七年级数学(上册)第二单元测试题试题
- 格式:doc
- 大小:178.00 KB
- 文档页数:3
人教版七年级上册数学第二章测试卷一、选择题(每题3分,共30分)1. 单项式-frac{2xy^2}{5}的系数是()A. -2B. -(2)/(5)C. (2)/(5)D. 22. 下列式子中,是整式的是()A. (1)/(x)B. (1)/(x + 1)C. x + yD. √(x)3. 多项式3x^2 - 2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2, - 2x, - 1C. -3x^2,2x,1D. -3x^2, - 2x, - 14. 单项式3x^my^3与-2x^2y^n是同类项,则m + n=()A. 5B. 4C. 3D. 25. 化简a + 2b - b的结果是()A. a - bB. a + bC. a + 3bD. a + 26. 若A = x^2-2x + 1,B = 3x - 2,则A - B=()A. x^2-5x + 3B. x^2+x - 1C. x^2-5x - 1D. x^2-x + 37. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 38. 当x = 1时,代数式ax^3+bx + 1的值为3,则当x=-1时,代数式ax^3+bx + 1的值为()A. -1B. 1C. 3D. -39. 若M = 3x^2-5x + 2,N = 3x^2-4x + 2,则M与N的大小关系是()A. M>NB. M = NC. MD. 无法确定。
10. 某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()A. a元B. 0.99a元C. 1.21a元D. 0.81a元。
二、填空题(每题3分,共18分)11. 单项式frac{3π x^2y}{4}的次数是______。
12. 多项式2x^3-x^2y^2-3xy + x - 1是______次______项式。
人教版数学七年级上册第二章测试题含答案2.1整式一.选择题1.下列说法正确的是()A.是单项式B.x2+2x﹣1的常数项为1C.的系数是2D.xy的次数是2次2.在下面四个式子中,为单项式的是()A.y=x2B.C.﹣D.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是()A.0,0B.0,﹣1C.2,0D.2,﹣14.下列说法中,正确的为()A.单项式﹣的系数是﹣2,次数是3B.单项式a的系数是0,次数是1C.是二次单项式D.单项式﹣的系数是﹣,次数是35.下列代数式:0,﹣π,3x﹣2,a,,,,.多项式有()个.A.4B.3C.2D.16.多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是()A.5,﹣1B.5,1C.10,﹣1D.4,﹣17.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.的常数项是D.﹣x2y+xy﹣7是5次三项式8.下列说法正确的是()A.单项式的系数是B.m的系数和次数都是1C.m+n+1是一次单项式D.多项式2m3+3m2﹣4的项数是49.下列式子:x2+2,+4,,,5x,0中,整式的个数是()A.3B.4C.5D.610.下列说法正确的是()①的相反数是﹣3;②a3b的次数是3;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣.A.1个B.2个C.3个D.4个二.填空题11.多项式2x+3x2y﹣4的次数是,次数最高的项是,常数项是.12.若x2y3﹣πx4y n+xy2是关于x,y的六次多项式,则正整数n的值为.13.同时符合下列条件:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式.14.已知(b﹣3)x2y|b|+(a+2)是关于x,y的五次单项式,a2﹣3ab+b2的值为.15.把多项式2x3y﹣4y2x+5x2﹣1重新排列:则按x降幂排列:.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.已知多项式A=ax4+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.参考答案与试题解析一.选择题1.【解答】解:A、是多项式,故此选项错误;B、x2+2x﹣1的常数项为﹣1,故此选项错误;C、的系数是,故此选项错误;D、xy的次数是2次,正确.故选:D.2.【解答】解:A.y=x2是y关于x的函数,不是单项式;B.是数与字母的商,不是数与字母的积,不是单项式;C.﹣是单项式;D.(x﹣y)2=x2﹣2xy+y2,是多项式,不是单项式;故选:C.3.【解答】解:由题意得:a﹣2=0,b+1≠0,解得:a=2,b≠﹣1,故选:C.4.【解答】解:A、单项式﹣的系数是﹣,次数是3,故原题说法错误;B、单项式a的系数是1,次数是1,故原题说法错误;C、是二次多项式,故原题说法错误;D、单项式﹣的系数是﹣,次数是3,故原题说法正确;故选:D.5.【解答】解:在代数式:0,﹣π,3x﹣2,a,,,,中,多项式有3x﹣2,,共2个;故选:C.6.【解答】解:多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是5,﹣1.故选:A.7.【解答】解:A、﹣的系数是﹣;B、32x3y的次数是4;C、﹣的常数项是﹣;D、﹣x2y+xy﹣7是三次三项式;故选:C.8.