分析比较6种最常用恒流源电路
- 格式:pdf
- 大小:232.84 KB
- 文档页数:6
压控恒流源电路设计
压控恒流源电路是一种常用的电子电路,用于实现对负载的恒定电流控制。
它可以根据负载的电流需求,自动调整输出电压,保持电流不变。
设计压控恒流源电路的关键是利用电压和电流之间的关系来实现控制。
以下是一种常见的压控恒流源电路设计:
1.基本电路结构:
该电路由一个可变电阻和一个电流传感器组成。
可变电阻用于调整电流大小,电流传感器用于检测实际电流值。
2.参考电压电路:
在该电路中,使用一个稳定的参考电压源,例如锗二极管或稳压源,来提供一个固定的参考电压。
3.比较放大器电路:
将负载电流与参考电流进行比较,并通过比较放大器将比较结果放大。
比较放大器可以是运算放大器或比较器。
4.反馈回路:
将比较放大器的输出反馈给可变电阻,以调整电流大小。
反馈回路可以使用反馈电阻网络来实现。
5.电流传感器:
为了测量负载电流,可以使用电阻、霍尔效应传感器或电流互感器等。
整个电路的工作原理是:电流传感器检测负载电流,并将其与参考电流进行比较。
比较放大器输出的误差信号通过反馈回路调整可变电阻的阻值,从而自动调整电流大小,以保持负载电流恒定。
需要注意的是,设计压控恒流源电路时,要考虑负载的额定电流范围和电压范围,选择合适的元器件,确保电路的稳定性和可靠性。
此外,还需要进行合适的保护措施,如过流保护、过压保护等,以确保电路和负载的安全运行。
恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:类型1:特征:使用运放,高精度输出电流:Iout=Vref/Rs类型2:特征:使用并联稳压器,简单且高精度输出电流:Iout=Vref/Rs检测电压:根据Vref不同(1.25V或2.5V)类型3:特征:使用晶体管,简单,低精度输出电流:Iout=Vbe/Rs检测电压:约0.6V类型4:特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs检测电压:约0.1V~0.6V类型5:特征:使用JEFT,超低噪声输出电流:由JEFT决定检测电压:与JEFT有关其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,图5注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管图6Is=Iout-I G类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。
恒流方案大全恒流源是电路中普遍利用的一个组件,那个地址我整理一下比较常见的恒流源的结构和特点。
恒流源分为流出(Current Source)和流入(Current Sink)两种形式。
最简单的恒流源,确实是用一只恒流二极管。
事实上,恒流二极管的应用是比较少的,除因为恒流二极管的恒流特性并非是超级好之外,电流规格比较少,价钱比较贵也是重要缘故。
最经常使用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳固的be电压作为基准,电流数值为:I = Vbe/R1。
这种恒流源优势是简单易行,而且电流的数值能够自由操纵,也没有利用特殊的元件,有利于降低产品的本钱。
缺点是不同型号的管子,其be电压不是一个固定值,即便是相同型号,也有必然的个体不同。
同时不同的工作电流下,那个电压也会有必然的波动。
因此不适合周密的恒流需求。
为了能够精准输出电流,通常利用一个运放作为反馈,同时利用处效应管幸免三极管的be 电流致使的误差。
典型的运放恒流源如图(2)所示,若是电流不需要专门精准,其中的场效应管也能够用三极管代替。
电流计算公式为:I = Vin/R1那个电路能够以为是恒流源的标准电路,除足够的精度和可调性之外,利用的元件也都是很普遍的,易于搭建和调试。
只只是其中的Vin还需要用户额外提供。
从以上两个电路能够看出,恒流源有个定式(寒,“定式”仿佛是围棋术语XD),确实是利用一个电压基准,在电阻上形成固定电流。
有了那个定式,恒流源的搭建就能够够扩展到所有能够提供那个“电压基准”的器件上。
最简单的电压基准,确实是稳压二极管,利用稳压二极管和一只三极管,能够搭建一个更简易的恒流源。
如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1TL431是另外一个经常使用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管能够取得更好的精度。
TL431组成流出源的电路,临时我还没想到:)TL431的其他信息请参考《》和《》电流计算公式为:I = R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。
常用的恒流电路
恒流电路是一种控制电流大小不受负载变化影响的电路。
在实际电路中,常用的恒流电路有电流源电路和晶体管恒流源电路。
一、电流源电路
1. 晶体管基本电流源电路
晶体管基本电流源电路是一种简单的恒流电路,由一个固定电阻和晶体管组成。
其原理是通过晶体管的基极和发射极之间的电压来控制电流。
当输入信号的电压改变时,电流也会相应地改变。
2. 晶体管双向恒流源电路
晶体管双向恒流源电路是一种具有双向输出的恒流电路,其原理是使用两个晶体管和一个电阻网络实现。
当输入信号的电压改变时,输出电流也会相应地改变。
二、晶体管恒流源电路
晶体管恒流源电路是一种高精度、高稳定性的恒流电路,其原理是通
过负反馈控制器将输出电流保持在恒定的值。
该电路通常由一个晶体管、一个稳压电路、一个电阻和一个电容组成。
总之,恒流电路在实际应用中有着广泛的用途,如LED驱动、电机控制、高精度电源等。
通过采用适当的电路设计和元件选择,可以实现高效、稳定的恒流输出,从而为实际应用提供可靠的支持。
单片机恒流源电路单片机恒流源电路是一种常见的电路设计,用于控制电流的稳定输出。
它通常由单片机、电流控制芯片和其他辅助元件组成。
我们需要明确什么是恒流源。
恒流源是一种能够以恒定电流输出的电路,它可以根据需要提供稳定的电流给负载。
在很多应用中,需要对负载施加恒定的电流,例如LED驱动、电化学实验等。
而单片机恒流源电路则是通过单片机来控制电流的输出,实现对负载的精确控制。
在单片机恒流源电路中,单片机起到了控制电流的关键作用。
