新高考数学大一轮复习第二章函数概念与基本初等函数I2-1函数及其表示教师用书
- 格式:doc
- 大小:70.00 KB
- 文档页数:15
§2.7 函数的图象考纲展示► 1.理解点的坐标与函数图象的关系.2.会利用平移、对称、伸缩变换,由一个函数图象得到另一个函数的图象.3.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题.考点1 作函数的图象1。
描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点).(3)描点,连线.2.图象变换(1)平移变换:①y=f(x)的图象错误!y=________的图象;②y=f(x)的图象错误!y=________的图象.(2)对称变换:①y=f(x)的图象错误!y=________的图象;②y=f(x)的图象错误!y=________的图象;③y=f(x)的图象错误!y=________的图象;④y=a x(a>0且a≠1)的图象错误!y=log a x(a〉0且a≠1)的图象.(3)伸缩变换:①y=f(x)的图象y=________的图象;②y=f(x)的图象错误!y=________的图象.(4)翻转变换:①y=f(x)的图象错误!y=________的图象;②y=f(x)的图象错误!y=________的图象.答案:(1)①f(x-a) ②f(x)+b(2)①-f(x)②f(-x) ③-f(-x)(3)①f(ax) ②af(x)(4)①|f(x)|②f(|x|)(1)[教材习题改编]对于函数f(x)=错误!有下列三个说法:①图象是一个点和一条直线(去掉点(0,0));②图象是两条直线;③图象是一个点和两条射线.其中正确的说法是________.(填序号)答案:①解析:当x≠0时,图象是一条直线去掉点(0,0),当x=0时,图象是一个点.(2)[教材习题改编]为了得到函数y=log3(x+3)-2的图象,只需把函数y=log3x的图象上所有的点向________平移________个单位长度,再向________平移________个单位长度.答案:左 3 下2图象变换中的误区:平移的方向;平移的大小.(1)将函数y=f(-x)的图象向右平移1个单位长度得到函数________的图象.答案:y=f(-x+1)解析:将函数y=f(-x)的图象向右平移1个单位长度得到函数y=f(-(x-1))=f(-x+1)的图象(注意平移方向).(2)把函数y=f(2x)的图象向右平移________个单位长度得到函数y=f(2x-3)的图象.答案:错误!解析:本题易理解为向右平移3个单位长度,事实上把函数y =f(2x)的图象向右平移3个单位长度后得到的是函数y=f(2(x-3))=f(2x-6)的图象。
(浙江专用)2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】1.函数实质上就是数集上的一种映射,即函数是一种特殊的映射,而映射可以看作函数概念的推广.2.函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数有几段,它的图象就由几条曲线组成,同时要注意每段曲线端点的虚实,而且横坐标相同的地方不能有两个及两个以上的点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数的定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B.2.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.3.已知f (1x)=x 2+5x ,则f (x )=________.答案5x +1x2(x ≠0)解析 令1x=t (t ≠0),则f (t )=1t 2+51t =5t +1t2,∴f (x )=5x +1x2(x ≠0).4.(2016·诸暨期末)已知函数f (x )=⎩⎪⎨⎪⎧-x +10,x >0,x 2+4,x ≤0,则f [f (0)]=________;若f [f (x 0)]=2,则x 0=________. 答案 6 2或-2解析 由题意知f (0)=4,f (4)=6,设f (x 0)=t ,则f (t )=2,当t >0时,-t +10=2,得t =8,当t <0时,t 2+4=2,无解,当x 0>0时,由-x 0+10=8,得x 0=2,当x 0≤0时,由x 20+4=8,得x 0=-2,所以x 0=2或-2.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1.综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列所给图象中函数图象的个数为( )A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2答案 (1)B (2)D解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.(2)A 中两个函数的定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同.故选D.题型二 函数的定义域问题 命题点1 求函数的定义域例2 (2016·临安中学一模)(1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f 2xx -1的定义域是________. 答案 (1)A (2)[0,1)解析 (1)由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0.所以函数f (x )的定义域为(-3,0].(2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f 2xx -1的定义域为________________. 答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1, ∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3)解析 (1)因为函数f (x )的定义域为R , 所以22210x ax a+--≥对x ∈R 恒成立,即22022x ax a+-≥,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=的定义域为( ) A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)(2)若函数y = 的定义域为R ,则实数m 的取值范围是( ) A .