【解答】解:A、单项式﹣的系数是﹣,原说法错误,故此选项不符合题意;B、单m的系数和次数都是1,原说法正确,故此选项符合题意;C、m+n+1是一次多项式,原说法错误,故此选项不符合题意;D、多项式2m3+3m2﹣4的项数是3,原说法错误,故此选项不符合题意.故选:B.9.【解答】解:在x2+2,+4,,,5x,0中,整式有x2+2,,5x,0,共有4个.故选:B.10.【解答】解:①的相反数是﹣;②a3b的次数是4;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣,其中正确的③④,共2个;故选:B.二.填空题(共5小题)11.【解答】解:多项式2x+3x2y﹣4的次数是:3,次数最高的项是:3x2y,常数项是:﹣4.故答案为:3,3x2y,﹣4.12.【解答】解:∵x2y3﹣πx4y n+xy2是关于x,y的六次多项式,又∵n是正整数,∴4+n=6,∴n=2;故答案为:2.13.【解答】解:满足以上条件的一个整式为2a2b2﹣,故答案为:2a2b2﹣(答案不唯一).14.【解答】解:∵(b﹣3)x2y|b|+(a+2)是关于x,y的五次单项式,∴|b|=3且b﹣3≠0,a+2=0,解得a=﹣2,b=﹣3,∴a2﹣3ab+b2=(﹣2)2﹣3×(﹣2)×(﹣3)+(﹣3)2=4﹣18+9=﹣5,故答案为:﹣5.15.【解答】解:多项式2x3y﹣4y2x+5x2﹣1的各项为2x3y,﹣4y2x,5x2,﹣1,按x降幂排列,得2x3y+5x2﹣4y2x﹣1;故答案为:2x3y+5x2﹣4y2x﹣1.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:(1)∵多项式A=ax4+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴;(2)b2﹣3b+4b﹣5=,把b=4代入得:==8+4﹣5=7.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=12.2 整式的加减一.选择题1.下列计算正确的是()A.5a﹣4a=1B.3x+4x=7x2C.4x2y+yx2=5x2y D.a+2b=3ab2.若单项式a m﹣1b2与a2b n的和仍是单项式,则2m﹣n的值是()A.3B.4C.6D.83.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x34.下列等式一定成立的有()①﹣a+b=﹣(a﹣b),②﹣a+b=﹣(b+a),③2﹣3x=﹣(3x﹣2),④30﹣x=5(6﹣x).A.1个B.2个C.3个D.4个5.下列去括号的结果中,正确的是()A.﹣m+(﹣n2+3mn)=﹣m+n2+3mnB.4mn+4n﹣(m2﹣2mn)=4mn+4n﹣m2+2mnC.﹣(a﹣c)+(b+d)=﹣a+b﹣c+dD.(﹣3b+)﹣(﹣5a)=5a﹣3b﹣6.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.17.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式8.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a9.若与a m b3是同类项,则m+n的值为()A.1B.2C.3D.无法确定10.已知6b﹣a=﹣5,则(a+2b)﹣2(a﹣2b)=()A.5B.﹣5C.﹣10D.10二.填空题11.请写出﹣5x5y3的一个同类项.12.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.15.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.三.解答题16.计算(1)(﹣2)2×5﹣(﹣2)3÷4;(2)(6m2n﹣4m)+(2m2n﹣4m+1).17.已知﹣x m﹣2n y m+n与﹣3x5y6的和是单项式,求(m﹣2n)2﹣5(m+n)﹣2(m﹣2n)2+(m+n)的值.18.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:A、原式=a,不符合题意;B、原式=7x,不符合题意;C、原式=5x2y,符合题意;D、原式不能合并,不符合题意.故选:C.2.解:∵单项式a m﹣1b2与a2b n的和仍是单项式,∴m﹣1=2,n=2,解得:m=3,n=2,∴2m﹣n=2×3﹣2=4,故选:B.3.解:x3+x3=2x3.故选:D.4.解:①﹣a+b=﹣(a﹣b),正确;②﹣a+b=﹣(﹣b+a),故②错误;③2﹣3x=﹣(3x﹣2),正确;④30﹣x=5(6﹣x),故④错误;所以正确的有①③共2个.故选:B.5.解:A、原式=﹣m﹣n2+3mn=﹣m﹣n2+3mn,不符合题意;B、原式=4mn+4n﹣m2+2mn,符合题意;C、原式=﹣a+c+b+d,不符合题意;D、原式=﹣3b++5a,不符合题意,故选:B.6.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.7.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.8.解:A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.9.解:∵与a m b3是同类项,∴m=1,n+1=3,∴m=1,n=2,∴m+n=3,故选:C.10.解:∵6b﹣a=﹣5,则(a+2b)﹣2(a﹣2b)=a+2b﹣2a+4b=﹣a+6b=﹣5;故选:B.11.