福建省龙岩市新罗区2019-2020学年八年级上学期期中质量检测数学试题(无答案)
- 格式:docx
- 大小:833.02 KB
- 文档页数:5
福建省龙岩市2019-2020学年上学期第三次教学质量监测试题八年级数学(时间:90分钟满分:100分)一、精心选一选(本题共10小题;每小题2分,共20分)1.下列四个图案中,是轴对称图形的是().AB C D 2.等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,503.下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A、2B、3C、4D、54.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.25.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1 、y2大小关系是()A. y1 > y2 B. y1 = y2 C.y1 < y2 D.不能比较6.下列运算正确的是 ( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y27.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()CA .△EBD 是等腰三角形,EB=EDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形8.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC •的周长为9cm ,则△ABC 的周长是( ) A .10cm B .12cm C .15cm D .17cm9 计算23()a 的结果是 A .a 5 B .a6C .a 8D .3 a 210.若正比例函数的图像经过点(-1,2),则这个图像必经过点( ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2) 二、细心填一填(本题共10小题;每小题3分,共60分.) 11.若x 2+kx+9是一个完全平方式,则k= .12.点M (-2,k )在直线y=2x+1上,则点M 到x 轴的距离是 .13.已知一次函数的图象经过(-1,2),且函数y 的值随自变量x 的增大而减小,请写出一个符合上述条件的函数解析式 .14.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是 .15.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3, 则∠C= .16.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为 .14题 1 5题图18题图ABCE DO PQA C AEB D C17.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水18. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD=BE ;② PQ ∥AE ;③ AP=BQ ;④ DE=DP ;⑤ ∠AOB=60°. 一定成立的结论有____________(把你认为正确的序号都填上).19.对于数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=20.已知,3,5==+xy y x 则22y x += 三.用心做一做21.计算(6分,每小题3分) (1)分解因式6xy 2-9x 2y-y 3(2)223(2)()()ab ab b b a b a b --÷-+-22. (8分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A1B1C1 (2)请计算△ABC 的面积(3)直接写出△ABC 关于X 轴对称的三角形△A2B2C2的各点坐标。
福建省龙岩2020版八年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七下·深圳期末) 下列图形中是轴对称图形的是()A .B .C .D .2. (2分) (2019八上·天台月考) 以下由四位同学描述三角形的四种不同的说法,正确的是()A . 由三个角组成的图形叫三角形B . 由三条线段组成的图形叫三角形C . 由三条直线组成的图形叫三角形D . 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形3. (2分)如图,x的值可能为()A . 10B . 9C . 7D . 64. (2分)有长为2cm、3cm、4cm、5cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A . 1个5. (2分)(2017·苏州模拟) 如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A . 16B . 14C . 12D . 66. (2分)如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A . 50°B . 65°C . 80°D . 95°7. (2分)若一个正多边形的一个内角是120°,则这个正多边形的边数是()A . 9B . 8C . 6D . 48. (2分) (2019八下·河南期中) 如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A . 9 cm9. (2分)(2019·宜昌) 古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦-秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为 .如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若,则△ABC的面积为()A .B .C . 18D .10. (2分) (2019八上·江岸期中) 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A . 50°B . 80°C . 50°或80°D . 50°或65°二、填空题 (共5题;共5分)11. (1分)(2017·灌南模拟) 如图,在菱形ABCD中,∠BAD=120°,BC=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为________.12. (1分)(2017·鹤岗) 如图,BC//EF,AC//DF,添加一个条件________,使得△ABC≌△DEF.13. (1分) (2018八上·天台月考) 若多边形的每一个內角均为135°,则这个多边形的边数为________.14. (1分) (2017九上·黄石期中) 若点A(2,m)在抛物线y=x2上,则点A关于y轴对称点的坐标是________.15. (1分)(2018·滨湖模拟) 如图,点B、E、C、F在一条直线上,AC∥DF,且AC=DF,请添加一个条件________,使△ABC≌△DEF.三、解答题 (共9题;共67分)16. (5分)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.17. (5分)如图,已知AB=CD,AC=BD,说明AD∥BC。
福建省龙岩八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共26题;共46分)1. (2分)下列代数式:−, 0,, 2x−y ,,其中分式有()个.A . 1B . 2C . 3D . 42. (2分)下列“表情图”中,不属于轴对称图形的是()A .B .C .D .3. (2分)如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A . 全部正确B . 仅①和②正确C . 仅①正确D . 仅①和③正确4. (2分)(2017·隆回模拟) 函数y= 的自变量x的取值范围是()A . x≠2B . x<2C . x≥2D . x>25. (2分)下列各分式中,最简分式是().A .B .C .D .6. (2分)下列计算错误的是()A . =B . =C . =D . - =-7. (2分)若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将()A . 扩大为原来的2倍B . 分式的值不变C . 缩小为原来的D . 缩小为原来的8. (2分)到三角形三个顶点的距离都相等的点是这个三角形的()A . 三条高的交点B . 三条边的垂直平分线的交点C . 三条中线的交点D . 三条角平分线的交点9. (2分) (2018八上·辽宁期末) 等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是()A . 72°B . 36°或90°C . 36°D . 45°10. (2分) (2016八上·瑞安期中) 等腰三角形的腰长为3,底边长为4,则它的周长为()A . 7B . 10C . 11D . 10或1111. (2分)如果x:y:z=2:3:4,求的值为()。
