>y2>y39.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.函数与的图象可能是().A. B.C. D.二、填空题(共10题;共30分)11.把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.12.请选择一组你喜欢的、ℎ、的值,使二次函数ℎ的图象同时满足下列条件:①开口向下,②对称轴是直线;③顶点在轴下方,这样的二次函数的解析式可以是________.13.用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是________cm2.14.根据下列表格的对应值,判断ax2+bx+c=0 (a≠0,a,b,c为常数)的一个解x的取值范围是________15.已知二次函数的图象(0≤x≤3)如图所示,则当0≤x≤3时,函数值y的范围是________.16.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.17.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则该函数的最小值是________18.将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是________.19.函数y=x,y=x2和y= 的图象如图所示,若x2>x>,则x的取值范围是________.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣其中正确的结论个数有________ (填序号)三、解答题(共9题;共60分)21.已知函数y=(k﹣2)x k²﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?22.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?23.根据下列要求,解答相关问题.请补全以下求不等式﹣2x2﹣4x>0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为多少?;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.24.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值.25.某商场销售某种品牌的手机,每部进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4部.(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?(2)若设每部手机降低x元,每天的销售利润为y元,试写出y与x之间的函数关系式.(3)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?26.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.27.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.28.公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金1750万元进行相关生产设备的改进.已知生产过程中,每件产品的成本为60元.在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元)(x>120),年销售量为y(万件),第一年年获利(年获利=年销售额﹣生产成本)为z (万元).(1)求出y与x之间,z与x之间的函数关系式;(2)该公司能否在第一年收回投资.29.如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B、C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC的面积;若不存在,说明理由.答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】C4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】C10.【答案】B二、填空题11.【答案】12.【答案】(不唯一)13.【答案】1614.【答案】3.24<x<3.2515.【答案】﹣1≤y≤316.【答案】m>117.【答案】118.【答案】19.【答案】x>1或﹣1<x<020.【答案】①③④三、解答题21.【答案】解:(1)函数y=(k﹣2)x k²﹣4k+5+2x是关于x的二次函数,得,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.22.【答案】解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000 =35时,才能在半月内获得最大利润.当x=()23.【答案】解:①图所示:;②方程﹣2x2﹣4x=0即﹣2x(x+2)=0,解得:x1=0,x2=﹣2;则方程的解是x1=0,x2=﹣2,图象如图1;③函数y=x2﹣2x+1的图象是:当y=4时,x2﹣2x+1=4,解得:x1=3,x2=﹣1.则不等式的解集是:x≥3或x≤﹣124.【答案】解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.∵抛物线过原点所以c=0,∴=,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.25.【答案】解:(1)当售价为2800元时,销售价降低100元,平均每天就能售出16部. 所以:这种手机平均每天的销售利润为:16×(2800-2500)=4800(元);(2)根据题意,得y=(2900-2500-x)(8+4×),即y=x2+24x+3200;(3)对于y=x2+24x+3200,当x==150时,y最大值=(2900-2500-150)(8+4×)=5000(元)2900-150=2750(元)所以,每台手机降价2750元时,商场每天销售这种手机的利润最大,最大利润是5000元.26.【答案】解:(1)∵二次函数图象的顶点为A(1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得:a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).27.【答案】解:△PBQ的面积S随出发时间t(s)成二次函数关系变化,∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,∴BP=12﹣2t,BQ=4t,∴△PBQ的面积S随出发时间t(s)的解析式为:y= (12﹣2t)×4t=﹣4t2+24t,(0<t<6)28.【答案】解:由题意得,y=24﹣,即y=﹣x+36,z=(x﹣60)(﹣x+36)=﹣x2+42x﹣2160;(2)z=﹣x2+42x﹣2160=﹣(x﹣210)2+2250,当x=210时,第一年的年最大利润为2250万元,∵2250<750+1750,∴公司不能在第一年收回投资.29.【答案】(1)解:∵抛物线经过点A(−1,0),B(3,0),C(0,3)三点,∴设抛物线的解析式为:y=a(x+1)(x−3),把C(0,3)代入得:3=a(0+1)(0−3),a=−1,∴抛物线的解析式:y=-x2+2x+3(2)解:设直线BC的解析式为:y=kx+b,把B(3,0),C(0,3)代入得:,解得:,∴直线BC的解析式为y=-x+3,∴M(m,-m+3),又∵MN⊥x轴,∴N(m,-m2+2m+3),∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)(3)解:S△BNC=S△CMN+S△MNB=|MN|·|OB|,∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-(m-)2+,所以当m=时,△BNC的面积最大为× ×3=。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、抛物线的顶点坐标是()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)2、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线X=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论有()个.A.2个B.3个C.4个D.5个3、抛物线y=3x2﹣6x+4的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,2)4、抛物线y=(x-2)2+3的对称轴是直线()A.x=-2B.x=2C.x=3D.x=-35、将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4)B.(1,2)C.(3,2)D.(1,4)6、已知二次函数,当时,函数y的最大值为4,则m的取值范围是()A. B. C. D.7、用min{a,b}表示a,b两数中的最小数,若函数y=min{x2+1,1﹣x2},则y的图象为()A. B. C.D.8、已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>bB.a<bC.a=bD.不能确定9、如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A.60 m 2B.63 m 2C.64 m 2D.66 m 210、如图是函数的图象,直线轴且过点,将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A. B. C. D. 