解:答案不唯一,如3x5y3.故答案为:3x5y3(答案不唯一).12.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.13.解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.15.解:mx3﹣3nxy2﹣(2x3﹣xy2)+xy=(m﹣2)x3+(1﹣3n)xy2+xy,∵关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,∴m﹣2=0,1﹣3n=0,解得m=2,n=,∴m﹣6n=2﹣=2﹣2=0.故答案为:0.16.解:(1)原式=4×5﹣(﹣8)÷4=20+2=22;(2)原式=6m2n﹣4m+2m2n﹣4m+1=8m2n﹣8m+1.17.解:原式=(1﹣2)(m﹣2n)2+(1﹣5)(m+n)=﹣(m﹣2n)2﹣4(m+n),∵﹣x m﹣2n y m+n与﹣3x5y6是同类项,∴m﹣2n=5,m+n=6,∴﹣(m﹣2n)2﹣4(m+n)=﹣52﹣4×6=﹣25﹣24=﹣49.18.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。
人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。
七年级上册数学第二单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 6/125. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘,其积一定是合数。
()2. 三角形的内角和等于180度。
()3. 任何偶数乘以偶数都是偶数。
()4. 分子和分母相同的分数是最简分数。
()5. 所有平行四边形的对角线都相等。
()三、填空题(每题1分,共5分)1. 17和______是互质数。
2. 三角形的内角和等于______度。
3. 5.6是______小数。
4. 分子和分母相同的分数等于______。
5. 平行四边形的对边______且______。
四、简答题(每题2分,共10分)1. 请写出5个质数。
2. 请写出5个偶数。
3. 请写出5个分数。
4. 请写出5个三角形。
5. 请写出5个平行四边形。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个三角形的底是6厘米,高是4厘米,求这个三角形的面积。
3. 一个平行四边形的底是8厘米,高是5厘米,求这个平行四边形的面积。
4. 一个圆的半径是10厘米,求这个圆的周长。
5. 一个圆柱的底面半径是5厘米,高是10厘米,求这个圆柱的体积。
六、分析题(每题5分,共10分)1. 请分析两个质数相乘,其积为什么一定是合数。
2. 请分析三角形的内角和为什么等于180度。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个正方形。
人教版七年级数学上册第二章单元测试题(含答案)一、单选题1.下列各组单项式中,属于同类项的是( )A .2x y 与22yxB .2ab 与2a b -C .4x -与4y -D .3ab 与3a b2.下列说法正确的是( )A .单项式2xy-的系数是-2 B .单项式23x y -与4x 是同类项 C .单项式2x yz -的次数是4D .多项式3221x x --是三次三项式3.下列各式中,正确的是( )A .325a a a +=B .235a b ab +=C .321ab ab -=D .22223a b a b a b -=-4.多项式245634a a a ---的最高次项为( )A .-4B .4C .44aD .44a -5.一台整式转化器原理如图,开始时输入关于x 的整式M ,当21M x =+时,第一次输出41x +,继续下去,则第3次输出的结果是( )A .161x +B .141x +C .121x +D .81x +6.已知单项式13a b x y -与436x y 是同类项,则代数式a+b 的值为( )A .5B .6C .7D .87.下列说法中正确的个数是( )⑴a 和0都是单项式.⑵多项式2223721a b a b ab -+-+的次数是3. ⑶单项式22π3a b -的系数为23-.⑷222x xy y +-可读作2x 、2xy 、2y -的和. A .1个B .2个C .3个D .4个8.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用 1a , 2a , 3a 和 1b , 2b ,3b 表示,且 123a a a << , 123b b b >> ,设 112233m a b a b a b =-+-+- ,则 m 的可能值为( ). A .3B .39或C .9D .59或9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .210.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8二、填空题11.将多项式2233235x y xy x y -++-按字母y 降幂排列是 . 12.多项式2365a a --中的常数项是 .13.若42m a b -与325n a b +是同类项,则m n -+的值是 . 14.若单项式12m xy -与32n x y -的差是单项式,则m n -的值是 .15.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 步,落脚点表示的数是 .