福建省龙岩2020年八年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)(2017·海陵模拟) 如图是一个由几个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A . 主视图和俯视图B . 俯视图C . 俯视图和左视图D . 主视图2. (2分) (2018八下·乐清期末) 在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A . 8<BC<10B . 2<BC<18C . 1<BC<8D . 1<BC<93. (2分)在下列各组图形中,是全等的图形是()A .B .C .D .4. (2分) (2018八上·宁波月考) 如图,一扇窗户打开后,用窗钩 AB 可将其固定,这里所运用的几何原理是()A . 垂线段最短B . 两点之间线段最短C . 两点确定一条直线D . 三角形的稳定性5. (2分) (2015七下·汶上期中) 下列叙述中错误的一项是()A . 三角形的中线、角平分线、高都是线段B . 三角形的三条高线中至少存在一条在三角形内部C . 只有一条高在三角形内部的三角形一定是钝角三角形D . 三角形的三条角平分线都在三角形内部6. (2分) (2019八下·顺德月考) 等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A . 30°B . 60°C . 30°或150°D . 60°或120°7. (2分) (2015七下·宜兴期中) 如图,∠B+∠C+∠D+∠E﹣∠A等于()C . 180°D . 240°8. (2分) (2016八上·杭州期中) 如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是()A . P为∠A、∠B两角平分线的交点B . P为AC、AB两边上的高的交点C . P为AC、AB两边的垂直平分线的交点D . P为∠A的角平分线与AB的垂直平分线的交点9. (2分) (2017八下·滦县期末) 如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A . ﹣2B . 2C . ﹣6D . 610. (2分)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A . ∠B=45°B . ∠BAC=90°11. (2分) (2016九上·朝阳期末) 下列交通标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .12. (2分)(2017·绵阳模拟) 如图,在正方形ABCD中,点O为对角线AC的中点,过点o作射线OG、ON 分别交AB,BC于点E,F,且∠EOF=90°,BO、EF交于点P.则下列结论中:⑴图形中全等的三角形只有两对;⑵正方形ABCD的面积等于四边形OEBF面积的4倍;⑶BE+BF= OA;⑷AE2+CF2=2OP•OB.正确的结论有()个.A . 1B . 2C . 3D . 413. (2分)(2017·溧水模拟) 如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A . 10B . 9C . 8D . 714. (2分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A . 6cm2B . 8cm2C . 10cm2D . 12cm215. (2分) (2016八上·海盐期中) 如图,已知∠BAC=∠DAE=90°,AB=AD,下列条件能使△ABC≌△ADE的是()A . ∠E=∠CB . AE=ACC . BC=DED . ABC三个答案都是16. (2分) (2019九上·偃师期中) 如图,已知△ABC中,点M是BC边上的中点,AN平分∠BA C,BN⊥AN 于点N,若AB=7,MN=3,则AC的长为()A . 14B . 13C . 12D . 11二、填空题 (共4题;共4分)17. (1分) (2017八下·杭州月考) 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是________18. (1分) (2018八上·宜兴月考) 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= ________度19. (1分) (2019九上·利辛月考) 若,则 =________。
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.下列说法正确的是( )A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形的两个底角相等D. 等腰三角形一边不可以是另一边的2倍2.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形3.下列四个选项中,正确的是( )A. 若等腰三角形的底角为40∘,则这个等腰三角形的顶角的度数是100∘B. 点P在△ABC中AB边的垂直平分线上,则点P到∠ACB两边的距离相等C. 五边形的内角和是900∘D. 点P(−2,5)关于x轴对称的点Q的坐标是Q(2,−5)4.如图,∠DAC是△ABC的一个外角,AE平分∠DAC,且AE∥BC,则△ABC一定是( )A. 等边三角形B. 直角三角形C. 等腰三角形D. 等腰直角三角形5.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是AE上的一点,则下列结论错误的是( )A. AE⊥BCB. △BED≌△CEDC. △BAD≌△CADD. ∠ABD=∠DBE6.如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( )A. 6种B. 5种C. 4种D. 2种7.AD=AE,AB=AC,BE、CD交于F,则图中相等的角共有(除去∠DFE=∠BFC)( )A. 2对B. 3对C. 4对D. 5对8.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为( )A. 12B. 23C. 35D. 无法确定9.如图,点P为∠AOB内一点,分别作点P关于OA、OB的对称点P1,P2,连接P1P2交OB于M,交OA于N,P1P2=15,则△PMN的周长为( )A. 16B. 15C. 14D. 1310.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(A、P、A′不共线),下列结论中,错误的是( )A. △AA′P是等腰三角形B. MN垂直平分AA′、CC′C. △ABC与△A′B′C′面积相等D. 直线AB,A′B′的交点不一定在直线MN上11.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有( )A. 0个B. 1个C. 2个D. 3个12.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是( )A. △EBD是等腰三角形,EB=EDB. 折叠后∠ABE和∠C′BD一定相等C. 折叠后得到的图形是轴对称图形D. △EBA和△EDC′一定是全等三角形二、填空题(本大题共6小题,共24.0分)13.若等腰三角形两边的长分别为3cm和7cm,则第三边的长是______cm.14.等腰三角形的一个底角比顶角小42°,它的顶角是______.15.点P(1,2)关于y轴对称的点的坐标是______.16.如图,等边△ABC中,AD是中线,DE⊥AC于点E,DE=3,______.则点D到AB的距离为:17.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=40°,则∠BAE的度数为______°.18.如图,在平面直角坐标系中,分别平行于x轴、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是以AO为腰的等腰三角形.请写出所有满足条件的点P的坐标是______三、解答题(本大题共9小题,共78.0分)19.如图,已知AB=CD,AC=DB.求证:∠A=∠D.20.一个多边形的内角和是外角和的2倍,它是几边形?21.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.22.已知:如图,在Rt△ABC中,∠C=90°,点D在CB边上,∠DAB=∠B,点E在AB边上且满足∠CAB=∠BDE.求证:AE=BE.23.如图,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,交BC于D,交AC于E,且DE=2cm,求BC的长.24.如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.25.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.26.如图,图中的小方格都是边长为1的正方形,①直接写出△ABC的各顶点坐标:A(______,______),B(______,______)C(______,______);②画出△ABC关于y轴的对称图形△A1B1C1;③直接写出△ABC关于x轴对称的△A2B2C2的顶点A2(______,______)B2(______,______)(其中A2与A对应,B2与B对应,不必画图.)27.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.答案和解析1.【答案】C【解析】解:A、错误.等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;B、错误.腰不一定相等,所以不一定是全等三角形;C、正确;D、错误.腰可以是底的两倍;故选:C.根据等腰三角形的性质和判定以及全等三角形的判定方法即可一一判断.本题考查等腰三角形的性质、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.【答案】D【解析】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.3.【答案】A【解析】解:A、若等腰三角形的底角为40°,则这个等腰三角形的顶角的度数是100,故选项正确;B、点P在△ABC中AB边的垂直平分线上,则点P到AB两端点的距离相等,故选项错误;C、五边形的内角和是(5-2)×180°=540°,故选项错误;D、点P(-2,5)关于x轴对称的点Q的坐标是Q(-2,-5),故选项错误.