(0,34]B .(0,34)C .[0,34]D .[0,34)答案 (1)B (2)D 解析 (1)要使函数y有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log (2)0x ->⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2. (2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立, 需⎩⎪⎨⎪⎧ m >0,Δ=m2-4×m ×3<0,即⎩⎪⎨⎪⎧m >0,m4m -或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m4m-解得0<m <34.由①②得0≤m <34,故选D.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x)·x -1中,用1x代替x ,得f (1x )=2f (x )·1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )·x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法. (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x +1=t (t ≥1), ∴f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1(x ≥1).(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x ,得f (-x )+3f (x )=-2x +1, ∴f (-x )=-3f (x )-2x +1, 代入f (x )+3f (-x )=2x +1, 可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________________.(2)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1, +∞)思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解. (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.答案 (1)-34(2)C1.下列各组函数中,表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 答案 C解析 A 项中两函数的定义域不同;B 项、D 项中两函数的对应关系不同,故选C. 2.函数f (x )=10+9x -x2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]答案 D解析 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,x >1,x ≠2,解得1<x <2或2<x ≤10,所以函数f (x )的定义域为(1,2)∪(2,10].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 (待定系数法) 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,故选B.4.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x,x <0,则f (f (-2))等于( )A .-1 B.14 C.12 D.32答案 C解析 ∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 5.(2016·余杭六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2答案 B解析 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4, 即-x 20=4,无解,所以x 0=2, 故选B.*6.(2016·嘉兴期末)已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12) D .(0,12) 答案 C解析 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧ 1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧ a <12,a ≥-1,∴-1≤a <12. 即a 的取值范围是[-1,12). 7.(2016·济南模拟)已知函数f (1-x 1+x)=x ,则f (2)=________. 答案 -13解析 令t =1-x 1+x ,则x =1-t 1+t, ∴f (t )=1-t 1+t ,即f (x )=1-x 1+x, ∴f (2)=1-21+2=-13. 8.(2017·金华十校调研)已知函数f (x )=⎩⎪⎨⎪⎧ 3x -1,x ≤1,f x -,x >1,则f (f (2))=________,值域为______.答案 2 (-1,2]解析 ∵f (2)=f (1)=2,∴f [f (2)]=f (2)=2.又x >1时,f (x )=f (x -1),∴f (x )的值域即为x ≤1时函数值的范围.又x ≤1时,-1<3x -1≤2,故f (x )的值域为(-1,2].9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. *10.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f x +,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值.解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去).