(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(4)若数轴上有个动点表示的数是x ,则|x+4|+|x+2|+|x-3|的最小值是 .16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x ,宽为y ,不重叠地放在一个底面为长方形(宽为a )的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是 (用只含b 的代数式表示).三、解答题17.先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18.已知 22a b -=- ,求代数式 ()()22324232ab a b ab a b -+--+ 的值.19.先化简,再求值:()42424443a ab a ab a ---+,其中3a =-,2b =.20.已知有理数a 、b 、c 在数轴上对应的点如下图所示,化简:|||2|||b a a c c b --+-+21.设 ()()3254326356107133212ax x x x b x x x x x -+++=+-++- ,求a 与b 的值22.已知A=a 2-2ab+b 2,B=-a 2-3ab-b 2,求:2A-3B 。
七年级数学上册第二章单元测试题及答案一、填空题:1、|-222|=222,-(-222)=222,-1/(-2)=1/22、+1.2米表示水位上升1.2米3、距离为|-3.5-4.5|=84、a=-b+45、p点向左移动3个单位后为-7,再向右移动1个单位长度为-6,所以p点表示的数为-66、最大的负整数为-1,最小的正整数为1,它们的和为7、-1(2003+2004)=-20078、|x||y|=xy9、a的取值范围为a≤-1/210、a=±,b=±二、选择题:1、B。
2、C。
3、D。
4、C。
5、D。
6、A。
7、A。
8、D。
9、C。
10、D三、计算题:1、(-16)+(-6)+(-16)+8=-302、(-5.3)+(-3.2)-(-2.5)-4.8=-1.23、(-8)×(-25)×(-0.02)=44、|-1|÷|-10|2=1/205、(-1)÷(-10)=1/10四则运算题目:1、(-36+1557-)/(-3+1/2)2、(-3)*(-2)/(6+8-4/3)3、-2/(-4)-33/74、100/(-2)-(-2)/(-8/3)解答:1、(-36+1557-)/(-3+1/2) = (-.5)/(-5/2) = .62、(-3)*(-2)/(6+8-4/3) = 6/433、-2/(-4)-33/7 = 25/284、100/(-2)-(-2)/(-8/3) = -50-3/2 = -101/2改写后的解答:1、计算(-36+1557-)/(-3+1/2)的值。
首先将分母化为通分数,即(-3+1/2) = (-6/2+1/2) = -5/2,然后进行除法运算,得到(-36+1557-)/(-5/2) = (-.5)/(-5/2) = .6.2、计算(-3)*(-2)/(6+8-4/3)的值。
先将加减法运算进行化简,即6+8-4/3 = 18/3+24/3-4/3 = 38/3,然后进行乘除法运算,得到(-3)*(-2)/(38/3) = 6/43.3、计算-2/(-4)-33/7的值。
人教版七年级数学上册第二单元测试卷(三套)整式的加减单元测试卷一.选择题(每小题3分,共24分)1. 单项式233xy z π-的系数和次数分别是( )A .-3,5B .-1,6C .-3π,6D .-3,7 2.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有()A .3个B .4个C .5个D .6个 3.下面计算正确的是( ) A .2233x x -= B .235325a a a += C .33x x+=D .10.2504ab ab -+= 4.多项式2112xx ---的各项分别是( )A .21,,12x x - B .21,,12x x --- C .21,,12x xD .21,,12x x -- 5.下列去括号正确的是( )A .()5252+-=--x xB .()222421+-=+-x x C .()n m n m +=-323231 D . x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( ) A .4和4x B .32323x y y x -和 C .c ab ab 221002和D .m 和2m 7.如果51=-n m ,那么-3()m n -的值是 ( ) A .-53 B .35 C .53 D .151 8.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9 二.填空题(每小题3分,共18分) 9.任写两个与b a 221-是同类项的单项式: ; . 10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _.11.多项式yx 23-与多项式yx 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元.13.已知单项式32b a m与-3214-n b a 的和是单项式,那么m = ,n = . 14.