甘肃省2020-2021学年高二数学上学期期末考试试题文
- 格式:doc
- 大小:736.73 KB
- 文档页数:10
永昌一中2014-2015-1期末考试卷高二数学(理)一、选择题(每小题5分,共60分)1.设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是 ( ) A.y 2=-8xB.y 2=8xC.y 2=-4xD.y 2=4x2.下列有关命题的说法正确的是 ( )A .“若x≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题为:“若x =a 且x =b ,则x2-(a +b )x +ab =0”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D ..命题“若x y =,则sin sin x y =”的逆否命题为真命题.3.22530x x --<的一个必要不充分条件是( ). A.132x -<< B.102x -<< C.132x -<< D.16x -<<4.已知椭圆x 241+y 225=1的两个焦点为F 1,F 2,弦AB 过点F 1,则△ABF 2的周长为 ( ).A .10B .20C .241D .4415. 已知 ()()1,2,,,1,2a y b x =-=r r , 且(2)//(2)a b a b +-r r r u u r,则( )A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-6.过点)2,2(-且与双曲线1222=-y x 有相同渐近线的双曲线的方程是(D ) A .12422=-y x B .12422=-x y C .14222=-y x D .14222=-x y7.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=, b AD =,=1则下列向量中与BM 相等的向量是( )A .c b a ++-2121 B.++2121 C.c b a +--2121 D.+-21218.三棱锥A BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .239.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .410.在侧棱与地面垂直且底面是正三角形的三棱柱ABC-A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角为( )A. 60°B. 90°C. 45°D. 75°11.已知斜率为2的直线l 双曲线2222:1(0,0)x y C a b a b-=>>交,A B 两点,若点(2,1)P 是AB 的中点,则C 的离心率等于( )A .2B .3C .2D .2212.如图所示,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,左焦点为F ,A ,B ,C 为其三个顶点,直线CF 与AB 交于D 点,则tan∠BDC 的值等于( ).A .-3 3B .3 3C .35D .- 35二、填空题:本大题共4小题,每小题5分.共20分.13.命题“若21x <,则11x -<<”的逆否命题是14.若双曲线22221x y a b-=3则其渐近线方程为_________________.15. 过原点的直线l 与双曲线221y x -=有两个交点,则直线l 的斜率的取值范围为 16.已知矩形ABCD 中,AB=1,BC=错误!未找到引用源。
扩展语句、语段压缩专题山东省烟台市2020-2021学年上学期高二期末考试语文试题21.请根据下面这段科普短文,给暗物质下一个简要定义,要求保留关键信息,句子简洁流畅,不超过60个字。
(5分)暗物质不发光、不发出电磁波、不参与电磁相互作用,它无法用任何光学或电磁观测设备直接“看”到。
科学家测算,暗物质粒子每秒的运动速度/ 220千米,是56式半自动步枪子弹出膛速度的300倍。
暗物质和它自己以及其他物质不发生除了引力以外的作用,促使宇宙膨胀时在自身引力下形成特定结构的首要物质类型。
暗物质播下了宇宙丝状结种子,随后可见物质才聚集在一些由暗物质建立起来的引力点上,并最终形成了星系。
22.阅读下列材料,根据要求完成题目。
(4分)近日,中国外交部发言人赵立坚主持例行记者会,对加拿大常驻联合国大使所言“中国在新疆的做法毫无疑问符合《灭绝种族公约》对种族灭绝的定义”进行了有力回击。
赵立坚先用具体数字进行说明:2010年至2018年,新疆维吾尔族人口从1017万上升至1272万,增加255万,达汉族人口增幅的12.5倍,更是加拿大人口增幅的约18倍。
接着他提问对方:“我想试问这位加拿大大使,如果他非要找出谁最符合种族灭绝的定义,恐怕受迫害的不是维吾尔族,而是加拿大人民吧?”赵立坚以子之矛攻子之盾,巧妙彰显了外交辞令的逻辑力量。
请你根据下列提示,说明其辩论的逻辑思维过程。
(1)如果新疆存在针对维吾尔族的种族灭绝行为,①,而事实上②,因此,认为新疆存在种族灭绝行为的说法是错误的。
(2)新疆维吾尔族的人口增幅是加拿大人口增幅的18倍,如果说新疆存在种族灭绝的行为,③;④,那么,认为新疆存在种族灭绝行为的说法也是错误的。
21.(5分)暗物质是一种具有难以观测、(1分)速度快、(1分)只受引力作用等特点的(1分)在为星系形成搭建宇宙特定(或:丝状)结构时起首要作用的(1分)物质类型。
(1分)22.(4分)①那么维吾尔族的人口必然减少(1分)②维吾尔族人口是增加的(或:维吾尔族人口增幅是汉族人口增幅的12.5倍/维吾尔族人口增幅远远高于汉族人口增幅)(1 分)③那么加拿大更存在种族灭绝行为(1分)④如果加拿大不承认自己存在种族灭绝行为(1分)(意思答对即可。