故选:A.A、根据等腰三角形的性质和三角形内角和定理即可求解;B、根据线段垂直平分线的性质即可求解;C、根据多边形内角和定理即可求解;D、关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,依此即可求解.本题主要考查对角平分线的性质的理解和掌握,能熟练地利用角平分线的性质进行推理是解此题的关键.4.【答案】C【解析】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.求出∠B=∠C即可,利用角平分线得到角相等,由平行线得到角相等,再进行等量代换可得△ABC是等腰三角形.本题考查了等腰三角形的性质及判定定理及平行线的性质、角平分线的性质;进行角的等量代换是正确解答本题的关键.5.【答案】D【解析】解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE垂直平分BC,∴A、B、C正确,∵点D为AE上的任一点,∴∠ABD=∠DBE不正确,故选:D.根据等腰三角形顶角的平分线也是底边的中线即可确定正确的结论.本题考查了等腰三角形的性质及全等三角形的判定与性质,属于等腰三角形的基础题,比较简单.6.【答案】C【解析】解:根据题意,涂黑每一个空格都会出现一种可能情况,共出现6种可能情况,其中,涂左上角和右下角的方框所得到的黑色图案组成的图形是中心对称而不是轴对称,故一共有4种情形,故选:C.根据题意,涂黑一个格共6种可能情况,结合轴对称的意义,可得到轴对称图形的情况数目.此题考查轴对称图形问题,关键是根据题意得出涂黑一个格共6种可能情况.7.【答案】C【解析】解:∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴∠B=∠C,∠AEB=∠ADC,∴∠BEC=∠BDC,∵∠DFB=∠EFC,∴共有4对角相等,故选:C.只要证明△ABE≌△ACD(SAS),即可解决问题;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.8.【答案】A【解析】解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故选:A.先根据DE=CE得出∠EDC=∠C,再由∠EDC=∠BAC可知∠EDC=∠BAC=∠C,由∠B=60°可知△ABC及△DCE是等边三角形,再根据D为BC中点可知DE 是△ABC的中位线,故可得出结论.本题考查的是等边三角形的判定与性质,根据题意判断出△ABC及△DCE是等边三角形是解答此题的关键.9.【答案】B【解析】解:∵P点关于OB、OA的对称点为P1,P2,∴P1M=PM,P2N=PN,∴△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15,∴△PMN的周长为15.故选:B.根据轴对称的性质可得P1M=PM,P2N=PN,然后根据三角形的周长定义,求出△PMN的周长为P1P2,从而得解.本题考查轴对称的性质,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,故A、B、C选项正确,直线AB,A′B′关于直线MN对称,因此交点一定在MN上,故D错误,故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.11.【答案】D【解析】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选:D.先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.12.【答案】B【解析】解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、C、D成立,∴下列说法错误的是B,故选:B.根据题意结合图形可以证明EB=ED,进而证明△ABE≌△C′DE;此时可以判断选项A、B、D是成立的,问题即可解决.该命题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答13.【答案】7【解析】解:当3cm为腰时,3+3<7,不合题意,舍去.所以只有7cm为腰,故答案是:7.根据三角形的三边关系和等腰三角形的性质解答.考查三角形的边时,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.14.【答案】88°【解析】解:设∵等腰三角形的一个底角为α,根据题意得:α+α+α+42°=180°,∴α=46°,∴它的顶角是88°,故答案为:88°.根据等腰三角形的性质和三角形的内角和即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.15.【答案】(-1,2)【解析】解:∵点P(m,n)关于y轴对称点的坐标P′(-m,n),∴点P(1,2)关于y轴对称的点的坐标为(-1,2).本题可以根据假设法,设出题中所有点的坐标,然后根据掌握的平面直角坐标系的基本性质,点对称的特点即可求解.本题考查平面直角坐标系点的对称性质,属于对基本内容的考查,学生需认真掌握有关内容.16.【答案】3【解析】解:∵△ABC是等边三角形,∴∠C=60°,AB=AC,∵AD是中线,∴∠BAD=∠CAD,∵DE⊥AC,∴点D到AB的距离等于DE的长,即点D到AB的距离为3,故答案为:3.由等边三角形性质及AD是中线知AD是∠BAC平分线,再由DE⊥AC知点D 到AB的距离等于DE的长,据此可得答案.本题主要考查等边三角形的性质,解题的关键是掌握等腰三角形的三线合一性质及角平分线的性质.17.【答案】10【解析】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=40°,∵在Rt△ABC中,∠B=90°,∴∠BAC=90°-∠C=50°,∴∠BAE=∠BAC-∠EAC=10°.故答案为:10.由ED是AC的垂直平分线,可得AE=CE,继而求得∠BAE=∠C=40°,然后由在Rt△ABC中,∠B=90°,即可求得∠BAC的度数,继而求得答案.此题考查了线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.18.【答案】(8,4)、(-2,4)、(-3,4)【解析】解:∵A(3,4)∴OB=3,AB=4∴0A==5∴当OA为等腰三角形一条腰,则点P的坐标是(8,4),(-2,4),(-3,4);故答案为:(8,4),(-2,4),(-3,4).根据题意可得0A=5,再根据情况OA为等腰三角形一条腰计算求解.本题考查了坐标与图形的性质及等腰三角形的判定;根据等腰三角形的判定解答是正确解答本题的关键.19.【答案】证明:在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D.【解析】分析题目条件,AB、AC围成△ABC,DC、DB围成△DCB,BC为它们的公共边,容易判断△ABC≌△DCB,从而得出∠A=∠D.本题考查全等三角形的判定,性质的综合运用,可以由结论探究所要证明全等的三角形,然后找全等的条件.20.【答案】解:设多边形边数为n.则360°×2=(n-2)•180°,解得n=6.故是六边形.【解析】多边形的外角和是360度,多边形的外角和是内角和的一半,则多边形的内角和是720度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.21.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.【答案】证明:∵∠C=90°,∴∠CAB+∠B=90°.∵∠CAB=∠BDE,∴∠BDE+∠B=90°,∴∠DEB=90°.∵∠DAB=∠B,∴DA=DB,∴AE=BE.【解析】由∠C=90°结合三角形内角和定理可得出∠CAB+∠B=90°,由∠CAB=∠BDE可得出∠BDE+∠B=90°,进而可得出∠DEB=90°,由∠DAB=∠B可得出DA=DB,再利用等腰三角形的三线合一可证出AE=BE.本题考查了等腰三角形的判定与性质以及三角形内角和定理,牢记等腰三角形的三线合一解题的关键.23.【答案】解:连接AD,∵DE垂直平分AC,∴AD=CD,∠DEC=90°,∴∠DAC=∠C,∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=180°−∠BAC2=30°,∴∠DAC=∠C=∠B=30°,∴∠ADB=∠DAC+∠C=60°,∴∠BAD=180°-∠B-∠ADB=90°,在Rt△CDE中,∠C=30°,DE=2cm,∴CD=2DE=4cm,∴AD=CD=4cm,在Rt△BAD中,∠B=30°,∴BD=2AD=8cm,∴BC=BD+CD=12(cm).【解析】首先连接AD,由DE垂直平分AC,根据线段垂直平分线的性质,易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,即可求得BC的长.此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.【答案】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【解析】根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解.25.【答案】解:作法:(1)分别以A,B点为圆心,以大于AB2的长为半径作弧,两弧相交于M,N两点;(2)作直线MN,MN即为线段AB的垂直平分线.【解析】分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;作直线MN,MN即为线段AB的垂直平分线.本题考查的是基本作图,熟知线段垂直平分线的作法是解答此题的关键.26.【答案】-3 2 -4 -3 -1 -1 -3 -2 -4 3【解析】解:①△ABC的各顶点坐标:A(-3,2)、B(-4,-3)、C(-1,-1);故答案为:-3、2;-4、-3;-1、-1;②如图,△A1B1C1即为所求,③如图,△A2B2C2即为所求,A2坐标为(-3,-2)、B2坐标为(-4,3).