或11、若函数y=a 是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或312、抛物线y=x2+bx+3的对称轴为直线x=1,若关于x的一元二次方程x2+bx+3-t=0(t为实数)在-1<x<4的范围内有实数根,则t的取值范围是()A.2≤1<11B.t≥2C.6<t<11D.2≤t<613、下列函数中,是二次函数的是()A.y=B.y=x 2﹣(x﹣1)2C.y=D.y=x 2+14、顶点为(5,1),形状与函数y= x2的图象相同且开口方向相反的抛物线是()A.y=﹣ +1B.y=﹣x 2﹣5C.y=﹣(x﹣5)2﹣1 D.y= (x+5)2﹣115、二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C,下列说法中,错误的是A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小二、填空题(共10题,共计30分)16、用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x厘米,面积为y平方厘米,写出y关于x的函数解析式:________ .17、用“描点法”画二次函数的图像时,列出了下面的表格:-2 -1 0 1-11 -2 1 -2根据表格上的信息回答问题:当时,________.18、若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为________.19、已知二次函数()图象的对称轴为直线,部分图象如图所示,下列结论中:①;②;③;④若为任意实数,则有;⑤当图象经过点时,方程的两根为,,则,其中正确的结论有________.20、如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为________ .21、抛物线y=﹣4x2+8x﹣3的最大值是________.22、将抛物线,绕着它的顶点旋转,旋转后的抛物线表达式是________.23、如图,抛物线的对称轴是x=1,与x轴有两个交点,与y轴的交点坐标是(0,3),把它向下平移2个单位长度后,得到新的抛物线的解析式是y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正确的是________(填序号).24、抛物线对称轴为直线,其图象如图所示,以下结论:①;②;③:④;⑤(m是任意实数),其中正确的是________.25、如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、求经过A(1,4),B(-2,1)两点,对称轴为x=-1的抛物线的解析式.28、已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.29、已知二次函数y=x2﹣2x﹣1.(1)求此二次函数的图象与x轴的交点坐标;(2)将y=x2的图象经过怎样的平移,就可以得到二次函数y=x2﹣2x﹣1的图象.30、复习课中,教师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、B5、A6、C7、C8、A9、C10、C11、B12、A13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、将二次函数y=x2图象向左平移1个单位,再向下平移2个单位后,所得图象的函数是()A.y=(x+1)2+2B.y=(x﹣1)2﹣2C.y=(x+1)2﹣2D.y=(x﹣1)2+22、知抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,﹣2),那么该抛物线有()A.最小值﹣2B.最大值﹣2C.最小值3D.最大值33、二次函数y=ax2+bx+c的图象如下左图所示,则一次函数y=ax+b和反比例函数y在同一平面直角坐标系中的图象可能是()A. B. C. D.4、二次函数y=ax2+bx的图像如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.95、已知,,是抛物线上的点,则()A. B. C. D.6、如图,已知二次函数的图象与轴交于点,与轴交于点,且点在两点和之间(不包括这两点),对称轴为直线.现有四个结论:①;②;③;④,其中正确的结论有()A. 个B. 个C. 个D. 个7、如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式x2+1<的解集是()A.x>1B.x<0C.0<x<1D.﹣1<x<08、下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x 2+2x+1B.y=2x 2﹣4x+1C.y=2x 2﹣x+4D.y=x 2﹣4x+29、已知,△ABC中,∠BAC=135°,AB=AC=2 ,P为边AC上一动点,PQ∥BC交AB于Q,设PC=x,△PCQ的面积为y,则y与x的函数关系图象是()A. B. C.D.10、将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为()A. y=5(x+2)2+3B. y=5(x﹣2)2+3C. y=5(x+2)2﹣3 D. y=5(x﹣2)2﹣311、已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x …﹣2 0 1 2 …y …7 ﹣1 ﹣2 ﹣1 …A.抛物线开口向下B.抛物线的对称轴是y轴C.当x<2时,y随x 的增大而减小D.抛物线与y轴交于正半轴12、如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.其中正确的个数是()A.1个B.2个C.3个D.4个13、将二次函数y=x2﹣4x+1化成y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+1B.y=(x﹣4)2﹣3C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣314、二次函数y=x2+bx+c的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,得到的图象的函数解析式为y=x2﹣2x+1,则b+c的值为()A.16B.6C.0D.﹣1215、二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc>0;④b=2a中,正确的结论的个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、若二次函数y=ax2﹣4x+a的图象与x轴有交点,其中a为非负整数,则a=________ .17、二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图,则方程ax2+bx+c=m有实数根的条件是________.18、抛物线y=x2﹣2x+3的顶点坐标是________19、二次函数y=ax2+bx+c的部分图象如图所示,对称轴为,与x轴负半轴交点在(﹣4,0)与(﹣3,0)之间,以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中一定正确的(序号)是________.20、已知二次函数的图象开口向下,且顶点坐标(0,-3).请写出一个符合条件的二次函数的解析式________.21、在平面直角坐标系中,垂直于x轴的直线l分别于函数y=x-a+1和y+x2-2ax的图像相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是________22、抛物线y=ax2+bx+c(a≠0)经过点(2,5),(4,5),则对称轴是________.23、当x=x1和x= x2(x1≠x2)时,二次函数y=3x2﹣3x+4的函数值相等、当x=x1+x2时,函数值是________.24、如图,抛物线y1=﹣x2+2向右平移1个单位得到的抛物线y2.回答下列问题:(1)抛物线y2的解析式是________ ,顶点坐标为________ ;(2)阴影部分的面积________ ;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的解析式为________ ,开口方向________ ,顶点坐标为________ .25、将二次函数化成的形式为________.三、解答题(共5题,共计25分)26、将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.27、已知抛物线的顶点坐标且过点,求该抛物线的解析式.28、如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)b的值及点D的坐标。
浙教版初中数学九年级上册第一单元《二次函数》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列函数关系中是二次函数的是( )A. 正三角形面积S与边长a的关系B. 直角三角形两锐角A与B的关系C. 矩形面积一定时,长y与宽x的关系D. 等腰三角形顶角A与底角B的关系2.已知二次函数y=(k−3)x2+2x+1的图像与x轴有交点,则k的取值范围是( )A. k<4B. k≤4且k≠3C. k<4,且k≠3D. k≤43.对于关于x的函数y=(m+1)x m2−m+3x,下列说法错误的是( )A. 当m=−1时,该函数为正比例函数B. 当m2−m=1时,该函数为一次函数C. 当该函数为二次函数时,m=2或m=−1D. 当该函数为二次函数时,m=24.将抛物线y=x2+3x+2向右平移a单位正好经过原点,则a的值为( )A. a=1B. a=2C. a=−1或a=1D. a=1或a=25.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③b2−4ac>0;④a+b+c>0,其中正确的个数是( )A. 1B. 2C. 3D. 47.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8.抛物线y=x2−2x−3的顶点坐标是( )A. (1,−4)B. (2,−4)C. (−1,4)D. (−2,−3)9.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b−2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个10.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )A. y=(200−5x)(40−20+x)B. y=(200+5x)(40−20−x)C. y=200(40−20−x)D. y=200−5x11.用长8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A. 64m225B. 4m23C. 83m2D. 4m212.已知二次函数y=x2−x+√28,若x=a时,y<0;则当x=a−1时,对应的函数值范围判断合理的是( )A. y<0B. 0<y<√28C. √28<y<16+√28D. y>4+√28第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.若y=(m−3)x2+3x−4是关于x的二次函数,则m的取值范围是.14.若函数y=−9(x+3)2+1−k的顶点在x轴上,则k=______.15.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为______ .16.如图,某扶贫单位为了提高贫困户的经济收入,购买了29m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个矩形养鸡舍,门MN宽1m,该鸡舍的最大面积可以达到m2.三、解答题(本大题共9小题,共72.0分。