甘肃省嘉峪关市2017-2018学年高二数学上学期期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( ) A .不存在x ∈R ,x 3-x 2+1≤0 B.存在x ∈R ,x 3-x 2+1≤0 C .存在x ∈R ,x 3-x 2+1>0 D .对任意的x ∈R ,x 3-x 2+1>0 2.抛物线x 2=12y 的焦点到准线的距离是( )A .2B .1C .12D .143.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则实数a 等于( ) A .2 B .12C .-12D .-24.“x >0”是“3x 2>0”成立的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件D .充要条件5.如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A .π6B .π4C .π3D .π26.若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是( ) A .[2,6] B .[-6,-2] C .(2,6) D .(-6,-2)7.在正方体ABCD -A 1B 1C 1D 1中,E 是棱BB 1中点,G 是DD 1中点,F 是BC 上一点且FB =14BC ,则GB 与EF 所成的角为( )A .30° B.120° C.60°D .90°8.已知双曲线x 2a 2-y 2b2=1的一个焦点与抛物线y 2=410x 的焦点重合,且双曲线的离心率等于103,则该双曲线的方程为( ) A .x 2-y 29=1 B .x 29-y 2=1 C .x 2-y 2=1 D .x 29-y 29=19.若双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .610.函数y =x e x的单调递增区间是( )A .[-1,+∞) B.(-∞,-1] C .[1,+∞) D .(-∞,1]11.已知抛物线y 2=2px (p >0)与椭圆x 2a 2+y 2b2=1有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x轴,则双曲线的离心率为( ) A .5+12B .2-1C .3+1D .22+1212.已知f (x )=ln(x 2+1),g (x )=(12)x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是( )A .[14,+∞) B.(-∞,14] C .[12,+∞) D .(-∞,-12]二、填空题:本大题共4小题,每小题5分,满分20分. 13.“tan θ≠1”是“θ≠π4”的________条件. 14.已知曲线y =-13x 3+2与曲线y =4x 2-1在x =x 0处的切线互相垂直,则x 0的值为________.15.已知正方形ABCD ,则以A ,B 为焦点,且过C ,D 两点的椭圆的离心率为________.16.已知以y =±3x 为渐近线的双曲线D :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若P 为双曲线D 右支上任意一点,则|PF 1|-|PF 2||PF 1|+|PF 2|的取值范围是________.三、解答题:解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)已知命题p :方程22121x y m m -=-表示焦点在y 轴上的椭圆;命题q :双曲线2215y xm-=的离心率(1,2)e ∈,若p q ∨是真命题,求实数m 的取值范围.18.(本小题满分12分)已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的方程; (2)讨论轨迹C 的形状.19.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面PAC ;(3)求直线AM 与平面ABCD 所成角的正切值.20.(本小题满分12分)已知在△ABC 中,点A ,B 的坐标分别为(-2,0),B (2,0),点C 在x 轴上方. (1)若点C 坐标为(2,1),求以A ,B 为焦点且经过点C 的椭圆的方程;(2)过点P (m,0)作倾斜角为34π的直线l 交(1)中曲线于M ,N 两点,若点Q (1,0)恰在以线段MN 为直径的圆上,求实数m 的值.21.(本小题满分12分)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长是2,侧棱长是3,D 是AC 的中点. (1)求证:B 1C ∥平面A 1BD ;(2)求二面角A 1-BD -A 的大小;(3)在线段AA 1上是否存在一点E ,使得平面B 1C 1E ⊥平面A 1BD ?若存在,求出AE 的长;若不存在,说明理由.22.(本题满分12分) 已知函数f (x )=12x 2-m ln x .(1)若函数f (x )在(12,+∞)上是单调递增的,求实数m 的取值范围;(2)当m =2时,求函数f (x )在[1,e]上的最大值和最小值.二、填空题:本大题共4小题,每小题5分,满分20分.13.充分不必要 14.1215.2-1 16.⎝ ⎛⎦⎥⎤0,12三、解答题:解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)已知命题p :方程22121x y m m -=-表示焦点在y 轴上的椭圆;命题q :双曲线2215y xm-=的离心率(1,2)e ∈,若p q ∨是真命题,求实数m 的取值范围.解:将方程22121x y m m -=-改写为22121x y m m+=-,只有当120m m ->>,即103m <<时,方程表示的曲线是焦点在y 轴上的椭圆,所以命题p 等价于103m <<; 因为双曲线2215y x m-=的离心率(1,2)e ∈,所以0m >,且5145m +<<,解得015m <<,所以命题q 等价于015m <<.p 或q 为真,则015m <<.18.(本小题满分12分)已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的方程; (2)讨论轨迹C 的形状.答案 (1)x 2-y 2λ=1(λ≠0,x ≠±1) (2)略解析 (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ. 整理,得x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点); ②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0); ④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点). 19.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,底面ABCD为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面PAC ;(3)求直线AM 与平面ABCD 所成角的正切值. 