故答案为:-3、-2;-4、3.①根据三角形在坐标中的位置可得;②分别作出点A、B、C关于y轴的对称点,再顺次连接可得;③分别作出点A、B、C关于x轴的对称点,再首尾顺次连接可得.本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.27.【答案】解:(1)由题意得,CD=0.5x,则AD=4-0.5x;(2)∵△ABC是等边三角形,∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.设x秒时,△ADE为直角三角形,∴∠ADE=90°,BE=0.5x,AD=4-0.5x,AE=4+0.5x,∴∠AED=30°,∴AE=2AD,∴4+0.5x=2(4-0.5x),∴x=83;答:运动83秒后,△ADE为直角三角形;(3)如图2,作DG∥AB交BC于点G,∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,∴∠C=∠CDG=∠CGD,∴△CDG是等边三角形,∴DG=DC,∵DC=BE,∴DG=BE.在△DGP和△EBP中,∠GDP=∠BEPDG=EP∠DGP=∠EBP,∴△DGP≌△EBP(ASA),∴DP=PE,∴在运动过程中,点P始终为线段DE的中点.【解析】(1)根据题意得到CD=0.5x,结合图形求出AD;(2)设x秒时,△ADE为直角三角形,则BE=0.5x,AD=4-0.5x,AE=4+0.5x,根据30°的直角边等于斜边的一般建立方程求出其解即可;(3)作DG∥AB交BC于点G,证明△DGP≌△EBP,得出PD=PE.本题考查了等边三角形的判定与性质,直角三角形的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,掌握全等三角形的判定定理和性质定理,等边三角形的判定定理和性质定理是关键.。
第一学期期中质量检查卷初二数学(完卷时间:120分钟,总分:100分)一、选择题(共10小题,每小题3分,满分30分;每小题只有一个正确选项,请在答题卡相应位置填上) 1、如图所示是几种名车的标志,请指出:这几个图案中轴对称图形有( )A .1个B .2个C .3个D .4个2、下列各数中:722,-3.5,0,8,364,π,0.1010010001…,是无理数的有( ) A 、1个 B 、2个 C 、3个 D 、4个3、下列条件中,不能判定两个三角形全等的是( )A .三条边对应相等B .两边和一角对应相等C .两角及其一角的对边对应相等D .两角和它们的夹边对应相等4、已知点P (3,-1),那么点P 关于x 轴对称的点P '的坐标是( ). A .(-3,1) B .(3,1)C .(-1,3)D .(-3,-1)5、下列说法中正确的是( )A .36的平方根是6B .16的平方根是±2C .8的立方根是-2D .4的算术平方根是-26、等腰三角形中一个外角等于100º,则另两个内角的度数分别为( )A .40º,40º B .80º,20ºC .50º,50ºD .50º,50º或80º,20º7、如图1,△ABC 中,D 为BC 上一点,△ABD 的周长为12cm ,DE 是线段AC 的垂直平分线,AE =5cm ,则△ABC 的周长是( ) A .17cm B .22cmC .29cmD .32cm图18、如图2,已知△AB C 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( ) A .甲和乙 B .乙和丙 C .只有乙 D .只有丙9、如下图,直线L 是一条河,P,Q 是两个村庄。
欲在L 上的某处修建一个水泵站M ,向P,Q两地供水,现图2AB C D E有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )10、如图3,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F =90º,∠B =∠C ,AE =AF , 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ;④CD =DN 。
八年级上册龙岩数学期中精选试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;(3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.证明:如答图1,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠EAF=12∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-12∠BAD=12∠BAD,∴∠EAF=∠GAF.在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.又∵FG=DG+DF=BE+DF.∴EF=BE+FD.(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.∴EF=AE+FB=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离为210海里;(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,∴对于四边形AMCD符合探索延伸,则ND=MN,∵∠NCD=90°,CD=1,CN=3,∴MN=ND=10.2.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.3.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.4.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM与△DEN中,∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即CE是ACB∠的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=1() 2AC CD+,又∵∠MCE=∠NCE=45°,∠CME=90°,∴CE=22() CN AC CD=+,当AC=3,CD=CO=1时,CE=2(31)22 2+=当AC=3,CD=CB=7时,CE=2(37)52+=∴点E的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.5.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.二、八年级数学轴对称解答题压轴题(难)6.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AF与BD在(1)中的结论成立,理由如下:如图2中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.7.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】 (1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.8.如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E .(1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x︒︒∠=-∠-=-∴∠AEB=60-x+x=60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.9.(1)问题发现:如图1, ABC和ADE均为等边三角形,点B D E、、在同一直线上,连接.CE①求证:BD CE=; ②求BEC∠的度数.(2)拓展探究:如图2, AB C和ADE均为等腰直角三角形,90BAC DAE∠=∠=︒,点B D E、、在同一直线上AF,为ADE中DE边上的高,连接.CE①求BEC∠的度数:②判断线段AF BE CE、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB和ADE均为等腰三角形,BAC DAE n∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1),∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS )∴ BD=CE.② 由△CAE ≌△BAD ,∴ ∠AEC=∠ADB=180°-∠ADE=120°.∴ ∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.10.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=.(1)如图1,当点E在AC的延长线上且CD CE=时,AD是ABC的中线吗?请说明理由;(2)如图2,当点E在AC的延长线上时,写出,,AB BD AE之间的数量关系,请说明理由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出AB BD AE的数量关系.,,+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF ,∵AD=DE ,∴∠DEA=∠DAE ,∴∠DEF=∠DAF ,∵DF=DF ,AF=EF ,在△AFD 和△EFD 中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩, ∴△AFD ≌△EFD (SSS )∴∠ADF=∠EDF ,∠DAF=∠DEF ,∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,∵∠EDB=∠DEF ,∴∠FDB=∠DFB ,∴DB=BF ,∵AB=AF+FB ,∴AB=BD+AE .