观察下列算式:;1010122=+=-3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分)(1)b a b a b a 2222134+- (2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分)(1)()()abb a ba 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a ab a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.19.(7分)某地区的手机收费有两种方式,用户可任选其一:A .月租费 20元,0.25元/分;B .月租费 25元,0.20元/分.(1)某用户某月打手机x 小时,请你写出两种方式下该用户应交付的费用;(2)若某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算?20.(9分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留).人教版七年级上数学第二单元测试题 一 选择题(3×10)1. 下列各组量中,互为相反意义的量是( )A 、收入200元与支出20元B 、上升10米与下降7米C 、超过0.05毫米与不足0.03毫米D 、增大2升与减少2升2.为迎接即将开幕的广州亚运会,亚组委共投入了2198000000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元B 6102198⨯元C 910198.2⨯元D 1010198.2⨯元 3. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分 4.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数 5.若b<0,则a+b,a,a-b 的大小关系为( ) A 、a+b>a>a-bB 、a-b>a>a+bC 、a>a-b>a+bD 、a-b>a+b>a6.如果一个数的平方等于它的倒数,那么这个数一定是( )A 、0B 、1C 、-1D 、1或-17.已知b a m225-和n b a -347是同类项,则2m - n 的值是( ) A 、6 B 、4 C 、3 D 、28.当2=x 时, 整式13++qx px 的值等于2002,那么当2-=x 时,整式13++qx px 的值为( )A 、2001B 、-2001C 、2000D 、-2000 9.已知有理数x 的近似值是5.4,则x 的取值范围是( )A. 5.35<x<5.44B.5.35<x ≤5.44C.5.35≤x<5.45D.5.35≤x ≤5.45 10.x 2 +ax-2y+7- (bx 2 -2x+9y-1)的值与x 的取值无关,则a+b 的值为( )A.-1;B.1;C.-2D.2 二 填空题(4×10)1、-14的倒数是____,-3的相反数是_____,绝对值大于2而小于4的整数有 ,2、某地一周内每天最高与最低气温如下表,则温差最大的一天是星期_______.3、20082008)5.0()2(-⨯-= ,4、已知:++2)2(a │5-b │=0, 则=-b a 5、若x P +4x 3-qx 2-2x +5是关于x 的五次四项式,则q -p= 。
第二单元有理数的运算七年级上册数学人教版(2024)同步练习【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是134-,则这个数是()A.413B.413-C.134D.134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.80.1110⨯ B.101.110⨯ C.91.110⨯ D.81110⨯3.计算(32)4(8)-÷⨯-结果是()A.1 B.1- C.64D.64-4.下列各式中结果是负数的为()A.()5-- B.()25- C.25- D.5-5.下列各式运算错误的是()A.()()236-⨯-= B.()11262⎛⎫-⨯-=- ⎪⎝⎭C.()()()52880-⨯-⨯-=-D.()()()32530-⨯-⨯-=-6.下列说法正确的是()A.近似数3.6万精确到十分位 B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是()甲:11(14)19(6)1119[(14)(6)]10+-+--=++-+-=.乙:71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.A.甲、乙都正确 B.甲、乙都不正确C.只有甲正确D.只有乙正确8.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为()A.2-B.4-C.4D.289.若||a a =,||b b -=,则a 与b 的乘积不可能是()A.-5B.16C.0D.210.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…,133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,…,根据上述算式中的规律,()2023202223+-的末位数字是()A.3B.5C.7D.9二、填空题(每小题4分,共20分)14.计算20221-÷15.求值:1(+三、解答题(本大题共16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1)()()()()81021++-----;(2)()()221310.5233⎡⎤---÷⨯--⎣⎦.18.