第3章_调制、解调与变频电路05-05-10
- 格式:ppt
- 大小:3.98 MB
- 文档页数:59
调制电路与解调电路详解一、调幅电路调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
调制、解调和变频-调制方式
在无线电通讯和广播中,需要传送由语言、音乐、文字、图象等转换成的电信号。
由于这些信号频率比较低,依据电磁理论,低频信号不能直接以电磁波的形式有效地从天线上放射出去。
因此,在发送端须采纳调制的方式,将低频信号加到高频信号之上,然后将这种带有低频信号的高频信号放射出去,在接收端则把带有这种低频信号的高频信号接收下来,经过频率变换和相应的解调方式"检出"原来的低频信号,从而达到通讯和广播的目的。
要把低频信号"加到"高频振荡上去,可由低频信号去掌握高频等幅振荡的某一参数(振幅,频率或相位)来达到。
这种用低频信号去掌握高频振荡,使其具有低频信号特征的过程称为调制。
其中低频信号称为调制信号或调制波,被掌握的高频等幅振荡称为被调信号或载波。
经过调制后的高频信号称为已调波。
依据低频信号所掌握高频信号参数的不同,有不同的调制方式。
以调制信号去掌握载波的振幅,使载波的振幅按调制信号的规律变化,这种调制称为振幅调制,简称调幅,以调制信号去掌握载波的频率,使载波的频率按调制信号的规律变化,则称频率调制,简称调频,同理,使载波的相位按调制信号的规律变化,则称调相。
上述的调幅、调频和调相属于连续调制,此外,还有脉冲调制,以及近代数字通讯中进展起来的所谓脉冲编码调制等。
但是,使用最早,应用较广的是振幅调制方式。
这种方式尽管效率较低,抗干扰性能较差,但它占用的频带窄,线路简洁,所以,现在的中、短波广播仍广
泛采纳调幅制。
调制不仅使低频信号得到了有效的传输,还可以使不同电台具有不同的载波频率,从而使各电台相互区分。
电路中的信号调制与解调信号调制与解调是现代通信技术中不可或缺的一环。
它们负责将信息转换为适合传输的信号,并在接收端将信号恢复为原始的信息。
在电路中,调制和解调有着多种形式,每种形式都有其独特的特点和应用场景。
调制是指将原始信息信号与一定的载波信号相结合,形成适合传输的调制信号。
通过调制,原始信息信号的频率、振幅、相位等特性被转换成与载波信号相关的参数。
常见的调制方式包括幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
幅度调制是最简单的调制方式之一。
它通过改变载波信号的幅度,来表示原始信息信号的变化。
当原始信号为高电平时,载波信号的幅度较大;当原始信号为低电平时,载波信号的幅度较小。
幅度调制广泛应用在调幅广播、电视和手机通信等领域。
频率调制是将原始信息信号的变化通过改变载波信号的频率来表示的一种调制方式。
当原始信号为高电平时,载波信号的频率较高;当原始信号为低电平时,载波信号的频率较低。
频率调制被广泛应用在调频广播、无线通信和音频传输等领域。
相位调制则是通过改变载波信号的相位,来表示原始信息信号的变化。
当原始信号为高电平时,载波信号的相位发生改变;当原始信号为低电平时,载波信号的相位保持不变。
相位调制常用于调相广播和数字通信系统中。
解调是将调制信号还原为原始信息信号的过程。
它在接收端起着至关重要的作用,能够使接收端正确地解读和解析接收到的信号。
常见的解调方式包括包络检测、鉴相解调、锁相环等。
包络检测是一种常用的解调方式,适用于幅度调制。
它通过提取调制信号的包络(即调制信号的振幅)来还原原始信息信号。
包络检测被广泛应用在调幅广播接收机中。
鉴相解调是一种用于解调相位调制信号的方法。
它通过比较接收信号与参考信号的相位差,来推测原始信息信号的变化。
鉴相解调在数字通信系统中得到广泛应用。
锁相环是一种复杂且高效的解调方法,通常用于频率调制。
它通过将接收信号的相位与本地参考信号的相位进行比较,通过调整本地振荡信号的频率和相位,使其与接收信号保持同步。