答案 (1)略 (2)略 (3)455解析 (1)连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM .(2)因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC .又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面PAC .(3)取DO 中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,所以∠MAN 是直线AM 与平面ABCD 所成的角.在Rt △DAO 中,AD =1,AO =12,所以DO =52.从而AN =12DO =54.在Rt △ANM 中,tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455.20.(本小题满分12分)已知在△ABC 中,点A ,B 的坐标分别为(-2,0),B (2,0),点C 在x 轴上方. (1)若点C 坐标为(2,1),求以A ,B 为焦点且经过点C 的椭圆的方程;(2)过点P (m,0)作倾斜角为34π的直线l 交(1)中曲线于M ,N 两点,若点Q (1,0)恰在以线段MN 为直径的圆上,求实数m 的值.答案 (1)x 24+y 22=1 (2)m =2±193解析 (1)设椭圆方程为x 2a 2+y 2b2=1,c =2,2a =|AC |+|BC |=4,b =2,所以椭圆方程为x 24+y 22=1. (2)直线l 的方程为y =-(x -m ),令M (x 1,y 1),N (x 2,y 2),联立方程解得3x 2-4mx +2m 2-4=0.∴⎩⎪⎨⎪⎧x 1+x 2=4m3,x 1x 2=2m 2-43.若Q 恰在以MN 为直径的圆上,则y 1x 1-1·y 2x 2-1=-1,即m 2+1-(m +1)(x 1+x 2)+2x 1x 2=0,3m 2-4m -5=0,解得m =2±193. 21.(本小题满分12分)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长是2,侧棱长是3,D 是AC 的中点.(1)求证:B 1C ∥平面A 1BD ; (2)求二面角A 1-BD -A 的大小;(3)在线段AA 1上是否存在一点E ,使得平面B 1C 1E ⊥平面A 1BD ?若存在,求出AE 的长;若不存在,说明理由.答案 (1)略 (2)π3 (3)存在且AE =33解析 (1)如图①所示,连接AB 1交A 1B 于点M ,连接B 1C ,DM .因为三棱柱ABC -A 1B 1C 1是正三棱柱,所以四边形AA 1B 1B 是矩形,所以M 为AB 1的中点. 因为D 是AC 的中点,所以MD 是三角形AB 1C 的中位线,所以MD ∥B 1C . 因为MD ⊂平面A 1BD ,B 1C ⊄平面A 1BD ,所以B 1C ∥平面A 1BD .(2)作CO ⊥AB 于点O ,所以CO ⊥平面ABB 1A 1,所以在正三棱柱ABC -A 1B 1C 1中建立如图②所示的空间直角坐标系O -xyz .因为AB =2,AA 1=3,D 是AC 的中点,所以A (1,0,0),B (-1,0,0),C (0,0,3),A 1(1,3,0).所以D (12,0,32),BD →=(32,0,32),BA 1→=(2,3,0).设n =(x ,y ,z )是平面A 1BD 的法向量, 所以⎩⎨⎧n ·BD →=0,n ·BA 1→=0,即⎩⎪⎨⎪⎧32x +32z =0,2x +3y =0.令x =-3,则y =2,z =3.所以n =(-3,2,3)是平面A 1BD 的一个法向量. 由题意可知AA 1→=(0,3,0)是平面ABD 的一个法向量,所以cos 〈n ,AA 1→〉=2343=12.所以二面角A 1-BD -A 的大小为π3.(3)设E (1,y,0),则C 1E →=(1,y -3,-3),C 1B 1→=(-1,0,-3).设平面B 1C 1E 的法向量n 1=(x 1,y 1,z 1),所以⎩⎨⎧n 1·C 1E →=0,n ·C 1B 1→=0,即⎩⎨⎧x 1+y -3y 1-3z 1=0,-x 1-3z 1=0.令z 1=-3,则x 1=3,y 1=63-y,所以n 1=(3,63-y,-3).又n 1·n =0,即-33+123-y-33=0,解得y =33. 所以存在点E ,使得平面B 1C 1E ⊥平面A 1BD 且AE =33. 22.(本题满分12分) 已知函数f (x )=12x 2-m ln x .(1)若函数f (x )在(12,+∞)上是单调递增的,求实数m 的取值范围;(2)当m =2时,求函数f (x )在[1,e]上的最大值和最小值. 答案 (1)m ≤14 (2)最大值e 2-42,最小值1-ln2解析 (1)若函数f (x )在(12,+∞)上是增函数,则f ′(x )≥0在(12,+∞)上恒成立.而f ′(x )=x -m x ,即m ≤x 2在(12,+∞)上恒成立,即m ≤14.(2)当m =2时,f ′(x )=x -2x =x 2-2x.令f ′(x )=0,得x =± 2.当x ∈[1,2)时,f ′(x )<0,当x ∈(2,e)时,f ′(x )>0,故x =2是函数f (x )在[1,e]上唯一的极小值点,故f (x )min =f (2)=1-ln2.又f (1)=12,f (e)=12e 2-2=e 2-42>12,故f (x )max =e 2-42.。