【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2]=12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.12.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【解析】【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.13.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.【答案】(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =-∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.14.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立.例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++ 而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有 1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++ 运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积;②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值.【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结论;(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可.【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积.故答案为:x=-1;(x+1)②设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b=x 3+(a+1)x 2+(a+b )x+b∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3.∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解, ∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②, ∴②-①,得m-n=3∴m n -的值为3.【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.15.下面是某同学对多项式()()22676114x x x x -+-++进行因式分解的过程.解:设26x x y -=,原式(7)(11)4y y =+++(第一步) 21881y y =++(第二步)2(9)y =+(第三步)()2269x x =-+.(第四步) 请你回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______;A .提公因式法B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果不彻底,请直接写出因式分解的最后结果_______;(3)仿照以上方法因式分解:()()222221x x x x --++.【答案】(1)C ;(2)4(3)-x ;(3)4(1)x -【解析】【分析】(1)根据公式法分解因式可得答案;(2)先将269x x -+分解因式得2(3)x -,由此得到答案;(3)设22x x y -=,得到原式()21y =+,将22x x y -=代回得到()2221x x -+,再将括号内根据完全平方公式分解即可得到答案.【详解】解:(1)由21881y y ++2(9)y =+是运用了因式分解的两数和的完全平方公式, 故选:C ;(2)∵269x x -+=2(3)x -, ∴()2269x x -+=4(3)-x ,故答案为:4(3)-x ;(3)设22x x y -=, 原式()21y y =++,221y y =++,()21y =+, ()2221x x =-+, 4(1)x =-.【点睛】此题考查特殊方法分解因式,完全平方公式分解因式法,分解因式时注意应分解到不能再分解为止.四、八年级数学分式解答题压轴题(难)16.已知:12x M +=,21x N x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值; ②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1【解析】【分析】(1)作差后,根据分式方程的加减法法则计算即可;(2)①把M 、N 代入整理得到y ,解分式方程即可;②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可.【详解】(1)当0x >时,M -N ≥0.理由如下:M -N =()()21122121x x x x x -+-=++ . ∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0. (2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1. ②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2. 当x +1=1,即0x =时,22401y =+=> ; 当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ; 当x +1=-2时,即3x =-时,22102y =+=>-() ; 综上所述:当x 为整数时,y 的正整数值是4或3或1.【点睛】本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.17.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵20a b =-≥,∴a b +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,112x x x x +≥⋅= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭ ∵()1122x x x x ⎛⎫--≥-⋅-= ⎪⎝⎭∴12x x ⎛⎫---≤- ⎪⎝⎭ ∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0, ∴16163311y x x x x =++≥⋅= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.18.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x -,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立, ∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;。
龙岩北附2019-2020学年度第一学期八年级期中考试数学试卷一、选择题(本大题10小题,每小题4分,共40分)1.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )2.在平面直角坐标系中,点()3,2-关于y 轴对称的点的坐标是( )A.()3,2B.()3,2-C.()3,2-D.()3,2--3.下列长度的三条线段能组成三角形的是( )A.1cm ,2cm ,3cmB.6cm ,2cm ,3cmC.4cm ,6cm ,8cmD.5cm ,12cm ,6cm4.如图 1,在ABC △中,55A ∠=,45B ∠=,那么ACD ∠的度数为( )A.110B.100C.55D.45图1 图2 图35.如图2,点E ,F 在AC 上,AD BC =,DF BE =,要使ADF CBE △≌△,可添加的条件是( )A.=A C ∠∠B.=D B ∠∠C.//AD BCD.//DF BE6.如图3,ABC △与A B C '''△关于直线MN 对称,P 在MN 上,下列结论中错误的是( )A.AA P '△是等腰三角形B.MN 垂直平分AA ',CC 'C.ABC △与A B C '''△面积相等D.直线AB ,A B ''的交点不在MN 上7.如图4,ABC △中,AB AC =,=100BAC ∠,AD 是BC 边上的中线,且BD BE =,则ADE ∠的大小为( )A.10B.20C.40D.70图48.如图5,在ABC △中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC交AB 于D ,交AC 于F ,若4AB =,=3AC ,则ADF △的周长为( )A.6B.7C.8D.10图5 图69.如图6,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,则点C 的坐标为( )A.()B.(1-C.)D.()1- 10.已知30AOB ∠=,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则以1P ,O ,2P 三点为顶点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(本大题6小题,每小题4分,共24分) 11.在ABC △中,已知60A ∠=,80B ∠=,则C ∠的度数是12.五边形的内角和是13.