(10分)计算:32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭.莉莉的计算过程如下:解:原式1111(18)9(18)8984=-÷⨯=-⨯⨯=-.佳佳的计算过程如下:解:原式198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:1111 1323⎛⎫=⨯-⎪⨯⎝⎭;第2个等式:1111 35235⎛⎫=⨯-⎪⨯⎝⎭;第3个等式:1111 57257⎛⎫=⨯-⎪⨯⎝⎭;第4个等式:1111 79279⎛⎫=⨯-⎪⨯⎝⎭.(1)探寻上述等式规律,写出第5个等式:_________;(2)求1111 155991320172021 ++++⨯⨯⨯⨯的值.答案以及解析1.答案:B解析:因为113344-=-,1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,所以134-的倒数是413-.2.答案:C解析:1100000000用科学记数法表示应为91.110⨯.故选:C.3.答案:C解析:()(32)4(8)=88=64-÷⨯--⨯-.故选C.4.答案:C解析:A 、(5)5--=是正数,此项不符题意;B 、2(5)25-=是正数,此项不符题意;C 、2525-=-是负数,此项符合题意;D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、()()23236-⨯-=⨯=,则此项正确,不符合题意;B 、()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭,则此项错误,符合题意;C 、()()()()52852880-⨯-⨯-=-⨯⨯=-,则此项正确,不符合题意;D 、()()()()32532530-⨯-⨯-=-⨯⨯=-,则此项正确,不符合题意;故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:11(14)19(6)1119[(14)6]30822+-+--=++-+=-=,甲不正确.711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦16(1)55⎛⎫=-+-=- ⎪⎝⎭,乙正确.8.答案:C解析:输入1x =,则21242420⨯-=-=-<输入2-,则()22244-⨯-=,所以输出y 的值为:4故选:C.9.答案:A解析:因为||a a =,||b b -=,所以0a ≥,0b ≥,所以a 与b 的乘积不可能是负数,故a 与b 的乘积不可能是5-.10.答案:A 解析:由题知,122=,224=,328=,4216=,8232=,6264=,72128=,82256=,⋯,所以2n 的末位数字按2,4,6,8循环出现,又20224505÷=余2,所以20222的末位数字是4.133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,…,所以3n 的末位数字按3,9,7,1循环出现,又20234505÷=余3,所以20233的末位数字是7.()20232202320202222(3)32=--+-的末位数字是3故选:A.11.答案:千解析:41.51015000⨯= ,∴近似数41.510⨯精确到千位,故答案为:千.12.答案:8112019-+-解析:8(11)(20)(19)-+--+-写成省略加号的和的形式是:8112019-+-.故答案为:8112019-+-.(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01)0.63≈.(2)7.9122(精确到个位)8≈.(3)130.96(精确到十分位)131.0≈.(4)46021(精确到百位)44.6010≈⨯.17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++1=;(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+1.5=.18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭.19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:()666612+--=+=(克),最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+15=-,则50020159985⨯-=(克).这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)15(9)15924+--=+=(次),故该班参赛代表中最好成绩与最差成绩相差24次;(2)2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=(次),故该班参赛代表队一共跳了1630次;(3)(8121815)2(59)174++++⨯-+⨯=(分),7470> ,∴该班能得到学校奖励.21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.(2)原式111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭ .。