哈尔滨市第九中学2020--2021学年度.上学期期末学业阶段性评价考试高二学年数学学科(理)试卷(考试时间:120分钟满分:150分共2页第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.过点M(-4,3)和N(-2,1)的直线方程是A.x -y+3=0B.x+y+1=0C.x -y -1=0D.x+y -3=02.双曲线221169y x -=的虚半轴长是 A.3 B.4 C.6 D.83.直线x+y=0被圆22|6240x y x y +-++=截得的弦长等于A.4B.2 .C .D 4.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的数学问题--“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221,x y +≤若将军从点A(4,-3)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马"的最短总路程为A.8B.7C.6D.55.已知抛物线2:4C y x =的焦点为F,过点F 的直线与抛物线交于A,B 两点,满足|AB|=6,则线段AB 的中点的横坐标为A.2B.4C.5D.66.直线kx -y+2k+1=0与x+2y -4=0的交点在第四象限,则k 的取值范围为A.(-6,-2) 1.(,0)6B - 11.(,)26C -- 11.(,)62D -- 7.设12,F F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120,F PF ︒∠=则点P 到x 轴的距离为.A .B .C .D 8.已知点A(-2,3)在抛物线C 2:2y px =的准线上,过点A 的直线与C 在第一象限相切于点B,记C 的焦点为F,则直线BF 的斜率为1.2A2.3B3.4C4.3D 9.已知点(x,y)满足:221,,0x y x y +=≥,则x+y 的取值范围是.[A B.[-1,1] .C .D10.设双曲线221916x y -=的右顶点为A,右焦点为F,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB 的面积为32.15A 34.15B 17.5C 19.5D 11.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B,F 为其右焦点,若AF ⊥BF,设∠ABF=α,且[,]64ππα∈则该椭圆的离心率e 的取值范围是.A .1]B .C .D12.如图,,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于1.2A B.1.C.D 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分)13.圆222200x y x y ++--=与圆2225x y +=相交所得的公共弦所在直线方程为___.14.若三个点(-2,1),(-2,3),(2,-1)中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为___. 15.椭圆221123x y +=的焦点分别是12,F F 点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的___倍.16.过抛物线2:2(0)C y px p =>的焦点F 的直线l 与C 相交于A,B 两点,且A,B 两点在准线上的射影分别为M,N ,,,MFN BFN AFM MFN S S S S λμ∆∆∆==则λμ=___. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)在①圆经过C(3,4),②圆心在直线x+y -2=0上,③圆截y 轴所得弦长为8且圆心E 的坐标为整数;这三个条件中任选一个,补充在下面的问题中,进行求解.已知圆E 经过点A(-1,2),B(6,3)且___;(1)求圆E 的方程;(2)求以(2,1)为中点的弦所在的直线方程.18.(本题满分12分)已知抛物线C:22(0)y px p =>,焦点为F,准线为1,抛物线C 上一点M 的横坐标为3,且点M 到焦点的距离为4.(1)求抛物线的方程;(2)设过点P(6,0)的直线'l 与抛物线交于A,B 两点,若以AB 为直径的圆过点F,求直线'l 的方程.19.(本题满分12分)在平面直角坐标系xOy 中,直线l的参数方程为12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2acosθ(a>0),且曲线C 与直线l 有且仅有一个公共点.(1)求a;(2)设A,B 为曲线C.上的两点,且,3AOB π∠=求|OA|+|OB|的最大值.20.(本题满分12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin .x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2:4cos .C ρθ=(1)求曲线2C 的直角坐标方程;(2)若点A(1,0),且1C 和2C 的交点分别为点M,N,求11||||AM AN +的取值范围.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的焦点为12(F F 且过点1).2 (1)求椭圆C 的方程;(2)设椭圆的上顶点为B,过点(-2,-1)作直线交椭圆于M,N 两点,记直线MB,NB 的斜率分别为,,MB NB k k 试判断MB NB k k +是否为定值?若为定值,求出该定值;若不是定值,说明理由.22.(本题满分12分)已知点F 是椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 交椭圆于M,N 两点,当直线l 过C 的下顶点时,l当直线l垂直于C的长轴时,△OMN的面积为3 . 2(1)求椭圆C的标准方程;(2)当|MF|=2|FN|时,求直线l的方程;(3)若直线l上存在点P满足|PM|,|PF|,|PN|成等比数列,且点P在椭圆外,证明:点P在定直线上.。
2020-2021学年天津市和平区高二(上)期末数学试卷一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=22.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣13.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.58.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是.11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m =.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是.三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.2020-2021学年天津市和平区高二(上)期末数学试卷参考答案与试题解析一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=2【解答】解:圆心为(1,﹣1),半径为2的圆的标准方程是:(x﹣1)2+(y+1)2=4.