如图7,ABC △的边BC 的垂直平分线MN 交AC 于D ,若ADB 的周长是10cm ,4AB cm =,则AC = cm图7图8 14.如图8,在R t A B C △中,90C ∠=,AD 是ABC △的角平分线,3DC =,则点D 到AB 的距离是15.如图9,把长方形纸片ABCD 沿对角线折叠,若25BDE ∠=,那么BED ∠=图916.如图10,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边与E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上以动点,则CDM △周长的最小值为图10三、解答题(本题共9小题,共86分)17.如图,已知点E ,C 在线段BF 上,BE CF =,//AB DE ,ACB F ∠=∠,求证:ABC DEF △≌△.18.如图,AB AC =,AE AF =,求证:B C ∠=∠.19.如图,在直角坐标系中,先描出点()1,3A ,点()4,1B .(1)描出点A 关于x 轴的对称点1A 的位置,写出1A 的坐标 ;(2)用尺规在x 轴上找一点C ,使AC BC +的值最小(保留作图痕迹);(3)用尺规在x 轴上找一点P ,使PA PB =(保留作图痕迹).20.如图,ABC △是等腰三角形,AB AC =,36A ∠=.(1)尺规作图:作B ∠的角平分线BD ,交AC 于点D (保留作图痕迹,不写作法);(2)判断ABC △是否为等腰三角形,并说明理由.21.求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.22.如图,把一个三角形ACB (90ACB ∠=)绕着顶点B 顺时针旋转60,使得点C 旋转到AB 边上的一点D ,点A 旋转到点E 的位置.F ,G 分别是BD ,BE 上的点,BF BG =,延长CF 与DG 交于点H .(1)求证:CF DG =;(2)求出FHG ∠的度数.23.如图所示 ,已知ABC △中,B C ∠=∠,8AB =厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为t (秒)(03t ≤≤).(1)用含t 的式子表示PC 的长度;(2)若点P ,Q 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;(3)若点P ,Q 的运动速度不相等,当点Q 的运动速度a 为多少时,能够使BPD △与CQP △全等?24.如图①,ABC △是正三角形,BDC △是顶角120BDC ∠=的等腰三角形,以D 为顶点作一个60角,角的两边分别交AB ,AC 于M ,N ,连接MN .(1)探究:线段BM ,MN ,NC 之间的关系,并加以证明.(2)若点M 是AB 的延长线上的一点,N 是CA 的延长线上的点,其它条件不变,请你再探究线段BM ,MN ,NC 之间的关系,在图②中画出图形,并说明理由。
题图第3题图第4题图第52019-2020年八年级数学上学期期中教学质量检测试题注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上. 第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分)请将唯一正确答案的代号填涂在答题卡...上 1.在下列四个交通标志图中,是轴对称图形的是A .B .C .D .2.三条线段a =5,b =3,c 的值为奇数,由a ,b ,c 为边可组成三角形A .1个B .3个C .5个D .无数个3.如图,已知在△ABC 中,∠ABC =70°,∠C =50°,BD 是角平分线,则∠BDC 的度数为A .95°B .100°C .110°D .120°4.如图,EA ∥DF ,AE =DF ,要使△AEC ≌△DFB ,只要A .AB =BC B .EC =BF C .∠A =∠D D .AB =CD 5.一副三角板如图叠放在一起,则图中∠α的度数为A .35°B .30°C .25°D .15°6.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是A .6B .7C .8D .107.下列条件中,不能判定两个直角三角形全等的是A .两直角边分别相等B .斜边和一条直角边分别相等C .两锐角分别相等D .一个锐角和斜边分别相等8.如图,在Rt△ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是A .15B .30C .45D .609.在平面直角坐标系中,点P ,关于x 轴对称的点的坐标是A .(1,2)B .(,)C .(,2)D .(,1) 10.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确结论的个数是A .1个B .2个C .3个D .4个11.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .30°D .25°12.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD=AC ,∠A =50°,则∠ACB 的度数为A .90°B .95°C .100°D .105°13.已知:在△ABC 中,∠A =60°,如要判定△ABC 是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB =AC ”,那么△ABC 是等边三角形;②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB ,BC 上的高相等”,那么△ABC 是等边三角形.题图第8题图第10题图第11其中正确的说法有A .3个B .2个C .1个D .0个14.如图,已知,BD 为△ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA .下列结论:①△ABD ≌△EBC ;②AC =2CD ;③AD =AE =EC ;④∠BCE +∠BCD =180°.其中正确的是A .①②③B .①②④C .①③④D .②③④二、填空题(本大题共5小题,每小题3分,共15分) 把答案填在题中横线上.15.如图,要测量池塘两端A ,B 的距离,可先在平地上取一个可以直接到达A ,B 两点的C ,连接AC 并延长AC 到点D ,使CD =CA ,连接BC 并延长BC 到点E ,使CE =CB ,连接DE ,那么量出DE 的长就等于AB 的长,这是因为△ABC ≌△DEC ,而这个判定全等的依据是.16.如图△ABC 中,∠A :∠B =1:2,DE ⊥AB 于E ,且∠FCD =75°,则∠D = .17.等腰三角形的一个内角为80°,则顶角的度数是 .18.如图,在△ABC 中,点D 在BC 上且AB =AD ,AC =AE ,∠BAD =∠CAE ,DE =12,CD =4,则BD = .19. 如图,△ABC 是等边三角形,∠CBD =90°,BD =BC ,连接AD 交BC 于点E ,则∠AEC 的度数是 .三、解答题(本大题共7小题,共63分)20.(本题满分7分) 如图,在△ABC 中,CD 是AB 边上高,BE 为角平分线,若∠BFC =113°,求∠BCF 的度数.题图第20题图第14题图第19题图第15题图第16题图第1821.(本题满分7分) 如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.22.(本题满分8分) 如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线.求证:BE =BD .题图第2123.(本题满分8分) 将一副直角三角板如图摆放,等腰直角三角板ABC 的斜边BC 与含30°角的直角三角板DBE 的直角边BD 长度相同,且斜边BC 与BE 在同一直线上,AC 与BD 交于点O ,连接CD .求证:△CDO 是等腰三角形.24.(本题满分10分) 如图,在直角坐标平面内,已知点A (8,0),点B (3,0),点C题图第22题图第23是点A关于直线m(直线m上各点的横坐标都为3)的对称点.(1)在图中标出点A,B,C的位置,并求出点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于15时,求点P的坐标.第24题图如图,四边形ABCD中,DC∥AB ,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=2时,求AE的长.26.(本题满分13分) 【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B 是直角时,△ABC ≌△DEF .如图①,在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E =90°,根据 ,可以知道Rt△ABC ≌Rt△DEF .题图第26第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你在图③中画出△DEF,使△DEF和△ABC不全等.xx 学年度上学期期中教学质量监测八年级数学参考答案与评分标准一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1—5 CBADD 6—10 BCBAC 11—14BDAC二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.SAS 16.40° 17.80°或20° 18.8 19.75°.三、解答题(本大题共7小题,共63分)20.(本题满分7分)解:∵CD 是AB 边上高,∴∠BDF =90°,………………………………….1分∠ABE =∠BFC ∠BDF =113°90°=23°,………………………………………3分∵BE 为角平分线,∴∠CBF =∠ABE =23°,…………………………………………………………..5分 ∴∠BCF =180°∠BFC ∠CBF =44°.