综上所述,a =32或a = 5. 12.若函数f (x )=x 2-1x 2+1. (1)求f 2f 12的值;(2)求f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)的值. 解 (1)∵f (2)=35,f (12)=-35, ∴f 2f 12=-1.(2)∵f (1x )=1x 2-11x 2+1=1-x 2x 2+1=-f (x ), ∴f (3)+f (13)=0,f (4)+f (14)=0,…,f (2 017)+f (12 017)=0, 故f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)=0. 13.(2016·嘉兴期末)已知函数f (x )=x 2+mx +n (m ,n ∈R ),f (0)=f (1),且方程x =f (x )有两个相等的实数根.(1)求函数f (x )的解析式;(2)当x ∈[0,3]时,求函数f (x )的值域.解 (1)∵f (x )=x 2+mx +n 且f (0)=f (1),∴n =1+m +n ,∴m =-1,∴f (x )=x 2-x +n .∵方程x =f (x )有两个相等的实数根,∴方程x =x 2-x +n 有两个相等的实数根,即方程x 2-2x +n =0有两个相等的实数根,∴(-2)2-4n =0,∴n =1.∴f (x )=x 2-x +1.(2)由(1),知f (x )=x 2-x +1.此函数的图象是开口向上,对称轴为直线x =12的抛物线,∴当x =12时,f (x )有最小值f (12). ∴f (12)=(12)2-12+1=34,∵f (0)=1,f (3)=32-3+1=7,∴当x ∈[0,3]时,函数f (x )的值域是[34,7].。
知识点最新考纲函数及其表示了解函数、映射的概念.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法). 了解简单的分段函数,会用分段函数解决简单的问题.函数的基本性质理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. 理解函数的最大(小)值的含义,会求简单函数的最大(小)值. 指数函数了解指数幂的含义,掌握有理指数幂的运算.理解指数函数的概念,掌握指数函数的图象、性质及应用. 对数函数理解对数的概念,掌握对数的运算,会用换底公式. 理解对数函数的概念,掌握对数函数的图象、性质及应用. 幂函数了解幂函数的概念.掌握幂函数y =x,y =x 2,y =x 3,y =1x,y =x 12的图象和性质.函数与方程 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法. 函数模型及其应用了解指数函数、对数函数以及幂函数的变化特征.能将一些简单的实际问题转化为相应的函数问题,并给予解决.第1讲 函数及其表示1.函数与映射的概念函数映射两集合 A 、B设A,B 是两个非空的数集设A,B 是两个非空的集合 对应关系 f :A→B如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A→B 为从集合A 到集合B 的一个函数称对应f :A→B 为从集合A 到集合B 的一个映射记法 y =f(x)(x∈A)对应f :A→B 是一个映射2.函数的有关概念(1)函数的定义域、值域在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)函数y =f(x)的图象与直线x =a 最多有2个交点.( ) (2)函数f(x)=x 2-2x 与g(t)=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(4)若A =R,B ={x|x >0},f :x→y=|x|,则对应关系f 是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( )(6)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化]1.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x2x+1D .y =x 2+1解析:选B.对于A,函数y =(x +1)2的定义域为{x|x≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,定义域和对应关系都相同,是相等函数;对于C,函数y =x2x +1的定义域为{x|x≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,定义域相同,但对应关系不同,不是相等函数,故选B.2.(必修1P25B 组T1改编)函数y =f(x)的图象如图所示,那么f(x)的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________.答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]3.(必修1P19T1(2)改编)函数y =x -2·x +2的定义域是________.解析:⎩⎪⎨⎪⎧x -2≥0,x +2≥0,⇒x ≥2.答案:[2,+∞) [易错纠偏](1)对函数概念理解不透彻; (2)换元法求解析式,反解忽视范围.1.已知集合P ={x|0≤x≤4},Q ={y|0≤y≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x→y=12x ;②f:x→y=13x ;③f:x→y=23x ;④f:x→y=x.解析:对于③,因为当x =4时,y =23×4=83∉Q,所以③不是函数.答案:③2.已知f(x)=x -1,则f(x)=________.解析:令t =x,则t≥0,x =t 2,所以f(t)=t 2-1(t≥0),即f(x)=x 2-1(x≥0). 答案:x 2-1(x≥0)函数的定义域(1)(2020·杭州学军中学月考)函数f(x)=x +2x2lg (|x|-x )的定义域为________.(2)若函数y =f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域为________.