故选:C.2.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣1【解答】解:数列{a n},满足a n+1=,当a1=时,解得a2=2,当n=2,解得,当n=3时,解得,所以数列的周期为3.故.故选:A.3.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:根据题意,双曲线的焦点在x轴上,而直线x+2y=5与x轴交点为(5,0),则c=5,进而有9+a2=25,解可得a2=16,则双曲线的方程为:,其渐近线方程为:y=±x;故选:A.4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.【解答】解:已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,将点P(2,2)代入圆(x﹣1)2+y2=5恒成立,则点P在圆上.即过点P(2,2)的直线与圆(x﹣1)2+y2=5相切的切线只有一条,令过点P(2,2)的切线的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,由此切线与ax﹣y+1=0平行,两直线的斜率相等且y轴截距不等,可得k=a且﹣2k+2≠1;由圆心到切线的距离等于圆的半径,可得圆的半径r==,k=﹣,即a=﹣;故选:C.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.【解答】解:由等差数列的性质可得:====.故选:C.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±【解答】解:由题意a2、a4是方程2x2﹣11x+8=0的两根,故有a2a4=4又{a n}为等比数列∴a2a4=a32,∴a3=±2.故选:B.7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5【解答】解:依题意可知抛物线的准线方程为y=﹣1,∴点A到准线的距离为4+1=5,根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,∴点A与抛物线焦点的距离为5,故选:D.8.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.【解答】解:根据题意,圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0),则有,联立可得:y=,即两圆公共弦所在直线的方程为y=,圆C1:x2+y2=4,其圆心为(0,0),半径r=2,若公共弦的弦长为2,则圆C1的圆心C1到公共弦的距离d==,又由a>0,则有=,解可得a=,故选:A.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.【解答】解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选:D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是(﹣2,0).【解答】解:∵抛物线方程y2=﹣8x,∴焦点在x轴,p=4,∴焦点坐标为(﹣2,0)故答案为(﹣2,0).11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m=.【解答】解:直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,由l1⊥l2,得3m+(m﹣2)=0,即4m=2,解得m=.故答案为:.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取x=1,得=(1,1,2),∴点B到平面D1EC的距离:d===.故答案为:.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=2n﹣1.【解答】解:数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),所以,,…,,所以=,所以.故答案为:2n﹣1.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是[1﹣,3].【解答】解:如图所示:曲线y=3﹣,即y﹣3=﹣,平方可得(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+,或b=1﹣.结合图象可得1﹣≤b≤3,故答案为:[1﹣,3].三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.【解答】解:(1)设等差数列{a n}的公差为d,则,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,S n==n2.(2)b n===,∴数列{b n}的前n项和为T n=+…+==.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.【解答】解:(1)证明:连接AC,交BD于点O,连接OE,∵ABCD为正方形,∴O是AC的中点,∵E是PC的中点,∴OE∥P A,∵P A⊄平面BDE,OE⊂平面BDE,∴P A∥平面BDE.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,则B(2,2,0),D(0,0,0),E(0,1,1),C(0,2,0),=(2,2,0),=(0,1,1),设平面BDE的法向量=(x,y,z),则,设x=1,则=(1,﹣1,1),平面DEC的法向量=(1,0,0),设平面BDE与平面DEC的夹角为θ,则cosθ===,∴平面BDE与平面DEC的夹角的余弦值为.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.【解答】解:(Ⅰ)由e==,且a=2,则c=1,b==,故椭圆C的方程为+=1;(Ⅱ)F1(﹣1,0),F2(1,0),设经过右焦点F2的直线l的方程为x=my+1,与椭圆方程3x2+4y2=12联立,可得(4+3m2)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,由⊥,即AF1⊥BF1,k•k=•=﹣1,即有(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=(1+m2)•(﹣)+2m•(﹣)+4=0,解得m=±,则直线l的方程为x=±y+1,即为y=±(x﹣1).18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.【解答】解:(1)数列{a n}的前n项和S n=1﹣a n①.所以当n=1时,.当n≥2时,S n﹣1=1﹣a n﹣1②,①﹣②得:a n=S n﹣S n﹣1=a n﹣1﹣a n,整理得2a n=a n﹣1,故(常数),所以数列{a n}是以为首项,为公比的等比数列;所以,首项符合通项,所以.证明:(2)设,所以①,②,①﹣②得:=,所以.。