初一数学上册第二单元测试题及答案初一数学上册第二单元测试题及答案一、选择题(每小题3分,共30分)1.计算a+(-a)的结果是()B.02.在代数式x2+5,-1,x2-3x+2,π,5x,x2+1x+1中,整式有()B.4个3.下列结论正确的是()A.x2y28的系数是84.用式子表示“a的3倍与b的差的平方”,正确的是()B.3(a-b)25.下列说法正确的是()D.5mn2与-4mn2是同类项6.计算2a-3(a-b)的结果是()C.a+3b7.下面各题去括号错误的是()C.-12(4x-6y+3)=-48x+72y-368.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()C.-x2+5x-39.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…。
根据其中的规律,得出的第10个单项式是()B.1024x10二、填空题(每小题3分,共24分)10.计算:2x-3x=-x.11.多项式-m2n2+m3-2n-3是4次5项式,最高次项的系数为-1,常数项是-3.12.若单项式5x4y和25xny m是同类项,则m+n的值为4.13.三角形的三边长分别为3a,4a,5a,则这个三角形的周长是12a.14.有a名男生和XXX女生在社区做义工,他们为建花坛搬砖。
男生每人搬了20块,女生每人搬了15块。
这a名男生和b名女生一共搬了多少块砖?用含a、b的代数式表示。
15.已知2a-3b2=5,则10-2a+3b2的值是多少?16.煤气费的收费标准为:每月用气若不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。
已知某住户某个月用煤气x立方米(x>60),则该住户应交煤气费多少元?17.下面是按一定规律排列的一列数:23,-45,87,-169,……。
那么第n个数是多少?18.(10分) 计算:1) (8xy-3x2)-5xy-2(3xy-2x2);2) -2x2-12[3y2-2(x2-3y2)+6]。
精心整理七年级上册数学第二单元试卷及答案一、选择题1、下列叙述正确的是()(A)(C)2(A 3(A)4、()(A 5(A )-16.(B )16.(C )24.(D )-24.6、已知不为零的a,b 两数互为相反数,则下列各数不是互为相反数的是()(A)5a与5b.(B)a与b.(C)与.(D)a与b.7、按下面的按键顺序在某型号计算器上按键:显示结果为()(A)56.25.(B)5.625.(C)0.5625.(D)0.05625.8.1.2A.649.3数是10.() A.高二、填空题11.-的倒数是;-的相反数是,-的绝对值是;-的平方是.12、比较下列各组数的大小:(1);(2)--;(3)-2(-2);(4)(-3)-3.13、(1)近似数2.5万精确到位;有效数字分别是;(2.14.15.(16.李明算||17如图长方形纸片,请你写出最后余下未贴部分的面积的表达式:.18.a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是=-,-1的差倒数是=.已知a1=2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2010=。
三、解答题19、计算(1)(-18)÷2×÷(-16);(2)4+3×(-2)+3;(3)-6×(-)-7;(4)30÷(-).20.下表是某水站记录的潮汛期某河一周内的水位变化情况(正号表(1)(2)21.3天平是否已22.23.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达8地.约定向北为正,向南为负,当天记录如下:(单位:千米)-18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?24、股民小杨上星期五买进某公司股票1000股,每股27元,下表为(1(2(3额的25.,参考答案1.C2.D3.C4.B5.D6.A7.D8.A9.-;;;10.(1)(3)<(4)=11.(1)千,2,5(2)2.5×1012.1-13.(1)1(2)7(3)-55(4)90014.(1)(+2.20)+(+1.42)+(-0.80)=2.82(元),即上涨2.82元(2)27+2.20+1.42=30.62(元),27+2.20+1.42-0.80-2.52=27.3(3=28488 15.。
七年级数学(上册)第二单元测试题试题
(时间:90分钟 总分:100)
姓名: 得分:
一、填空题(每题3分,共27分)
1、单项式-6
52y
x 的系数是 ,次数是 .
2、多项式2532+-x x 是________次_________项式,常数项是___________。
3、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。
4、把多项式233754x x x -+-按x 的指数从高到低排列是_____________。
5、下列代数式①1-,②232a -,③y x 261,④π
2
ab -,⑤c ab ,⑥b a +3,⑦0,⑧m 中,是单项式的是
__________________。
(只填序号)
6、飞机的无风飞行航速为a 千米/时,风速为20千米/时.则飞机顺风飞行4小时的行程是__________千米;飞机逆风飞行3小时的行程是__________千米。
7.写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
8、如图所示,阴影部分的面积表示为____________. 9、按规律排列的一列数依次为:-1,3,-5,7,-9,11,…,按此规律下去,这
列数中的第20个数是____________;第n 个数为________________.