(3)若函数f(x)=2x 2+2ax -a -1的定义域为R,则a 的取值范围为________. 【解析】 (1)要使函数f(x)有意义,必须使⎩⎪⎨⎪⎧x +2x 2≥0,|x|-x>0,|x|-x≠1,解得x<-12.所以函数f(x)的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<-12.(2)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x<1,即定义域是[0,1).(3)因为函数f(x)的定义域为R,所以2x 2+2ax -a -1≥0对x∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.【答案】 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<-12 (2)[0,1) (3)[-1,0](变条件)若将本例(2)中“函数y =f(x)”改为“函数y =f(x +1)”,其他条件不变,如何求解? 解:由函数y =f(x +1)的定义域为[0,2], 得函数y =f(x)的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x≠1.所以g(x)的定义域为⎣⎢⎡⎭⎪⎫12,1∪⎝ ⎛⎦⎥⎤1,32.函数定义域的求解策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f(x)的定义域为(a,b),则解不等式a <g(x)<b 即可求出y =f(g(x))的定义域;②若y =f(g(x))的定义域为(a,b),则求出g(x)在(a,b)上的值域即得y =f(x)的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简; (2)求出定义域后,一定要将其写成集合或区间的形式.1.(2020·浙江新高考优化卷)函数f(x)=3x21-x+lg(-3x 2+5x +2)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,1 C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 解析:选B.依题意可得,要使函数有意义,则有⎩⎪⎨⎪⎧1-x>0-3x 2+5x +2>0,解得-13<x<1.故选B. 2.(2020·浙江新高考预测卷)已知集合A ={x|y =x -x 2},B ={x|y =ln(1-x)},则A∪B=( ) A .[0,1] B .[0,1) C .(-∞,1]D .(-∞,1)解析:选C.因为由x -x 2≥0得0≤x≤1, 所以A ={x|0≤x≤1}. 由1-x>0得x<1,所以B ={x|x<1},所以A∪B={x|x≤1}. 故选C.3.若函数f(x)=mx 2+mx +1的定义域为实数集,则实数m 的取值范围是________. 解析:由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m≠0时,则⎩⎪⎨⎪⎧m>0,Δ=m 2-4m≤0, 解得0<m≤4. 综上可得0≤m≤4. 答案:[0,4]求函数的解析式(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f(x)的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x,求f(x)的解析式;(3)已知f(x)是二次函数,且f(0)=0,f(x +1)=f(x)+x +1,求f(x); (4)已知函数f(x)满足f(-x)+2f(x)=2x,求f(x)的解析式.【解】 (1)(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f(x)=x 2-2,x ≥2或x≤-2,故f(x)的解析式是f(x)=x 2-2,x ≥2或x≤-2. (2)(换元法)令2x +1=t 得x =2t -1,代入得f(t)=lg 2t -1,又x >0,所以t >1,故f(x)的解析式是f(x)=lg2x -1,x >1. (3)(待定系数法)设f(x)=ax 2+bx +c(a≠0), 由f(0)=0,知c =0,f(x)=ax 2+bx, 又由f(x +1)=f(x)+x +1,得a(x +1)2+b(x +1)=ax 2+bx +x +1, 即ax 2+(2a +b)x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f(x)=12x 2+12x,x ∈R.(4)(解方程组法)由f(-x)+2f(x)=2x,① 得f(x)+2f(-x)=2-x,② ①×2-②,得,3f(x)=2x +1-2-x.即f(x)=2x +1-2-x3. 所以f(x)的解析式是f(x)=2x +1-2-x3,x ∈R.求函数解析式的4种方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法. (3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f(x)与f ⎝ ⎛⎭⎪⎫1x 或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).[提醒] 求解析式时要注意新元的取值范围.1.(2020·杭州学军中学月考)已知f(x +1)=x +2x,则f(x)的解析式为f(x)=__________. 解析:法一:设t =x +1,则x =(t -1)2(t≥1);代入原式有f(t)=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f(x)=x 2-1(x≥1).法二:因为x +2x =(x)2+2x +1-1=(x +1)2-1,所以f(x +1)=(x +1)2-1(x +1≥1), 即f(x)=x 2-1(x≥1). 答案:x 2-1(x≥1)2.设y =f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x +2,则f(x)的解析式为f(x)=________.解析:设f(x)=ax 2+bx +c(a≠0), 则f′(x)=2ax +b =2x +2, 所以a =1,b =2,f(x)=x 2+2x +c. 