高二数学(文科)第一学期期末试卷一、选择题(每小题5分,共60分)1.中,,则A. B. 或 C. 或 D.【答案】B【解析】试题分析:根据正弦定理,,得:,解得,所以或,故选B.考点:正弦定理2.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】先判断“x2﹣3x+2=0”是“x=l”的必要不充分条件,再根据原命题与逆否命题的真假关系得到结论.【详解】由x2﹣3x+2=0,不一定得到x=l,还可能x=2,反之,若x=l,肯定能得到x2﹣3x+2=0,所以“x2﹣3x+2=0”是“x=l”的必要不充分条件,又原命题与逆否命题等价,所以“”是“”的必要不充分条件.故选B.【点睛】本题考查了原命题与逆否命题真假关系的等价性,考查了充要条件的判定,属于基础题.3.已知等差数列满足则它的前5项的和()A. 30B. 5C. 10D. 50【答案】C【解析】【分析】利用等差数列的性质与求和公式即可得出.【详解】∵a2+a4=4,∴a1+a5=a2+a4=4,则它的前5项的和S55×2=10.故选:C.【点睛】本题考查了等差数列的性质与求和公式,考查了推理能力与计算能力,属于中档题.4.函数的单调递增区间是()A. B. C. D.【答案】D【解析】【分析】由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,结合复合函数单调性“同增异减”的原则,可得答案.【详解】由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.【点睛】本题考查的知识点是复合函数的单调性,对数函数的图象和性质,二次数函数的图象和性质,难度中档.5.若是假命题,则()A. 是真命题,是假命题B. 均为假命题C. 至少有一个是假命题D. 至少有一个是真命题【答案】C【解析】试题分析:当、都是真命题是真命题,其逆否命题为:是假命题、至少有一个是假命题,可得C正确.考点:命题真假的判断.6.椭圆的一个焦点是,那么实数的值为()A. 1B.C.D.【答案】A【解析】【分析】把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值.【详解】把椭圆方程化为标准方程得:x21,因为焦点坐标为(0,2),所以长半轴在y轴上,则c2,解得k=1.故选:A.【点睛】本题考查椭圆的标准方程及椭圆的简单性质的应用,属于基础题.7.若变量x,y满足约束条件则z=2x+y的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】作出满足约束条件的可行域如图所示.将目标函数z=2x+y化为y=-2x+z,平移直线y=-2x,经过点A时,z取得最大.由得A(1,1).∴z max=2×1+1=3.【此处有视频,请去附件查看】8.双曲线的实轴长是()A. 2B. 4C.D.【答案】B【解析】【分析】根据题意,将双曲线的方程变形可得标准方程,分析可得其a的值,由双曲线实轴的定义计算可得答案.【详解】根据题意,双曲线方程为:2x2﹣y2=8,则其标准方程为:1,其中a2,则其实轴长2a=4;故选:B.【点睛】本题考查双曲线的几何性质,注意要将方程变形为标准方程,属于基础题.9.(5分)(2011•广东)设圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切,则C的圆心轨迹为()A. 抛物线B. 双曲线C. 椭圆D. 圆【答案】A【解析】试题分析:由动圆与定圆相外切可得两圆圆心距与半径的关系,然后利用圆与直线相切可得圆心到直线的距离与半径的关系,借助等量关系可得动点满足的条件,即可的动点的轨迹.解:设C的坐标为(x,y),圆C的半径为r,圆x2+(y﹣3)2=1的圆心为A,∵圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r∴|CA|=d+1,即动点C定点A的距离等于到定直线y=﹣1的距离由抛物线的定义知:C的轨迹为抛物线.故选A点评:本题考查了圆的切线,两圆的位置关系及抛物线的定义,动点的轨迹的求法,是个基础题.【此处有视频,请去附件查看】10.给出下列四个命题:①有理数是实数;②有些平行四边形不是菱形;③∀x∈R,x2﹣2x>0;④∃x∈R,2x+1为奇数;以上命题的否定为真命题的序号依次是()A. ①④B. ②④C. ①②③④D. ③【答案】D【解析】【分析】根据含有量词的命题的否定原命题和命题的否定真假相反分别进行判断即可.【详解】①有理数是实数命题正确,则命题的否定为假命题;②有些平行四边形不是菱形,为真命题,则命题的否定是假命题;③∀x∈R,x2﹣2x>0为假命题,当x=0时,不等式不成立,则命题的否定是真命题;④∃x∈R,2x+1为奇数为真命题,则命题的否定是假命题;故满足条件的序号是③,故选:D.【点睛】本题主要考查命题的否定以及命题的真假判断.先判断原命题的真假是解决本题的关键.11.若点的坐标为,为抛物线的焦点点在抛物线上移动,为使取得最小值,点的坐标应为()A. B. C. D.【答案】B【解析】由向准线作垂线,垂足为,由抛物线的定义,再由定点向准线作垂线,垂足为,那么点在该抛物线上移动,则,当且仅当,三点共线时取得最小值此时的纵坐标为,横坐标为则点的坐标为故选点睛:本题主要考查的知识点是抛物线的简单性质,由抛物线的定义,,把转化为,当,三点共线时,取得最小值,可以求得的纵坐标为,横坐标为,从而得到点的坐标12.已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为正三角形,则该椭圆的离心率为()A. B. C. D.