浙教版数学九年级上册第一章二次函数一、选择题1.要得到抛物线y=3(x+2)2+3,可以将抛物线y=3x2( )A.向左平移2个单位长度,再向上平移3个单位长度B.向左平移2个单位长度,再向下平移3个单位长度C.向右平移2个单位长度,再向上平移3个单位长度D.向右平移2个单位长度,再向下平移3个单位长度.2.在平面直角坐标系xOy中,抛物线y=a x2+bx+c如图所示,则关于x的方程a x2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断3.函数y=a x2−2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.4.函数y1=a x2+bx+c与y2=k的图象如图所示,当( )时,y1,y2均随着x的增大而减小.xA.x<−1B.−1<x<0C.0<x<2D.x>15.抛物线y=a x2+bx+c(a≠0)的图象如图所示,则下列四组中正确的是( )A.a>0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0D.a>0,b<0,c<06.某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=9(1+x)2B.y=9+9x+x2C.y=9+9(1+x)+9(1+x)2D.y=9(1+x)27.已知x=m是一元二次方程x2+3x−n=0的一个根,则m+n的最小值是( )A.−1B.−2C.3D.−48.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是( )A.小球的飞行高度不能达到15m B.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4s D.小球飞出1s时的飞行高度为10m9.如图,在矩形ABCD中,AB=3,BC=4,点P在直线AD上运动,以BP为直角边向右作Rt △PBQ ,使得∠BPQ =90°,BP =32PQ ,连接CQ ,则CQ 长的最小值为( )A .1213B .2513C .23913D .5131310.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.函数y =−x +c (c 为常数,c <0)的图象与x 轴交于点M ,其轴点函数y =a x 2+bx +c 与x 轴的另一交点为N .若ON =14OM ,则b 的值为( )A .±5B .5或−3C .±3D .−5或3二、填空题11.如果函数y =(k−1)x k2−k +2+kx−1是关于x 的二次函数,则k = .12.若抛物线y =x 2−2x +k−2与x 轴有公共点,则k 的取值范围是 .13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0),那么代数式a 2﹣a+2016的值为 .14.当0≤x ≤3时,二次函数y =x 2+2ax 的最大值是M ,最小值是m ,若M−m =4,则a 的值是 .15.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.16.二次函数 y =a x 2+bx +3的图象如图所示,其对称轴 x =1,且与x 轴交于(−1,0),点D (0,1),点P 为x 轴上一动点,则2PD +PC 的最小值为 .三、解答题17.如图,已知抛物线y =−x 2+mx +3经过点M (−2,3).(1)求出此抛物线的解析式;(2)当0≤x ≤1时,直接写出y 的取值范围.18.已知二次函数y =x 2+x−m 的部分图象如图所示,(1)求该二次函数图象的对称轴,并利用图象直接写出一元二次方程x 2+x−m =0的解.(2)向上平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.19.如图,正方形纸片ABCD 的边长为4,将它剪去四个全等的直角三角形,得到四边形EFGH .设AE 的长为x ,四边形EFGH 的面积为y .(1)求y 关于x 的函数表达式;(2)四边形EFGH 的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.20.如图所示,在平面直角坐标系Oxy 中,四边形OABC 为正方形,其中点A 、C 分别在x 轴负半轴,y 轴负半轴上,点B 在第三象限内,点A(t,0),点P(1,2)在函数y =kx(k >0,x >0)的图象上.(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S−2t2,求T的最大值.21.已知二次函数y=a x2+bx+c(a>0,b>0)的图象与y轴相交于点(0,1).(1)若a=1,b=4,求该二次函数的最小值;(2)若b=4a,点P(−3,y1),Q(3,y2)都在该函数的图象上,比较y1和y2的大小关系;(3)若点M(m,1),N(−m,m2+2)都在该二次函数图象上,分别求a,b的取值范围22.【综合探究】运用二次函数来研究植物幼苗叶片的生长状况在大自然里,有很多数学的奥秘.图1是一片美丽的心形叶片,图2是一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.【探究一】确定心形叶片的形状(1)如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=−a x2+4ax+4a+1图象的一部分,且过原点,求抛物线的解析式及顶点D的坐标;【探究二】研究心形叶片的宽度:(2)如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A,B两点,抛物线与x轴交于另一点C,点C,C1是叶片上的一对对称点,C C1交直线AB于点G.求叶片此处的宽度C C1;【探究三】探究幼苗叶片的长度(3)小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=−a x2+4ax+4a+1图象的一部分;如图4,幼苗叶片下方轮廓线正好对应任务1中的二次函数.已知直线PD (点P为叶尖)与水平线的夹角为45°,求幼苗叶片的长度PD.23.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y的取值范围是m≤y≤n,且满足n−m=t(b−a)则称此函数为“t系郡园函数”(1)已知正比例函数y=ax(1≤x≤4)为“1系郡园函数”,则a的值为多少?(2)已知二次函数y=−x2+2ax+a2,当1≤x≤3时,y是“t系郡园函数”,求t的取值范围;(3)已知一次函数y=kx+1(a≤x≤b且k>0)为“2系郡园函数”,P(x,y)是函数y=kx+1上的一点,若不论m取何值二次函数y=mx2+(m−2)x−2m+1的图象都不经过点P,求满足要求的点P的坐标.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】D10.【答案】D11.【答案】012.【答案】k≤313.【答案】201714.【答案】−1或−215.【答案】81016.【答案】417.【答案】(1)y=−x2−2x+3(2)0≤y≤318.【答案】(1)x=−1,x1=1,x2=−22(2)y=x2+x19.【答案】(1)y=2x2−8x+16;(2)当x=2时,y有最小值8,即四边形EFGH的面积最小为8.20.【答案】(1)解:∵点P(1,2)在函数y=k(k>0,x>0)的图象上,x∴2=k,1∴k=2,即k的值为2;(2)解:∵点A(t,0)在x轴负半轴上,∴OA=−t,∵四边形OABC为正方形,∴OC=BC=OA=−t,BC//x轴,∴△BCP的面积为S=12×(−t)×(2−t)=12t2−t,∴T=2S−2t2=2(12t2−t)−2t2=−t2−2t=−(t+1)2+1,∵−1<0,∴抛物线开口向下,∴当t=−1时,T有最大值,T的最大值是1.21.【答案】(1)−3(2)y1<y2(3)a>12,b≥122.【答案】(1)y=14(x−2)2−1,D坐标为(2,−1);(2)C C1=62;(3)PD=42 23.【答案】(1)±1.(2)t≥1 2(3)(1,3),(−2,−3),(0,1)。