又因为方程f(x)=0有两个相等的实根, 所以Δ=4-4c =0,c =1,故f(x)=x 2+2x +1. 答案:x 2+2x +1分段函数(高频考点)分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题多为容易题或中档题.主要命题角度有:(1)分段函数求值;(2)已知函数值,求参数的值(或取值范围); (3)与分段函数有关的方程、不等式问题. 角度一 分段函数求值(2020·杭州萧山中学高三适应性考试)若函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,f (x +2),x ≤0,g(x)=x 2,则f(8)=________;g[f(2)]=________;f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=________.【解析】 f(8)=log 28=3,g[f(2)]=g(log 22)=g(1)=1,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫log 212=f(-1)=f(1)=log 21=0.【答案】 3 1 0角度二 已知函数值求参数的值(或取值范围)(2020·瑞安市龙翔高中高三月考)设函数f(x)=⎩⎪⎨⎪⎧-2x 2+1(x≥1)log 2(1-x )(x<1),若f(f(a))=3,则a =________.【解析】 函数f(x)=⎩⎪⎨⎪⎧-2x 2+1(x≥1)log 2(1-x )(x<1),若f(f(a))=3,当a≥1时,可得f(-2a 2+1)=3,可得log 2(2a 2)=3,解得a =2.当a<1时,可得f(log 2(1-a))=3,log 2(1-a)≥1时,可得-2(log 2(1-a))2+1=3,解得a∈∅. log 2(1-a)<1时,可得log 2(1-log 2(1-a))=3,即1-log 2(1-a)=8,log 2(1-a)=-7,1-a =1128,可得a =127128.综上得a 的值为2或127128.【答案】 2或127128角度三 与分段函数有关的方程、不等式问题(2020·镇海中学5月模拟)已知函数f(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x-2,x ≤-1,(x -2)(|x|-1),x >-1,则f(f(-2))=________,若f(x)≥2,则x 的取值范围为________.【解析】 由分段函数的表达式得f(-2)=⎝ ⎛⎭⎪⎫12-2-2=4-2=2,f(2)=0,故f(f(-2))=0.若x≤-1,由f(x)≥2得⎝ ⎛⎭⎪⎫12x-2≥2,得⎝ ⎛⎭⎪⎫12x≥4,则2-x≥4,得-x≥2,则x≤-2,此时x≤-2.若x >-1,由f(x)≥2得(x -2)(|x|-1)≥2, 即x|x|-x -2|x|≥0,若x≥0,得x 2-3x≥0,则x≥3或x≤0,此时x≥3或x =0; 若-1<x <0,得-x 2+x≥0,得x 2-x≤0,得0≤x≤1,此时无解. 综上得x≥3或x =0或x≤-2. 【答案】 0 x≥3或x =0或x≤-2(1)根据分段函数解析式,求函数值的解题思路先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)已知分段函数的函数值,求参数值的解题思路先假设所求的值在分段函数定义区间的各段上,构造关于参数的方程.然后求出相应自变量的值,切记要代入检验.(3)已知分段函数的函数值满足的不等式,求自变量取值范围的解题思路 依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.1.(2020·浙江教育评价高三第二次联考))设函数f(x)=⎩⎪⎨⎪⎧-2x 2+1,x ≥1log 2(1-x ),x<1,则f(f(4))=( )A .2B .3C .5D .6解析:选C.f(f(4))=f(-31)=log 2 32=5.故选C.2.(2020·Z20联盟开学联考)已知函数f(x)=⎩⎪⎨⎪⎧|x +2|-1,x ≤0log 2 x ,x>0,若f(a)≤1,则实数a 的取值范围是( )A .(-∞,-4]∪[2,+∞)B .[-1,2]C .[-4,0)∪(0,2]D .[-4,2]解析:选D.f (a)≤1⇔⎩⎪⎨⎪⎧a ≤0,|a +2|-1≤1,或⎩⎪⎨⎪⎧a>0,log 2 a ≤1, 解得-4≤a≤0或0<a≤2,即a∈[-4,2],故选D.核心素养系列2 数学抽象——函数的新定义问题以学习过的函数相关知识为基础,通过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新问题.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f(x)的图象恰好经过n(n∈N *)个整点,则称函数f(x)为n 阶整点函数.给出下列函数:①f(x)=sin 2x ;②g(x)=x 3; ③h(x)=⎝ ⎛⎭⎪⎫13x;④φ(x)=ln x.其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④【解析】 对于函数f(x)=sin 2x,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g(x)=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h(x)=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C.由x 2+1=1得x =0,由x 2+1=3得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.若定义在R 上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是( )A .f(x)=cos xB .f(x)=sin xC .f(x)=x 2-2xD .f(x)=x 3-2x解析:选D.A 中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B 中,当x =k π(k∈Z)时,满足f(x)=f(-x),不符合题意;C 中,由f(x)=f(-x),得x 2-2x =x 2+2x,解得x =0,不符合题意;D 中,由f(x)=f(-x),得x 3-2x =-x 3+2x,解得x =0或x =±2,满足题意,故选D.