【答案】D【解析】在方程中,令,可得,∴.∵△ABF2为正三角形,∴,即,∴,∴,整理得,∴,解得或(舍去).选D.点睛:求椭圆离心率或其范围的方法(1)求的值,由直接求.(2)列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.二、填空题(每小题5分,共20分)13.不等式的解集是__________.【答案】【解析】【分析】先将分式不等式化为一元二次不等式,再根据一元二次不等式的解法解不等式即可.【详解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集为{x|-4<x<2}.故答案为.【点睛】本题主要考查分式不等式及一元二次不等式的解法,比较基础.14.双曲线的一个焦点到其渐近线的距离为__________.【答案】【解析】【分析】由双曲线方程,得到焦点坐标为(±3,0),渐近线为y=±x.由点到直线的距离公式进行计算,结合双曲线基本量的关系化简,即可求出焦点F到其渐近线的距离.【详解】∵双曲线方程为∴双曲线的焦点坐标为(±3,0)渐近线为y=±x,即x±y=0可得焦点F到其渐近线的距离为d.故答案为:.【点睛】本题考查了点到渐近线的距离,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.15.已知,,且,则的最小值为________.【解析】试题分析:,当且仅当时取“=”,所以的最小值为16.考点:基本不等式.16.若函数在处有极小值,则实数等于__________.【答案】1【解析】【分析】由f(x)=ax3﹣2x2+a2x,知f′(x)=3ax2﹣4x+a2,由f(x)在x=1处取得极小值,知f′(1)=3a﹣4+a2=0,由此能求出a,再根据条件检验即可.【详解】∵f(x)=ax3﹣2x2+a2x,∴f′(x)=3ax2﹣4x+a2,∵f(x)=ax3﹣2x2+a2x在x=1处取得极小值,∴f′(1)=3a﹣4+a2=0,解得a=1或a=﹣4,又当a=-4时,f′(x)=-12x2﹣4x+16=-4(x-1)(3x+4),此时f(x)在(上单增,在(1,上单减,所以x=1时取得极大值,舍去;又a=1时,f′(x)=3x2﹣4x+1=(x-1)(3x-1),此时f(x)在(上单减,在(1,上单增,符合在x=1处取得极小值,所以a=1.故答案为:1【点睛】本题考查了利用导数研究函数的极值的问题,属于基础题.解题时要认真审题,仔细解答.易错点是容易产生增根.三、解答题(第17题10分,其余各题12分,共70分)17.设锐角三角形的内角、、的对边分别为、、,.(1)求角的大小.(2)若,,求.【答案】(1);(2)本试题主要是考查了解三角形的运用。
高二数学上学期期末考试试题 文第I 卷一、选择题(本题共12小题,每小题5分,共60分。
)1.已知椭圆C:22195x y +=,点(1,1)A ,则点A 与椭圆C 的位置关系是( ). A .点A 在椭圆C 上 B .点A 在椭圆C 外 C .点A 在椭圆C 内 D .无法判断 2.不在323x y +>表示的平面区域内的点是( ) A .(0,0) B .(1,1) C .(0,2) D .(2,0) 3.不等式2230x x +-<的解集为( ) A .{}13x x -<<B .{}31x x -<<C .{}31x x x -<>或D .{}313x x -<->或4.已知x 、y 满足约束条件503x y x y x -+≥+≥≤⎧⎪⎨⎪⎩,则24z x y =+的最小值是( )A .-10B .5C .10D .-65.设x ∈R ,则“05x <<”是“()211x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.命题:,||0R p x x x ∀∈+≥,则p ⌝( ) A .:,||0R p x x x ⌝∃∈+> B .:,||0R p x x x ⌝∃∈+≥ C .:,||0R p x x x ⌝∃∈+<D .:,||0R p x x x ⌝∃∈+≤7.已知椭圆22110036x y +=上的一点P 到左焦点1F 的距离为6,则点P 到右焦点2F 的距离为( ) A .4B .6C .7D .148.椭圆的焦距为8,且椭圆的长轴长为10,则该椭圆的标准方程是( )A .221259x y +=B .221259x y +=或221259y x +=C .22110036x y +=D .22110036x y +=或22110036y x +=9.若实数,x y 满足421x y x y x +≤⎧⎪≤⎨⎪≥⎩,则11y x ++的最小值是( )A .34B .12C .711D .3210.不等式102xx -≥+的解集为( ). A .[]2,1- B .(]2,1-C .[)2,1-D .(][),21,-∞-+∞11.如图所示,1F ,2F 分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,则椭圆的离心率为( ) A .53B .23C .13 D .4512.若0ab >,则下列不等式不一定能成立的是( ). A .222a b ab +≥ B .222a b ab +≥- C .2b aa b +≥ D .2a bab +≥ 第II 卷高二年级 数学(文科) 座位号_____二、填空题(本题共4小题,每小题5分,共20分。
)13.5315,1=3553x yx y y x Z x yx y+≤⎧⎪≤++⎨⎪-≤⎩已知满足约束条件,则的最小值为____ ____.14.已知椭圆mx2+5y2=5m(m>0)的离心率为105e=,求m=_____.15. 已知1a>,当a=________时,代数式21aa+-有最小值.16.设32x<<,则函数4(32)y x x=-的最大值为 .三、解答题(本题共6小题,17小题10分,18-22每小题12分,共70分。
)17.已知椭圆C:4x2+9y2=36.求的长轴长,焦点坐标和离心率.18.某企业生产A、B两种产品,生产每1t产品所需的劳动力和煤、电消耗如下表:产品品种劳动力(个)煤()t电()kW h⋅A394B1045已知生产1tA产品的利润是7万元,生产1tB产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t,并且供电局只能供电200kW h⋅,则企业生产A、B两种产品各多少吨,才能获得最大利润?19.某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.(Ⅰ)求底面积,并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?20.命题p 关于x 的不等式2240x ax ++>对一切xR 恒成立命题q 函数()(32)x f x a =-是增函数,若pq 为真,p q 为假,求实数a 的取值范围21.已知椭圆C 的两焦点分别为()()12F F -、,长轴长为6。