第一章二次函数单元测试一、单选题(共10题;共30分)1、如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A、(2,3)B、(3,2)C、(3,3)D、(4,3)2、若二次函数y=(x-m)2-1.当x≤ 3时,y随x的增大而减小,则m的取值范围是()A、m=3B、m>3C、m≥3D、m≤33、抛物线y=-2x2+1的对称轴是( )A、直线B、直线C、y轴D、直线x=24、将抛物线y=2x2向左平移2个单位后所得到的抛物线为()A、y=2x2-2B、y=2x2+2C、y=2(x-2)2D、y=2(x+2)25、如果函数y=mx m﹣2+x是关于x的二次函数,那么m的值一定是()A、-3B、-4C、4D、36、如图,庄子大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁高度相同,则小强骑自行车通过拱梁部分的桥面OC共需()A、18秒B、36秒C、38秒D、46秒7、二次函数y=(x﹣5)2+7的最小值是()A、-7B、7C、-5D、58、如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A、1个B、2个C、3个D、4个9、抛物线y=x2﹣4x+m的顶点在x轴上,则m的值等于()A、2B、4C、6D、810、(2021•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A、1个B、2个C、3个D、4个11、二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是________.12、如图,把抛物线y= x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y= x2交于点Q,则图中阴影部分的面积为________.13、己知抛物线y=x2+2mx﹣n与x轴没有交点,则m+n的取值范围是________.14、已知二次函数y= (x﹣1)2+4,若y随x的增大而增大,则x的取值范围是________15、人民币一年定期的年利率为x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是a元,则两年后的本息和y(元)的表达式为________(不考虑利息税).16、已知二次函数y=﹣x2+4x﹣2与x轴交于A,B两点,与y轴交于点C,则△ABC的面积为________.17、二次函数y=x2+4x+3与坐标轴交于A,B,C三点,则三角形ABC的面积为________.18、已知二次函数y=2x2向左平移3个单位,再向下平移3个单位,那么平移后的二次函数解析式为________.三、解答题(共5题;共36分)19、篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、抛物线y=x2向右平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2C.y=(x﹣1)2+1D.y=(x﹣1)2﹣12、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b <a(m是任意实数)D.3b+2c>04、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b =0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A.1B.2C.3D.45、关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点 D.图象的顶点坐标为(﹣1,2)6、小明从如图所示的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0;②c=0;③函数的最小值为-3;④当x<0时,y>0;⑤当0<x1<x2<2时,y1>y2.A.2B.3C.4D.57、将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x 2﹣1B.y=x 2+1C.y=(x﹣1)2D.y=(x+1)28、已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是()A. B. C. D.9、二次函数y=ax2+bx+c的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③2a﹣b=0;④abc>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个10、关于二次函数,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点,则B.当时,y有最小值C. 对应的函数值比最小值大7D.当时,图象与x轴有两个不同的交点11、将抛物线y=2(x+1)2﹣2的图象先向左平移1个单位长度,再向上平移3个单位长度,则顶点坐标为()A.(﹣2,1)B.(2,1)C.(0,1)D.(﹣2,﹣5)12、一抛物线的形状、开口方向与相同,顶点为(-2,1).此抛物线的解析式为( )A. B. C. D.13、若抛物线y=x2﹣2x﹣1与x轴的一个交点坐标为(m,0),则代数式m2﹣2m+2017的值为()A.2019B.2018C.2016D.201514、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A. B. C. D.15、二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0 D.a>0,b<0,c<0二、填空题(共10题,共计30分)16、若函数y=(m+2)是二次函数,则m=________ .</p>17、抛物线与轴有两个交点、,则不等式的解集为________.18、二次函数y=ax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正确的结论有________.19、如图,抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为________.20、如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q 点的坐标为________.21、已知抛物线y=﹣x2+2,当1≤x≤5时,y的最大值是________.22、如图所示,抛物线y=ax2+bx+c(a 0)与轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是________.23、已知二次函数及一次函数,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线与新图象有3个交点时,m的值是________.24、已知二次函数y=ax2+bx+c(a≠0),其中自变量x与函数值y之间满足下面的对应关系:x ……3 5 7 ……y ……3.5 3.5 -2 ……则a+b+c=________.25、已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________三、解答题(共5题,共计25分)26、已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值27、如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为ts,四边形APQC的面积为ycm2.(1)当t为何值时,△PBQ是直角三角形?(2)①求y与t的函数关系式,并写出t的取值范围;②当t为何值时,y取得最小值?最小值为多少?(3)设PQ的长为xcm,试求y与x的函数关系式.28、用总长为60的篱笆围成的矩形场地,矩形面积S随矩形一边长L的变化而变化,L是多少时,场地的面积S最大?29、已知二次函数y=a(x﹣h)2+k当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.30、某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、D5、D6、C8、D9、B10、C11、A12、C13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版九年级上册第一章二次函数单元测试卷班级__________ 姓名__________ 得分_________一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-22.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.03.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+54.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+27.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-18.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.99.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0,有两个不相等的实数根二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y=x2-2x-3与y轴交点坐标是__________.12.如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__________.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是__________.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.18.已知二次函数y=x2-mx-1,当x<4时,函数值y随x的增大而减小,则m的取值范围是__________.三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y=x2-4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况.(2)求函数图象与x轴的交点A,B的坐标及△ABC的面积.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m,利用图③,解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③22.(本题8分)一列火车在A城的正北240 km处,以120 km/h的速度驶向A城.