………………………………………..7分21.(本题满分7分)解:CD ∥AB ,CD =AB ,……………………………………………………………….2分 理由是:∵CE =BF ,∴CE ﹣EF =BF ﹣EF ,∴CF =BE ,…………………………………………………………………………3分在△AEB 和△CFD 中,⎪⎩⎪⎨⎧=∠=∠=AE DF BEA CFD BE CF ,∴△AEB ≌△CFD (SAS )……5分∴CD =AB ,∠C =∠B , …………………………………6分∴CD ∥AB .………………………………………………………………………7分22.(本题满分8分)证明:∵△ABC 和△ADE 是等边三角形,AD 为BC 边上的中线,∴AE =AD ,AD 为∠BAC 的角平分线,即∠CAD =∠BAD=30°,……………………………………………………..3分∴∠BAE =∠BAD =30°,………………………………………………………5分在△ABE 和△ABD 中,⎪⎩⎪⎨⎧=∠=∠=AB AB BAD BAE AD AE ,∴△ABE ≌△ABD (SAS ),…..7分∴BE =BD .…………………………………………………………………….8分23.(本题满分8分)证明:∵在△BDC 中,BC =DB ,∴∠BDC =∠BCD .………………………………………………………….2分∵∠DBE =30° ∴∠BDC =∠BCD =75°,……………………….4分∵∠ACB =45°, ∴∠DOC =30°+45°=75°. ……………….…6分∴∠DOC =∠BDC , ∴△CDO 是等腰三角形. ……………………8分24.(本题满分10分)解:(1)三个点位置标注正确……………………………………………………3分点C 的坐标为(﹣2,0);…………………………………………….4分(2)如图,由题意知S △BCD =BC •AD =15,BC =5,∴AD =6,则OP =3,………..8分∴点P 的坐标为(0,3)或(0,﹣3).…………………………....10分25.(本题满分10分)解:(1)证明:∵ DC ∥AB , ∴∠OBE =∠ODF . ………………1分在△OBE 与△ODF 中,∵ ⎪⎩⎪⎨⎧=∠=∠∠=∠DF BE DOFBOE ODFOBE∴△OBE ≌△ODF (AAS ). ………3分 ∴BO =DO . ………………………………4分(2)解:∵EF ⊥AB ,DC ∥AB ,∴∠GEA=∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°. ……………………6分 ∴AE =GE …………………………………7分 ∵BD ⊥AD , ∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°. ……………………………………8分 ∴DG =DO∴OF =FG = 2 ……………………………………9分 由(1)可知,OE = OF =2, ∴GE =OE +OF +FG =6∴AE = GE =6 ………………………10分26.(本题满分13分)(1)解:HL ;……………………………………………………………………..1分(2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,…………………………………………………………..2分∵∠ABC =∠DEF ,且∠ABC 、∠DEF 都是钝角,∴180°﹣∠ABC =180°﹣∠DEF ,即∠CBG =∠FEH ,…………………………………………………4分在△CBG 和△FEH 中,⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC H G FEH CBG ,∴△CBG ≌△FEH (AAS ),∴CG =FH ,……………………………………………………….…6分 在Rt △ACG 和Rt △DFH 中,,∴Rt △ACG ≌Rt △DFH (HL ),∴∠A =∠D ,…………………………………………………………8分在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DF AC DEF ABC D A ,∴△ABC ≌△DEF (AAS );………………………………………..10分(3)解:如图,△DEF 和△ABC 不全等;………………………13分。
学校班级姓名第一学期期中质量监测八年级期中数学试题总分:100分时间:100分钟一、选择题(每小题3分,共30分)1.下列图形中不是轴对称图形的是()2.若下列各组值代表线段的长度,以它们为边不能构成三角形的是()A. 3,8,4 B.4,9,6 C.15,20,8 D.9,15,83.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是()A. AC=AD B.BC=BD C.∠C=∠D D.∠ABC=∠ABD4.如图,△ABC中,∠B=∠C,D是BC上一点,DE⊥BC交AC于E,DF⊥AB,垂足为F,若∠AED=160°,则∠EDF等于()A.50°B.60°C.70°D.80°5.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A. 4cm B.6cm C.8cm D.10cm6.下列条件中,能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=DEC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,△ABC的周长=△DEF的周长7.如图,AB=AC,BD=EC,AF⊥BC,则图中全等三角形有()A. 2对 B.3对 C.4对D.5对8.如图,平面直角坐标系xOy中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A. 2 B.3 C. 4 D.59.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A. 2个 B.3个 C.4个 D.5个10.如图,△ABC中,∠ACB=75°,D为BC上一点,CE⊥AD于E,且AE=CE,点E在AB的垂直平分线上,若CD=2,则BD的长为()A. 2 B.C.D.1二、填空题(每格2分,共12分)11.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_ .12.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于_________ .13.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是_________.14.锐角△ABC中,∠A=50°,两条高线BD、CE所在直线交于点H,则∠BHC的度数为_________ .15.如图,点P关于OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若PMN的周长=8厘米,则CD为_________ 厘米.16.如图,△ABC中,AC=8,AB=10,△ABC的面积为30,AD平分∠BAC,F、E 分别为AC、AD上两动点,连接CE、EF,则CE+EF的最小值为_________ .三、解答题(共58分)17.(6分)如图:线段AB与直线EF不相交,在直线EF上求作一点C,使△ABC周长最短.(不要求写作法,但请保留作图痕迹)18.(6分)如图,点D、E在△ABC的边B C上,AD=AE,BD=CE,求证:AB=AC.19.(6分)已知:如图,AB=AD,AC=AE,∠1=∠2,求证:∠DEB=∠2.20.(6分)已知等腰三角形的周长为24cm,腰长为xcm,底边为ycm,请你用x的式子表示y,并求x的取值范围.21.(6分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC沿y轴翻折,则翻折后点A的对应点的坐标是_________ .(2)若△DBC与△ABC全等,请画出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.22.(8分)△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC.(1)如图1,连接DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,若BF=4,求CE的长.23.(8分)已知四边形ABCD中,AD∥BC,AB=AD,∠ABC=2∠C=2α,点E在AD上,点F在DC上.(1)如图1,若α=45°,∠BDC的度数为_________ ;(2)如图2,当α=45°,∠BEF=90°时,求证:EB=EF;(3)如图3,若α=30°,则当∠BEF= _________ 时,使得EB=EF成立?(请直接写出结果)24.(12分)如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B 的坐标为(3,1),求点M的坐标.