二、选择题(每题3分,共24分)
10、下列说法正确的是( )
A .32xyz 与32xy 是同类项
B .x 1和2
1
x 是
同类项
C .0.523y x 和732y x 是同类项
D .5n m 2与-42nm 是同类项
11、若A 是一个六次多项式,B 也是一个七次多项式,则B A +一定是( ) A.十三次多项式 B.七次多项式 C.不高于七次的整式 D.六次多项式
12、下面是小明做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭
⎫ ⎝
⎛-+-222
1
3y xy x
2222 212342
1
y x y xy x +-=⎪⎭⎫ ⎝⎛-+--,
.那么被墨汁遮住的一项应是 ( )
A. xy 7-
B. xy 7+
C. xy -
D. xy +
13、把(x —3)看成一个因式,化简(x -3)2-2(x -3)-5(x -3)2+(x -3)= ( )
A. -4(x -3)2+(x -3)
B. 4(x -3)2-x (x -3)
C. 4(x -3)2-(x -3)
D. -4(x -3)2-(x -3)
14、用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是S .按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数S 等于( )
第8题
A. 33-n
B. 3-n
C. 22-n
D. 32-n 15、一个多项式与2x -2x +1的和是3x -2,则这个多项式为( ) A.2x -5x +3 B.-2x +x -1 C.-2x +5x -3 D.2x -5x -13
16、已知关于x 的多项式222ax abx b bx abx a -+++与的和是一个单项式,则有( ) A.a=b B.a=0或b=0 C.ab=1 D.a=-b 或b=-2a
17、32281x x x -+-若多项式与多项式323253x mx x +-+的和不含二次项,则m 等于( ) A.2 B.-2 C.4 D.-4 三、解答题(共49分)
18、计算:(每题5分,共10分)
(1)b a b a 7635+-+
(2)[]
)2(2)32()(222222y xy x x xy x xy x +------
19、求值.(每小题6分,共12分)
(1)4y x 2-[6xy -2(4xy -2)-y x 2]+1,其中x =-2
1
y=1.
(2)22(2)x y --4(2)x y -+2(2)x y --3(2)x y -,其中x =-1,y =
12
. 20、(6分)试说明式子(6x +4y -5)-4(x +y )-2(x -3)无论x 、y 为何值,其值为定值。
21、(6分)已知某船顺水航行3.5小时,逆水航行2小时,
(1)已知轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米? (2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?
22、(7分)每家乐超市出售一种商品,其原价为a元,现有三种调价方案:(1)先提价20%,再降价20%;(2)先降价20%,再提价20%;(3)先提价15%,再降价15%。
问用这三种方案调价结果是否一样?最后是不是都恢复了原价?请说明。
23、(8分)甲、乙两家公司都准备向社会招聘优秀的大学毕业生,两家公司招聘的条件基本相同,只有工资待遇出现如下的差异:甲公司年薪10000元,第二年起每年加工龄工资200元,乙公司半年年薪5000元,半年后每半年加工龄工资50元。
假想现在你是即将毕业的大学生,从经济角度出发,你会选择哪家公司应聘?
试题命题:
一、试题设计意图
1、本章的主要内容是单项式、多项式、整式、同类项的有关概念,合并同类项、去括号的法则以及整式的加减运算。
其中合并同类项既是本章的重点也是本章的难点。
设计试题时主要考虑了如下方面:
(1)考查单项式、多项式、整式、同类项有关概念,如:1、2、3、4、5、
7、10、11小题
(2)考查运用合并同类项、去括号法则进行计算能力,并注重培养学生的
类比能力及学生的符号感,如:12、13、15、16、17、18、19、20小题
(3)考查学生实际问题运用,利用问题情境考查学生运用字母、整式表示
简单实际问题中数量关系的能力,21、22、23
(4)结合本章的数学活动课设计了一些探究规律题,检查学生的观察、归
纳、抽象的概括能力以及一些开放性问题。
7、9、14小题
二、试题测试情况统计分析
1、本次测试,优秀人数17人,尖子生为3人,60分以下有21人。
2、问题分析:
(1)概念理解不透,如多项式次数、同类项。
(2)合并同类项时,出现漏项。
去括号出现符号问题。
(3)学生运用字母、整式表示实际问题中的数量关系出错的人数较多
(4)综合运算能力不尽人意
三、测试反思
1、不断针对学生的知识弱点进行补缺,如计算中符号问题,基本的概念及简单的实际问题应用。
2、根据实际情况,分层设计题型,帮助基础薄弱的学生进行辅导。
3、利用优秀生带动后进生的做法,进行强化一对一辅导
对以上分析存在的问题在下一步教学中有待更好改进,从而解决问题。