同时,一辆汽车在A 城的正东120 km处,以120 km/h速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计)23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.第一章二次函数单元测试·答案一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-2【答案】B2.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.0【答案】A3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+5【答案】A【解析】根据“左加右减,上加下减”的规律可知,将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为y=(x+2)2-5,故选A.4.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)【答案】A【解析】二次函数y=ax2的图象关于y轴对称.关于y轴对称的点的横坐标互为相反数,纵坐标相同,故选A.5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小【答案】D6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2【答案】D【解析】y=x2-2x+3=x2-2x+1+2=(x-1)2+2.7.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-1【答案】C8.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.9【答案】B9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()【答案】A【解析】连结AF,由题意EC=4-x,FD=4-y,在Rt △AEF 中,AE 2+EF 2=AF 2,即x 2+42+y 2+(4-x )2=42+(4-y )2, 化简得y =-14x 2+x =-14(x -2)2+1,∵0≤x ≤4,∴选A .10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( ) A .abc >0 B .2a +b <0 C .3a +c <0D .ax 2+bx +c -3=0,有两个不相等的实数根【答案】C【解析】由二次函数图象开口向下可知,a <0,由“左同右异”可知b >0,由图象与y 轴交于正半轴可知c >0,故abc <0,故A 选项错误;由图象可知,对称轴为直线x =1,即-b2a =1,则b =-2a ,故2a +b =0,故B 选项错误;当x =-1时,y =a -b +c =a +2a +c =3a +c ,由图象与x 轴交于x 轴下方可知,当x =-1时,y <0,即3a +c <0,故C 选项正确;当y =3时,ax 2+bx +c =3,即ax 2+bx +c -3=0,由图象可知,当y =3时,x =1,故ax 2+bx +c -3=0有两个相等的实数根,故D 选项错误.故选C .二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y =x 2-2x -3与y 轴交点坐标是__________.【答案】(0,-3)12.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图象,那么a 的值是__________.【答案】-1【解析】由图象可知,抛物线经过原点(0,0),∴a2-1=0,解得a=±1.∵图象开口向下,∴a<0,∴a=-1.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.【答案】y=-x2+4x-3【解析】设抛物线的函数表达式为y=a(x-2)2+1(a≠0),将B(1,0)代入y=a(x-2)2+1,得a=-1.∴函数表达式为y=-(x-2)2+1,即y=-x2+4x-3.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.【答案】y=x2-2x15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.【答案】y=-(x+1)2-2【解析】二次函数y=(x-1)2+2的顶点坐标为(1,2),开口向上,绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),开口向下,所以旋转后的新函数图象的表达式为y=-(x+1)2-2.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx +n>ax2+bx+c的解集是__________.【答案】x<-1或x>4【解析】由函数图象可知:在点A的左侧和点B的右侧,一次函数的函数值都大于二次函数的函数值,∵A(-1,p),B(4,q),∴关于x的不等式mx+n>ax2+bx+c的解集是x<-1或x>4.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.【答案】-2 【解析】由抛物线y =ax 2+bx可知,点C 的横坐标为-b 2a ,纵坐标为-b 24a.∵四边形ABOC 是正方形, ∴-b 2a =-⎝⎛⎭⎫-b 24a .∴b =-2.18.已知二次函数y =x 2-mx -1,当x <4时,函数值y 随x 的增大而减小,则m 的取值范围是__________. 【答案】m ≥8三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况. (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积.【答案】解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1. ∴顶点C 的坐标是(2,-1).当x ≤2时,y 随x 的增大而减小;当x ≥2时,y 随x 的增大而增大. (2)令x 2-4x +3=0,解得x 1=3,x 2=1. ∴点A 的坐标是(1,0),点B 的坐标是(3,0). ∴S △ABC =12AB ×h =12×2×1=1.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.【答案】解:∵二次函数图象的顶点坐标为(1,-1), ∴可设为y =a (x -1)2-1(a ≠0).∵当x =0时,y =0,∴0=a ×(0-1)2-1,解得a =1. ∴该函数表达式为y =(x -1)2-1. 21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m ,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m 时,透光面积的最大值约为1.05 m 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m ,利用图③,解答下列问题:(1)若AB 为1 m ,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③【答案】解:(1)由题意,得AD =54 m ,∴S =54 m 2;(2)设AB =x (m ),则AD =12×⎝⎛⎭⎫6-3x -x 2=⎝⎛⎭⎫3-74x m , ∵3-74x >0,∴0<x <127.设窗户面积为S (m 2),由题意,得S =AB ·AD =x ⎝⎛⎭⎫3-74x =-74x 2+3x =-74⎝⎛⎭⎫x -672+97, 当x =67 m 时,S 最大值=97m 2>1.05 m 2.∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.(本题8分)一列火车在A 城的正北240 km 处,以120 km /h 的速度驶向A 城.同时,一辆汽车在A城的正东120 km 处,以120 km /h 速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计) 【答案】解:如答图,设经过t h ,火车到达B 处,汽车到达C 处,则AB =|240-120t |, AC =|120-120t |, 在Rt △ABC 中, BC =AB 2+AC 2=(240-120t )2+(120-120t )2 =1202(2-t )2+1202(1-t )2 =1202t 2-6t +5=1202⎝⎛⎭⎫t -322+12. 当t =32 h 时,BC 之间的距离最小,此时BC =12012=602, ∵当t =32 h 时,汽车运动的距离为120×32=180(km )>120(km ),∴汽车已过铁路与公路的交叉口.答:当经过32h 时汽车与火车的距离最近,此时汽车已过铁路与公路的交叉口.23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD ,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?【答案】解:(1)设矩形广场四角的小正方形的边长为x米,根据题意,得4x2+(100-2x)(80-2x)=5200,整理,得x2-45x+350=0,解得x1=35,x2=10.经检验,x1=35,x2=10均符合题意.所以,要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为35米或10米.(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30×[4x2+(100-2x)(80-2x)]+20×[2x(100-2x)+2x(80-2x)],即y=80x2-3600x+240000,配方,得y=80(x-22.5)2+199500.当x=22.5时,y的值最小,最小值为199500元.所以,当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.【答案】解:(1)∵点A(a,12)在直线y=2x上,∴12=2a,解得:a=6,又∵点A是抛物线y=12x2+bx上的一点,将点A(6,12)代入y=12x2+bx,可得b=-1,∴抛物线表达式为y=12x2-x.(2)∵点C是OA的中点,∴点C的坐标为(3,6),把y=6代入y=12x2-x,解得:x1=1+13,x2=1-13(舍去),故BC=1+13-3=13-2.(3)∵直线OA的表达式为:y=2x,点D的坐标为(m,n),∴点E的坐标为(12n,n),点C的坐标为(m,2m),∴点B的坐标为(12n,2m),把点B(12n,2m)代入y=12x2-x,可得m=116n2-14n,。