参考答案及分析题号答案考点难度系数重难点/关键得分点1 D 轴对称的定义★☆☆☆☆一个图形沿着一条直线对折,能够完全重合2 A 三角形边之间的关系★☆☆☆☆两边之和大于第三边3 B 三角形全等的证明★☆☆☆☆三角形全等的条件没有SSA4 C 等腰三角形中角度的计算★☆☆☆☆互补和互余5 B 角平分线★★☆☆☆角平分线上的点到角两边的距离相等6 D 全等三角形的判定及性质★☆☆☆☆全等三角形中对应边相等,对应角相等7 C 简单全等三角形的判定★★☆☆☆判定三角形全等的五种方法SSS,SAS,ASA.AAS,HL8 C 等腰三角行的概念★★☆☆☆有两条边相等的三角形是等腰三角行9 A 共顶点的等腰三角行中,多次证明全等三角形★★★★☆(1)利用公共角证明全等(2)八字模型求角之间的关系(3)有一个角是60度的等腰三角行是等边三角形10 B 特殊三角形中线段的计算★★☆☆☆(1)直角三角形中,30度角所对的直角边等于斜边的一半(2)垂直平分线上的点到线段两端的距离相等11 240°多边行内角和的计算★☆☆☆☆(n-2)*180度12 36 °等腰三角形中角度的计算★☆☆☆☆等角对等边13 (1,4)利用全等求角坐标★★☆☆☆等腰直角三角行常见辅助线做法,过A,B向x轴做垂线,然后证明全等14 130°三角形中求角度★☆☆☆☆(1)互余(2)人字模型15 8 线段的垂直平分线★☆☆☆☆利用垂直平分线的性质把,周长转化为CD的长度16 6 最短路径★★☆☆☆(1)已知面积,底求高(2)角平分线的应用17 略马饮水的最短路径问题★☆☆☆☆做A关于EF的对称点D,连接DB与EF的交点,既为所求C18 略简单全等三角形的证明书写★☆☆☆☆注重书写过程的完整性19 见后文详解利用公共角证明全等★☆☆☆☆∠1=∠2得到∠EAD=∠CAB20 见后文详解三角形边之间的关系,求范围★☆☆☆☆两边之和大于第三边,两边之差小余第三边21 见后文详解三角形在直角坐标系中的翻折,旋转★★★☆☆沿y轴翻折,既关于y轴对称,求点坐标22 见后文详解角度的计算★★☆☆☆(1)连接CD证明全等,利用对应边相等,得到三角形CBD是顶角为45度的等腰三角形(2)特殊三角形中,利用垂直构造全等23 见后文详解四边形中的证明与计算★★★★☆利用特殊角与平行线,通过辅助线构造全等三角形24 见后文详解三角形在平面直角坐标系中的综合应用★★★★☆利用对称和角平分线,做垂直辅助线,得到角度之间的关系,最后利用设而不求的思想,得出结论解答题详细答案及评分标准17.作图5分,写作法3分18.省略19.(本题8分)证明:∵∠1=∠2 ∴∠1+∠BAE=∠2+∠BAE∴∠DAB=∠CAB …………2 ′在△DAB和△CAB中AD=AB∠DAB=∠CABAE=AC∴△DAB ≌△CAB(SAS) …………5 ′∴∠DEA=∠C∵∠DEB+∠AEC+∠DEA=∠2+∠AEC+ ∠C= 180°………7 ′∴∠DEB=∠2 …………8 ′20.(1)242y x=-…………3 ′(2)由三角形三边之间的关系可得2x y>即2242>-解得6x xx>………5 ′有因0y>即2420x<…………7 ′->解得12x∴x的范围是612<< (8)x21题.(本题8分)(1)(2,3)…………2′(2)画图每个1分……5′(-5,3),(-5,-3),(-2,-3)--------8分21.(1)(2,3)…………2′(2)画图每个1分……5′(-5,3),(-5,-3),(-2,-3)--------8分22题.(本题10分)解:(1)连CD,易证△BDE≌△ACD ,∵∠B=45°,BC=BD,∴∠BCD=67.5° ∵∠ACB=90° ,∴∠ACD=22.5°=∠BDE. …………5′(2)连CD,由(1)知CD=DE,∴∠DCE=∠DEC=67.5°,∴∠CDE=45°,过D作DM⊥CE于M,∴CM=ME,∠CDM=∠EDM=∠BDE=22.5°,∵EM⊥DM,EF⊥DB,∴EF=EM,易证 EF=BF,∴CE=2BF=8. …………10′23题.(本题8分)答案:(1)∠BDC=90°…………2′(2)解法一:连BD,由(1)知∠BDC=90°,作EM//AB交BD于M,易证△EMD为等腰直角△,△EDF≌△EMB 故EB=EF解法二:连BD,作EN∥BD交AB于N,证△ENB≌△FDE. …………7′(3)120°. …………10′24题.(本题12分)解:(1)等腰三角形,证明略. …………3′(2)解法一:设BC交y轴于K,过A作AN⊥y轴于N,易证AN=CK=BK,△ANG≌△BKG,∴AG=BG,又易证AG=OG,故设∠OAG=∠AOG=x,∠GOB=∠GBO=y,∴2x+2y=180°,x+y=90°,∴AO⊥BO.解法二:连BC,∵B、C关于y轴对称,AC//y轴,∴AC⊥BC,易证△COD≌△BOE(HL),∴∠DCO=∠ABO,∴∠BAC+∠BOC=180° ,设∠BAO=∠CAO=x,∠OBC=∠OCB=y,∴2x+∠BOC=180° ,又2y+∠BOC=180° ,∴x=y,故∠OAC=∠OBC,∴∠AOB=∠ACB=90°,∴AO⊥OB. …………7′(3)连BC,则∠ACB=90°,∵∠ACM=45° ,∴CM平分∠ACB,又AM平分∠BAC,∴BM平分∠ABC,设∠ABM=∠CBM=z,由(2)可得∠OMB=x+z,∠OBM=y+z=x+z ∴∠OMB=∠OBM,∴OM=OB 故△OBM为等腰直角△,作MG⊥x轴于G,BH⊥x轴于H,易证△OMG≌△OBH,∴OG=BH=1,MG=OH=3∴M(-1,3).…………12′中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
2019-2020学年第一学期期中质量监测
八年级数学试题
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列四个图形中,不是轴对称图形的是( )
A .
B .
C .
D .
2.下列计算中正确的是( )
A .2352a b a +=
B .44a a a ÷=
C .248a a a •=
D .236
()a a -=- 3.下列长度的三条线段,能组成三角形的是( )
A .1,2,3
B .1,3,4
C .2,3,5
D .2,3,4
4.若3a x =,5b x =,则a b x
+等于( ) A .53 B .35 C .15 D .8
5.下列结论正确的是( )
A .有两个锐角相等的两个直角三角形全等
B .顶角和底边对应相等的两个等腰三角形全等
C .一条斜边对应相等的两个直角三角形全等
D .两个等边三角形全等
6.如图,AB CD 、相交于点O ,CD AB =,补充一个条件,可以使得ABD ∆≌CDB ∆,以下选项中,不符合要求的是( )
A .A C ∠=∠
B .ABD CDB ∠=∠
C .A
D CB = D .OD OB =
7.点(3,2)M 关于y 轴对称的点的坐标为( )
A .(3,2)-
B .(3,2)--
C .(3,2)-
D .(2,3)-
8.等腰三角形的一个角等于80o
,则它的底角是( )
A .40o
B .50o
C .80o
D .50o 或80o
9.如图,ABC ∆中,10AB =,边BC 的垂直平分线DE 分别交AB BC 、于E D 、,且6AC =,则ACE ∆的周长为( )
A .16
B .18
C .22
D .26
10.如图,已知ABC ∆与CDE ∆均是等边三角形,点B C E 、、在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC FG 、,则下列结论:①AE BD =;②BF AG =;③//FG BE ;④CF CG =,其中正确的个数是( )
A .1
B .2
C .3
D .4
二、填空题(每题4分,满分24分,将答案填在答题纸上)
11.如果ABC ∆≌DEF ∆,且ABC ∆的周长为100cm ,则DEF ∆的周长为 cm .
12.如图,在Rt ABC ∆中,90C ∠=o ,CD AB ⊥,1BD =,30A ∠=o
,则BC = .
13.正多边形的一个内角是108o ,则这个多边形是 边形.
14.计算:201520161
()22-⨯= .
15.如图,将ABC ∆沿经过点A 的直线AD 折叠,使边AC 所在的直线与边AB 所在直线重合,点C 落在边AB 上的点E 处,若45B ∠=o ,20BDE ∠=o ,则C ∠= o .
16.如图,点P 是AOB ∠内任意一点,5OP cm =,点M 和点N 分别是射线OA 和射线OB 上的动点,PMN ∆周长的最小值是5cm ,则AOB ∠的度数是 o .
三、解答题:9小题,共86分.解答应写出文字说明、证明过程或演算步骤.
17. 计算:
(1)32
()x x x •÷-
(2)2342(2)(3)a b a b ab -•-
18. 一个多边形的内角和比它的外角和的3倍少180o ,这个多边形的边数是多少?
19. 如图,在ABC ∆和DEF ∆中,B E C F 、、、在同一直线上,AB DE =,
ABC DEF ∠=∠,BE CF =,求证://AC DF .
20. 如图,在平面直角坐标系中,(0,2)A ,(6,4)B ,(2,5)C .
(1)在图中作出ABC ∆关于y 轴对称的111A B C ∆,并写出点111A B C 、、的坐标(直接写答案): 1A ;1B ;1C ;
(2)111A B C ∆的面积为 ;
(3)在x 轴上画出点P ,使PB PA +最小.
21. 求证:如果一个三角形有两个角相等,那么这两个角所对的两条边也相等.
22.如图,ABC ∆中,ABC C ∠=∠,BD 是ABC ∠的平分线,48A ∠=o ,求BDC ∠的度数.
23.如图,ABC ∆中,90A ∠=o ,AB AC =.
(1)请用尺规作图的方法在边AC 上确定点P ,使得BP 平分ABC ∠;(保留作图痕迹,不写作法)
(2)在(1)的条件下,求证:BC AB AP =+.
24.如图,ABC ∆是边长为3的等边三角形,P 是AB 边上的一个动点,由A 向B 运动(P 不与A B 、重合),Q 是BC 延长线上一动点,与点P 同时以相同的速度由C 向BC 延长线方向运动(Q 不与C 重合)
(1)当90BPQ ∠=o
时,求AP 的长.
(2)过P 作PE AC ⊥于点E ,连结PQ 交AC 于D ,在点P Q 、的运动过程中,线段DE 的长是否发生变化?若不变,求出DE 的长度;若变化,求出变化范围.
25.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.
(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.
(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E , 求证:AE 是ABC ∆的一条特异线;
(3)如图3,若ABC ∆是特异三角形,30A ∠=o
,C ∠为钝角,不写过程,直接写出所有可能的C ∠的度数.。