单片机通过与电流控制芯片的配合,可以根据设定的参数来调整电流的大小。
单片机可以通过编程来控制电流源的输出,实现对电流的精确调节。
同时,单片机还可以监测电流的大小,并根据需要进行反馈调整,保证输出电流的稳定性。
除了单片机和电流控制芯片,单片机恒流源电路还需要其他辅助元件来完成电路的设计。
例如,电流采样电阻用于监测电流的大小,电流采样电阻的阻值决定了电流的测量精度;功率放大器用于放大单片机输出的电流信号,以驱动负载;电源电路用于为电路提供稳定的电源等。
在设计单片机恒流源电路时,需要注意以下几点。
首先,选择合适的电流控制芯片和单片机,确保它们的性能和功能满足设计要求。
其次,根据负载的特性和需求来确定电流的大小范围,并选择合适的电流采样电阻。
此外,还需要考虑到电路的稳定性和可靠性,例如添加滤波电容、稳压电路等。
最后,通过编程来实现对电流的控制和监测,确保输出电流的精确性和稳定性。
单片机恒流源电路是一种常见的电路设计,通过单片机的控制和调节,实现对电流的稳定输出。
它在很多应用中都有广泛的应用,例如LED照明、电化学实验等。
设计单片机恒流源电路需要考虑多个因素,包括电流控制芯片的选择、电流采样电阻的确定以及电路的稳定性等。
通过合理的设计和编程,可以实现对电流的精确控制,满足不同应用的需求。
恒流源差分放大电路1. 介绍恒流源差分放大电路是一种常见的电路设计,用于实现在输入信号变化时输出恒定电流的功能。
该电路由差分放大器和恒流源组成,其结构简单、功耗低、带宽大等特点使其在模拟电路设计中得到广泛应用。
本文将详细探讨恒流源差分放大电路的原理、设计方法以及典型应用场景。
2. 原理恒流源差分放大电路的原理基于差分放大器的工作原理和恒流源的特性。
差分放大器是一种基本的放大电路,具有良好的共模抑制能力和增益稳定性。
恒流源则能够提供稳定的电流输出,使得电路在输入信号变化时输出电流保持不变。
恒流源通常由两个P型或N型晶体管和电流源电路组成,其中晶体管的栅极作为输入端,漏极作为输出端,电流源负责提供稳定的电流。
在差分放大器中,输入信号经过差动放大器的放大作用后,分别与恒流源连接,形成两个输出电流。
这两个输出电流的差值正比于输入信号的差值,而与输入信号的绝对值无关,从而实现了恒定的输出电流。
3. 设计方法恒流源差分放大电路的设计需要考虑多个因素,包括增益、共模抑制比、带宽、电源电压等。
下面将介绍一种常用的设计方法。
3.1 选择差分放大器选择合适的差分放大器是设计恒流源差分放大电路的第一步。
常用的差分放大器包括二极管差分放大器和晶体管差分放大器。
二极管差分放大器具有简单的结构和低功耗的特点,适用于低频电路设计;晶体管差分放大器具有高增益和大带宽的特点,适用于高频电路设计。
3.2 设计恒流源恒流源的设计是恒流源差分放大电路设计的关键。
常用的恒流源包括电流镜、活性负载和电流镜负反馈等。
选择恒流源时需要考虑电流的稳定性、功耗以及制造工艺等因素。
3.3 考虑偏置电路偏置电路用于提供稳定的工作点,使得差分放大器和恒流源能够正常工作。
常用的偏置电路包括电流源、电阻分压、电容耦合等。
选择合适的偏置电路能够提高电路的工作性能。
3.4 调整电路参数根据设计需求和性能指标,对电路参数进行调整。
常用的参数包括电阻、电容、晶体管尺寸等。
led驱动典型电路
典型的LED驱动电路是使用恒流源或恒压源控制LED的电流和电压的,以下是一些常见的LED驱动电路:
1. 恒流源电路:这是最常见的LED驱动电路,通过控制电流源的输出电流来控制LED的亮度。
恒流源电路通常包括一个恒流源和一个电流限制电阻。
当LED的工作电压在一定范围内变化时,恒流源能够自动调整输出电流以保持恒定的亮度。
2. 恒压源电路:这种电路以恒定的电压驱动LED。
通常使用电流限制电阻来限制电流,以保持LED的亮度稳定。
恒压源电路适用于工作电流相对较高的LED。
3. PWM(脉宽调制)驱动电路:PWM驱动电路通过调制LED的驱动电流的占空比来控制亮度。
这种电路通常使用一个PWM控制器和一个功率放大器。
PWM信号的周期和占空比可根据需要调整,从而实现LED的亮度调节。
4. 高效驱动电路:这种电路通过使用转换器或升压技术来提高能效。
常见的高效驱动电路包括开关电源、升压转换器和Boost/Buck转换器等。
这些是一些常见的LED驱动电路,具体的电路设计会根据应用需求和LED参数进行调整。
分析比较6种最常用恒流源电路
恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:
类型1:
特征:使用运放,高精度
输出电流:Iout=Vref/Rs
类型2:
特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs
检测电压:根据Vref不同(1.25V或2.5V)
类型3:
特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs
检测电压:约0.6V
类型4:
特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs
检测电压:约0.1V~0.6V
类型5:
特征:使用JEFT,超低噪声
输出电流:由JEFT决定
检测电压:与JEFT有关
其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,
图5
注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差
若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不
允许时,可采用图6所示那样采用FET管
图6
Is=Iout-I G
类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄
类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度
类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽
类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”
以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的
半导体元件,则可以变成电流吐出型电路。