期末专题复习:浙教版九年级数学上册第一章二次函数单元检测试卷一、单选题(共10题;共30分)1.长方形的周长为24厘米,其中一边为(其中),面积为y平方厘米,则这样的长方形中y与的关系可以写为()A. B. C. D.2.不论为何值时,y=a2+b+c恒为正值的条件是()A. a>0,△>0B. a>0,△>0C. a>0,△<0D. a<0,△<03.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A. y=B. y=﹣C. y=﹣D. y=4.(2017·金华)对于二次函数y=−(−1)2+2的图象与性质,下列说法正确的是( )A. 对称轴是直线=1,最小值是2B. 对称轴是直线=1,最大值是2C. 对称轴是直线=−1,最小值是2D. 对称轴是直线=−1,最大值是25.已知二次函数y=2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A. y=(+2)2+3B. y=(+2)2﹣3C. y=(﹣2)2+3D. y=(﹣2)2﹣36.若m<−1,则下列函数:①,②,③,中,的值随的增大而增大的函数共有()A. 1个B. 2个C. 3个D. 4个7.已知,二次函数y=a2+b+a2+b(a≠0)的图象为下列图象之一,则a的值为( )A. -1B. 1C. -3D. -48.关于二次函数,下列说正确的是()A. 图像与y轴的交点坐标为(0,1)B. 图像的对称轴在y轴的右侧C. 当时,y的值随值的增大而减小D. y的最小值为-39.二次函数y=a2+b+c(a≠0)的图象如图所示,若|a2+b+c|=(≠0)有两个不相等的实数根,则的取值范围是( )A. <-3B. >-3C. <3D. >310.下列表格是二次函数y=a 2+b+c 的自变量与函数值y 的对应值,判断方程a 2+b+c=0(a≠0,a ,b ,c 为常数)的一个解的范围是( )2.12 D. ﹣2.12<<﹣2.11二、填空题(共10题;共30分)11.已知二次函数,当________时,y 随的增大而减小. 12.抛物线y=2+4的对称轴是________.13.把抛物线y=﹣2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________.14.将二次函数y=2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是________. 15.把抛物线y=﹣2﹣1先向左平移3个单位,再向上平移2个单位所得的抛物线与y 轴的交点坐标为________.16.已知二次函数y=2+(m ﹣2)+1,当>1时,y 随的增大而增大,则m 的取值范围是________. 17.将抛物线y=(+1)2向下平移2个单位,得到新抛物线的函数解析式是________ 18.已知二次函数y=a 2+b+c 中,函数y 与自变量的部分对应值如表:________.19.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s =60t −32t 2,则飞机着陆后滑行的最长时间为________ 秒.20.二次函数(a <0图象与轴的交点A 、B 的横坐标分别为﹣3,1,与y 轴交于点C ,下面四个结论:①16a ﹣4b+c <0;②若P (﹣5,y 1),Q (52,y 2)是函数图象上的两点,则y 1>y 2;③a=﹣13 c ;④若△ABC 是等腰三角形,则b=﹣2√73.其中正确的有________(请将结论正确的序号全部填上) 三、解答题(共7题;共60分)21.已知抛物线y=2+b+3经过点A (﹣1,8),顶点为M ; (1)求抛物线的表达式;(2)设抛物线对称轴与轴交于点B ,连接AB 、AM ,求△ABM 的面积.22.如图,已知抛物线y =a 2+b +3的图象与轴交于A 、B 两点,与y 轴交于点C ,且点C 、D 是抛物线上的一对对称点(1)求抛物线的解析式(2)求点D的坐标,并在图中画出直线BD(3)求出直线BD的一次函数解析式,并根据图象回答:当满足什么条件时,上述二次函数的值大于该一次函数的值23.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.24.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价(元)之间满足y=﹣2+80 (20≤≤40),设销售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价(元)之间的函数表达式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?25.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离(m)满足关系式y=a(-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.(1)当h=2.6时,求y与的关系式(不要求写出自变量的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.26.如图,抛物线y=﹣2+b+c与轴交于A(﹣1,0),B(5,0)两点,直线y=﹣3+3与y轴交于点C,与4轴交于点D.点P是轴上方的抛物线上一动点,过点P作PF⊥轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点、是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系Oy中,顶点为M的抛物线y=a2+b(a>0),经过点A和轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在轴上,且△ABC与△AOM相似,求点C的坐标.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】C4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】D9.【答案】D10.【答案】C二、填空题11.【答案】<212.【答案】y轴13.【答案】y=﹣(+3)2+214.【答案】y=(﹣1)2+215.【答案】(0,﹣8)16.【答案】m≥017.【答案】y=(+1)2﹣218.【答案】﹣1<<319.【答案】2020.【答案】①③三、解答题21.【答案】解:(1)∵抛物线y=2+b+3经过点A(﹣1,8),∴8=(﹣1)2﹣b+3,解得b=﹣4,∴所求抛物线的表达式为y=2﹣4+3;(2)作AH⊥BM于点H,∵由抛物线y=2﹣4+3解析式可得,点M的坐标为(2,﹣1),点B的坐标为(2,0),∴BM=1,∵对称轴为直线=2,∴AH=3,∴△ABM的面积S=12×1×3=3222.【答案】解:(1)二次函数y=a2+b+3的图象经过点A(-3,0),B(1,0)∴9a-3b+3="0" ,a+b+3=0;解得a=-1 、b=-2;∴二次函数图象的解析式为y=-2-2+3;(2)∵y=-2-2+3,∴图象与y轴的交点坐标为(0,3)∵点C、D是抛物线上的一对对称点.对称轴=-b/2a=-1,∴D点的坐标为(-2,3).(3)设直线BD的一次函数解析式为y=+b把B(1,0),D(-2,3)分别代入得:0=+b、3=-2+b解得:=-1,b=1。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①b2-4ac=0;②2a+b=0;③若(x1, y1),(x2, y2)在函数图象上,当x1<x2时,y1<y2;④a-b+c<0.其中正确的是( )A.②④B.③④C.②③④D.①②④2、要得到抛物线,可以将抛物线()A.向左平移2个单位长度,再向上平移3个单位长度B.向左平移2个单位长度,再向下平移3个单位长度C.向右平移2个单位长度,再向上平移3个单位长度D.向右平移2个单位长度,再向下平移3个单位长度.3、已知函数y=ax2+bx+c,当y>0时,﹣<x<.则函数y=cx2﹣bx+a的图象可能是图中的()A. B. C.D.4、下列3个图形中,阴影部分的面积为1的个数为()A.3个B.2个C.1个D.0个5、已知二次函数,当时,函数y的最大值为4,则m的取值范围是()A. B. C. D.6、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②2a+b=0;③a﹣b+c<0;④4a+2b+c>0;其中正确的结论有()A.4个B.3个C.2个D.1个7、若抛物线与轴的交点为(0,3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与轴的交点为(-1,0),(3,0)8、已知二次函数y=x2-4x+5的顶点坐标为( )A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)9、如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确个数有().A.1个B.2个C.3个D.4个10、如图,在平面直角坐标系中条直线为,直线交轴于点,交轴于点,直线交轴于点,过点作轴的平行线交于点,点关于轴对称,抛物线过三点,下列判断中:①;②;③抛物线关于直线对称;④抛物线过点;⑤四边形,其中正确的个数有()A. B. C. D.11、已知函数y=x2-2013x+2012与x轴交点是(m,0),(n,0),则(m2-2014m+2012)(n2-2014n+2012)的值是()A.2012B.2011C.2014D.201312、已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.当x>0时,y随x的增大而减小C.2a﹣b=0D.方程ax 2+bx+c=0的两根是x1=﹣1,x2=313、二次函数的顶点坐标为,其部分图象如图所示.以下结论错误的是()A. B. C. D.关于x的方程无实数根14、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A.1B.2C.3D.415、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的有()个.①abc<0,②2a+b=0,③a-b+c>0,④4a+2b+c>0,⑤b>-2c.A.2B.3C.4D.5二、填空题(共10题,共计30分)16、已知二次函数自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y>1成立的x的取值范围是________.x……﹣2 ﹣1 0 1 2 3 ……y…… 6 1 ﹣2 ﹣3 ﹣2 1 ……17、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c的两个根分别是x1=1.3和x2=________。