(1)求椭圆C 的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。
22.设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足31x -<. (1)若1m =,且p q ∧为真,求实数x 的取值范围;(2)若0m >,且p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.答案高二年级 数学(文科)一、选择题(本题共12小题,每小题5分,共60分。
) CABDB CDBAC AD二、填空题(本题共4小题,每小题5分,共20分。
) 13. -11 14. 3或25315. 1+2 16. 92三、解答题(本题共6小题,17小题10分,18-22每小题12分,共70分。
) 17. 椭圆的长轴长6,焦点坐标(-5,0),(5,0),离心率53【解析】椭圆C :224936x y +=的标准方程为:22194x y +=,所以223,2,945a b c a b ===-=-= ,所以椭圆的长轴长26a =,焦点坐标(5,0),(5,0)-,离心率53c e a ==. 18.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表: 产品品种劳动力(个)煤()t电()kW h ⋅A3 94B10 45已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润? 【解析】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,目标函数为712z x y =+.则变量x、y所满足的约束条件为31030094360452000,0x yx yx yx y+≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,作出可行域如下图所示:作出一组平行直线712z x y=+,当该直线经过点()20,24M时,直线712z x y=+在x轴上的截距最大,此时z取最大值,即max7201224428z=⨯+⨯=(万元).答:当生产A 种产品20t,B种产品24t时,企业获得最大利润,且最大利润为428万元. 19.某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.(Ⅰ)求底面积,并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?【解析】(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有 (平方米).池底长方形宽为米,则S2=8x+8×=8(x+).(Ⅱ)设总造价为y,则y=120×1 600+100×8≥192000+64000=256000.当且仅当x=,即x=40时取等号.所以x=40时,总造价最低为256000元.答:当池底设计为边长40米的正方形时,总造价最低,其值为256000元.20.命题p 关于x 的不等式2240x ax ++>对一切x R 恒成立命题q 函数()(32)x f x a =-是增函数,若pq 为真,p q 为假,求实数a 的取值范围【解析】①若命题p 为真,则:△=4a 2﹣16<0,∴﹣2<a <2; ②若命题q 为真,则:3﹣2a >1,∴a <1;∴p ∨q 为真,p ∧q 为假,则p 真q 假,或p 假q 真; ∴221a a -⎧⎨≥⎩<<,或221a a a ≤-≥⎧⎨⎩或<;∴1≤a <2,或a ≤﹣2;∴实数a 的取值范围为(][),21,2a ∈-∞-⋃.21.已知椭圆C 的两焦点分别为()()1222,022,0F F -、,长轴长为6。
(1)求椭圆C 的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。
【解析】解:⑴由()()1222,022,0F F -、,长轴长为6 得:22,3c a ==所以1b =∴椭圆方程为22191x y +=⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22191x y +=①,∵直线AB 的方程为2y x =+②把②代入①得化简并整理得21036270x x ++= 所以12121827,510x x x x +=-= 又222182763(11)(4)510AB =+-⨯= 22.设命题p :实数x 满足22430x mx m -+<;命题q :实数x 满足31x -<. (1)若1m =,且p q ∧为真,求实数x 的取值范围;(2)若0m >,且p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围. 【解析】(1)由22430x mx m -+<得; ()(3)0x m x m --<, 当1m =时,13x <<,即P 为真时,(1,3)x ∈.由31x -<得131x -<-<,即24x <<,即q 为真时,(2,4)x ∈. 因为p q ∧为真,则p 真q 真,所以(2,3)x ∈ ;(2)由22430x mx m -+<得;()(3)0x m x m --<,又0m >, 所以m <x <3m由31x -<得131x -<-<,即24x <<; 设{A x x m =≤或}3x m ≥,{2B x x =≤或}4x ≥ 若p q ⌝⌝是的充分不必要条件则A 是B 的真子集,所以0234m m <≤⎧⎨≥⎩解得∴423m ≤≤故有4,23m ⎡⎤∈⎢⎥⎣⎦.1、在最软入的时候,你会想起谁。
20.8.68.6.202013:3413:34:10Aug-2013:342、人心是不待风吹儿自落得花。
二〇二〇年八月六日2020年8月6日星期四3、有勇气承担命运这才是英雄好汉。
13:348.6.202013:348.6.202013:3413:34:108.6.202013:348.6.20204、与肝胆人共事,无字句处读书。