浙教新版九年级上册《第1章二次函数》2015年单元测试卷(浙江省绍兴市杨汛中学)一、选择题(本大题共10小题,每小题3分,共30分)1。
下列函数属于二次函数的是()A。
y=5x+3 B。
y=C。
y=2x2+x+1 D。
y=2。
抛物线y=﹣x2+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=()A.﹣B。
3 C。
﹣3 D。
3.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的表达式为()A.y=4(x+2)2+3 B。
y=4(x+2)2﹣3 C.y=4(x﹣2)2+3 D.y=4(x﹣2)2﹣34。
抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(3,﹣4)B.(﹣3,4)C.(﹣3,﹣4) D。
(﹣4,3)5.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A。
2 B.﹣2 C.±2 D.±6。
若y=(2﹣m)是二次函数,且开口向上,则m的值为()A.±B。
﹣ C.D。
07.把二次函数y=x2﹣2x﹣1配方成顶点式为()A.y=(x﹣1)2B.y=(x+1)2﹣2 C。
y=(x+1)2+1 D。
y=(x﹣1)2﹣28.y=x2﹣7x﹣5与y轴的交点坐标为()A.﹣5 B。
(0,﹣5)C。
(﹣5,0)D。
(0,﹣20)9。
在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A。
B. C.D。
10.根据下列表格中的二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的自变量x与函数y的对应值,判断ax2+bx+c=0的一个解x的取值范围为()x 1、43 1、44 1、45 1、46y=ax2+bx+c ﹣0、095 ﹣0、046 0、003 0、052A。
1、40<x<1、43 B。
1、43<x<1、44 C。
1、44<x<1、45 D。
1、45<x<1、46二.填空题11.函数y=ax2+c(a≠0)的图象的对称轴是;顶点坐标是。
第1章二次函数班级姓名学号一、选择题(每小题3分,共30分)1.已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a、b的大小关系为()A.a>bB.a<bC.a=bD.不能确定2.二次函数y=x2-8x+c的最小值是0,那么c的值等于()(A)4 (B)8 (C)-4 (D)163.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=(x+2)2+2B.y=(x-2)2-2C.y=(x-2)2+2D.y=(x+2)2-24.一次函数与二次函数在同一坐标系中的图象可能是()5.已知抛物线的顶点坐标是,则和的值分别是()A.2,4B.C.2,D.,06.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()(A)a+c(B)a-c(C)-c(D)c7.对于任意实数,抛物线总经过一个固定的点,这个点是()A.(1,0)B.(,0)C.(,3)D. (1,3)8.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为,AE为,则关于的函数图象大致是()(A)(B)(C)(D)9.已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=-.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题(每小题3分,共30分)11.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”).12.如果二次函数16的图象顶点的横坐标为1,则的值为.13.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.14.对于二次函数,已知当由1增加到2时,函数值减少3,则常数的值是.15.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后需滑行s才能停下来.16.设三点依次分别是抛物线与轴的交点以及与轴的两个交点,则△的面积是.17.若函数y=a(x-h)2+k的图象经过原点,最小值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.18.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.19.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标是(5,0),(-2,0),则方程ax2+bx+c=0(a≠0)的解是_______.20.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三、解答题(共60分)21.(8分)当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.22.(8分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B 的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的解析式.(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.23.(8分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.24.(8分)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值. 25.(8分)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x是多少时,这个三角形面积S最大?最大面积是多少?26.(10分)如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)已知该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?参考答案一、选择题1. A 解析:∵二次函数y=a(x+1)2-b(a≠0)有最小值1,∴a>0且x=-1时,-b=1.∴a>0,b=-1.∴a>b.2.C 解析:由函数图象可知,所以.3.B 解析:根据平移规律“左加右减”“上加下减”,将抛物线y=x2-4先向右平移2个单位得y=(x-2)2-4,再向上平移2个单位得y=(x-2)2-4+2=(x-2)2-2.4.C 解析:当时,二次函数图象开口向下,一次函数图象经过第二、四象限,此时C,D符合.又由二次函数图象的对称轴在轴左侧,所以,即,只有C符合.同理可讨论当时的情况.5.B 解析: 抛物线的顶点坐标是(),所以,解得.6.D 解析:由于函数图象开口向下,所以在对称轴左侧随的增大而增大,由对称轴为直线,知的取值范围是.7.D 解析:当时,,故抛物线经过固定点(1,3).8.D 解析:画出抛物线简图可以看出,所以.9. B 解析:∵点M的坐标为(a,b),∴点N的坐标为(-a,b).∵点M在双曲线y=上,∴ab=.∵点N(-a,b)在直线y=x+3上,∴-a+3=b.∴a+b=3.∴二次函数y=-abx2+(a+b)x=-x2+3x=-(x-3)2+.∴二次函数y=-abx2+(a+b)x有最大值,最大值是.10. D 解析:由图象知a>0,c<0,又对称轴x=-=-<0,∴b>0,∴abc<0.又-=-,∴a=b,a+b≠0.∵a=b,∴y=ax2+bx+c=bx2+bx+c.由图象知,当x=1时,y=2b+c<0,故选项A,B,C均错误.∵ 2b+c<0,∴ 4a-2b+c<0.∴ 4a+c<2b,D选项正确.二、填空题11. >解析:∵a=1>0,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故由x1>x2>1可得y1>y2.12.13.解析:因为当时,, 当时,,所以.14.(5,-2)15. 600 解析:y =60x -1.5x 2=-1.5(x -20)2+600,当x =20时,y 最大值=600,则该型号飞机着陆时需滑行600 m 才能停下来. 16.解析:令,令,得,所以,所以△的面积是.17.18.本题答案不唯一,只要符合题意即可,如222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或 三、解答题19. 分析:先求出当k 分别取-1,1,2时对应的函数,再根据函数的性质讨论最大值. 解:(1)当k =1时,函数y =-4x +4为一次函数,无最值.(2)当k =2时,函数y =x 2-4x +3为开口向上的二次函数,无最大值.(3)当k =-1时,函数y =-2x 2-4x +6=-2(x +1)2+8为开口向下的二次函数,对称轴为直线x =-1,顶点坐标为(-1,8),所以当x =-1时,y 最大值=8.综上所述,只有当k =-1时,函数y =(k -1)x 2-4x +5-k 有最大值,且最大值为8. 点拨:本题考查一次函数和二次函数的基本性质,熟知函数的性质是求最值的关键. 20.解:将整理得.因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位, 再向上平移1个单位即得,故,所以.示意图如图所示.21.解:(1)建立直角坐标系,设点A 为原点, 则抛物线过点(0,0),(600,0), 从而抛物线的对称轴为直线.又抛物线的最高点的纵坐标为1 200,则其顶点坐标为(300,1 200),所以设抛物线的解析式为,将(0,0)代入所设解析式得,所以抛物线的解析式为.(2)将代入解析式,得,所以炮弹能越过障碍物.22.分析:日利润=销售量×每件利润,每件利润为元,销售量为[件,据此得关系式.解:设售价定为元/件.由题意得,,∵,∴当时,有最大值360.答:将售价定为14元/件时,才能使每天所赚的利润最大,最大利润是360元.23. 分析:(1)根据抛物线的对称轴为直线x==1,列方程求t的值,确定二次函数解析式. (2)把x=-3,y=m代入二次函数解析式中求出m的值,再代入y=kx+6中求出k的值.解:(1)由题意可知二次函数图象的对称轴为直线x=1,则-=1,∴t=-.∴y=-x2+x+.(2)∵二次函数图象必经过A点,∴m=-×(-3)2+(-3)+=-6.又一次函数y=kx+6的图象经过A点,∴-3k+6=-6,∴k=4.24. 分析:(1)由三角形面积公式S=得S与x之间的关系式为S=·x(40-x)=-x2+20x.(2)利用二次函数的性质求三角形面积的最大值.解:(1)S=-x2+20x.(2)方法1:∵a=-<0,∴S有最大值.∴当x=-=-=20时,S有最大值为==200.∴当x为20 cm时,三角形面积最大,最大面积是200 cm2.方法2:∵a=-<0,∴S有最大值.∴当x=-=-=20时,S有最大值为S=-×202+20×20=200.∴当x为20 cm时,三角形面积最大,最大面积是200 cm2..点拨:最值问题往往转化为求二次函数的最值.25. 分析:(1)设抛物线的解析式为y=ax2+b,将(0,11)和(8,8)代入即可求出a,b;(2)令h= 6,解方程(t-19)2+8=6得t1,t2,所以当h≥6时,禁止船只通行的时间为|t2-t1|.解:(1)依题意可得顶点C的坐标为(0,11),设抛物线解析式为y=ax2+11.由抛物线的对称性可得B(8,8),∴ 8=64a+11.解得a=-,抛物线解析式为y=-x2+11.(2)画出h=(t-19)2+8(0≤t≤40)的图象如图所示.当水面到顶点C的距离不大于5米时,h≥6,当h=6时,解得t1=3,t2=35.由图象的变化趋势得,禁止船只通行的时间为|t2-t1|=32(小时).答:禁止船只通行的时间为32小时.点拨:(2)中求出符合题意的h的取值范围是解题的关键,本题考查了二次函数在实际问题中的应用.26.分析:(1)由函数的图象可设抛物线的表达式为,依题意可知图象经过的点的坐标,由此可得的值.进而求出抛物线的表达式.(2)当时,,从而可求得他跳离地面的高度.解:(1)设抛物线的表达式为.由图象可知抛物线过点(0,3.5),(1.5,3.05),所以解得所以抛物线的表达式为.(2)当时,,所以球出手时,他跳离地面的高度是(米).。
二次函数
一、填空题(本题有10个小题,每小题4分,共40分)
1.抛物线2(1)3y x =-+的对称轴是( )
A .直线1x =
B .直线3x =
C .直线1x =-
D .直线3x =-
2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( )
A .2(3)2y x =++
B .2(3)2y x =--
C .2(6)2y x =--
D .2(3)2y x =-+
3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( )
A .8、-1
B .8、1
C .6、-1
D .6、1
4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )
A .(1,3)
B .(-1,3)
C .(1,-3)
D .(-1,-3)
5.已知二次函数2
y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )
A .x 1=1,x 2=-2
B .x 1=1,x 2=2
C .x 1=1,x 2=0
D .x 1=1,x 2=3
6.二次函数2(1)2y x =-+的最小值是( )
A .2-
B .2
C .1-
D .1 7.抛物线24y x x =-的对称轴是 ( )
A .x =-2
B .x =4
C .x =2
D .x =-4
8.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直
线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )
A .1个
B .2个
C .3个
D .4个
9.已知二次函数y =2(x +1)(x -a ),其中a >0,若当x ≤2时,y 随x 增大而减小,当x ≥2时y 随x 增大而增大,则a 的值是( )
A. 3
B. 5
C. 7
D. 不确定
10.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x
任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中
的较小值记为M ;若y 1=y 2,记M =y 1=y 2.下列判断:①当x >2时,M =y 2;
②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;
④若M =2,则x =1.其中正确的有( )
A .1个
B .2个
C .3个
D .4个
二、认真填一填 (本题有8个小题, 每小题5分, 共40分)
11.抛物线2
2(1)2y x =-++的顶点的坐标是
12.将抛物线y 1=2x 2向右平移2个单位,得到抛物线y 2的图象,则y 2= ;
13.教练对小明推铅球的录像进行技术分析,发现铅球行进
高度y (m )与水平距离x (m )之间的关系为y =-
112 (x -4)2+3,由此可知铅球推出的距离是________m .
14.抛物线2y ax bx c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = ;
15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 .
16.抛物线y =x 2-(m -4)x -m 与x 轴的两个交点关于y 轴对称,则其顶点为
17.已知二次函数y =x 2+bx +c 的图象过点A (c ,0),且关于直线x =2对称,则这个二次函数解析
式可能是(只要求写出一个可能的解析式)____________________.
18.已知抛物线y=ax 2+bx+c 与直线y=kx +4相交于A (1,m ),B (4,8)两点,与x •轴交于
原点O 及点C ,在x 轴上方的抛物线上存在点D ,使得S △OCD =12
S △OCB ,则满足要求的点D 坐标为______________.
三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.)
19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.
20.(8分)如图,抛物线y =2
1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,
且A (一1,0).
(1)求抛物线的解析式及顶点D 的坐标;
(2)若将上述抛物线先向下平移3个单位,
再向右平移2个单位,请直接写出平移后的抛物线的解析式.
21.(8分)在直角坐标平面内,二次函数图象的顶点为A (1,-4)且经过点B (3,0) .
(1)求该二次函数的解析式.
(2)求直线y =-x -1与该二次函数图象的交点的坐标.
22.(8分)如图,直线y =2x +2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋
转900,得到△A 1OB 1 。
(1)在图中画出△A 1OB 1; ; (2)求经过A ,A 1,B 1三点的抛物线的解析式。
23.(8分)如图,p 为抛物线y = 43x 2-23x +4
1上对称轴右侧的一点,且点p 在x 轴上方,过点p 作PA 垂直x 轴于点A ,PB 垂直y 轴于点B ,得到矩形PAOB ,若AP =1,求矩形PAOB 的面积.
24.(10分)已知二次函数的图象以A (1-,4)为顶点,
且过B (2,5-)
(1)求该函数的关系式;
(2)求该函数图象与坐标轴的交点坐标;
(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至点A '、B ', 求OA B ''∆的面积。
25.(8分)如图,已知二次函数y=2
1-x 2+bx+c 的图象经过A (2,0)、B (0,-6)两点。
(1)求这个二次函数的解析式; (2)设该二次函数的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积.
26.(14分)如图,在平面直角坐标系中,二次函数x ax y 42-=的图像经过点A (4,0),点B 是OA 中点,以线段OB 为斜边,在第一象限内作等腰直角三角形OBC ,D 为射线BA 上一点,连结CD ,以CD 为直角边,C 点为直角顶点在第一象限内作等腰直角三角形CDE ,直线BE 与二次函数的图象在第四象限交于点F 。
(1)求这个二次函数的解析式;
(2)△OCD 与△BCE 全等吗?判断并证明你的结论;
(3)探索①随着点D 位置的变化,点F 的位置是否会发生变化?若有变化,请说明理由,若没有变化,求出点F 的坐标;
探索②经过点E 作平行于x 轴的直线,该直线与抛物线交与G 点,当D 点运动到何处时,四边形OEGD 是平行四边形;
探索③写出②中G 点的坐标。