[基础题组练]1.函数f(x)=1x -2+ln(3x -x 2)的定义域是( )A .(2,+∞)B .(3,+∞)C .(2,3)D .(2,3)∪(3,+∞)解析:选C.由⎩⎪⎨⎪⎧x -2>0,3x -x 2>0,解得2<x <3,则该函数的定义域为(2,3),故选C. 2.(2020·嘉兴一模)已知a 为实数,设函数f(x)=⎩⎪⎨⎪⎧x -2a,x<2,log 2(x -2),x ≥2,则f(2a+2)的值为( )A .2aB .aC .2D .a 或2解析:选B.因为函数f(x)=⎩⎪⎨⎪⎧x -2a,x<2,log 2(x -2),x ≥2,所以f(2a +2)=log 2(2a+2-2)=a,故选B. 3.下列哪个函数与y =x 相等( ) A .y =x2xB .y =2log 2xC .y =x 2D .y =(3x)3解析:选D.y =x 的定义域为R,而y =x2x的定义域为{x|x∈R 且x≠0},y =2log 2x 的定义域为{x|x∈R ,且x>0},排除A 、B ;y =x 2=|x|的定义域为x∈R ,对应关系与y =x 的对应关系不同,排除C ;而y =(3x)3=x,定义域和对应关系与y =x 均相同,故选D.4.(2020·杭州七校联考)已知函数f(x)=x 3+cos ⎝ ⎛⎭⎪⎫π2-x +1,若f(a)=2,则f(-a)的值为( )A .3B .0C .-1D .-2解析:选B.因为函数f(x)=x 3+cos ⎝ ⎛⎭⎪⎫π2-x +1,所以f(x)=x 3+sin x +1,因为f(a)=2,所以f(a)=a 3+sin a +1=2,所以a 3+sin a =1,所以f(-a)=(-a)3+sin(-a)+1=-1+1=0.故选B.5.已知a,b 为两个不相等的实数,集合M ={a 2-4a,-1},N ={b 2-4b +1,-2},f :x→x 表示把M 中的元素x 映射到集合N 中仍为x,则a +b 等于( )A .1B .2C .3D .4解析:选D.由已知可得M =N,故⎩⎪⎨⎪⎧a 2-4a =-2b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0, 所以a,b 是方程x 2-4x +2=0的两根,故a +b =4. 6.存在函数f(x)满足:对于任意x∈R 都有( ) A .f(sin 2x)=sin x B .f(sin 2x)=x 2+x C .f(x 2+1)=|x +1| D .f(x 2+2x)=|x +1| 解析:选D.取特殊值法.取x =0,π2,可得f(0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f(0)=0,π2+π,这与函数的定义矛盾, 所以选项B 错误;取x =1,-1,可得f(2)=2,0,这与函数的定义矛盾, 所以选项C 错误;取f(x)=x +1,则对任意x∈R 都有f(x 2+2x)=x 2+2x +1=|x +1|,故选项D 正确.7.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f(x)的解析式为( )A .f(x)=x1+x2B .f(x)=-2x1+x2C .f(x)=2x1+x 2 D .f(x)=-x1+x2解析:选C.令1-x 1+x =t,则x =1-t 1+t ,所以f(t)=(1+t )2-(1-t )2(1+t )2+(1-t )2=2t1+t 2,故函数f(x)的解析式为f(x)=2x1+x2,故选C. 8.设函数f(x)=⎩⎪⎨⎪⎧-1,x >0,1,x <0,则(a +b )+(a -b )·f(a -b )2(a≠b)的值为( )A .aB .bC .a,b 中较小的数D .a,b 中较大的数解析:选C.若a -b >0,即a >b,则f(a -b)=-1, 则(a +b )+(a -b )·f(a -b )2=12[(a +b)-(a -b)]=b(a >b);若a -b <0,即a <b,则f(a -b)=1, 则(a +b )+(a -b )·f(a -b )2=12[(a +b)+(a -b)]=a(a <b).综上,选C.9.(2020·绍兴高三教学质量调研)设函数f(x)=⎩⎪⎨⎪⎧2x +n ,x <1log 2x ,x ≥1,若f(f(34))=2,则实数n 为( )A .-54B .-13C.14D.52解析:选D.因为f(34)=2×34+n =32+n,当32+n <1,即n <-12时,f(f(34))=2(32+n)+n =2,解得n =-13,不符合题意;当32+n≥1,即n≥-12时,f(f(34))=log 2(32+n)=2,即32+n =4,解得n =52,故选D. 10.设f(x),g(x)都是定义在实数集上的函数,定义函数(f·g)(x):对任意的x∈R ,(f·g)(x)=f(g(x)).若f(x)=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g(x)=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则( )A .(f·f)(x)=f(x)B .(f·g)(x)=f(x)C .(g·f)(x)=g(x)D .(g·g)(x)=g(x)解析:选A.对于A,(f·f)(x)=f(f(x))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f(x)=x >0,(f·f)(x)=f(x)=x ;当x <0时,f(x)=x 2>0,(f·f)(x)=f(x)=x 2;当x =0时,(f·f)(x)=f 2(x)=0=02,因此对任意的x∈R ,有(f·f)(x)=f(x),故A 正确,选A.11.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x<0时,f(x)=x +1;当0≤x≤2时,f(x)=-12x,所以f(x)=⎩⎪⎨⎪⎧x +1,-1≤x<0,-12x ,0≤x ≤2.答案:f(x)=⎩⎪⎨⎪⎧x +1,-1≤x<0,-12x ,0≤x ≤212.若f(x)对于任意实数x 恒有2f(x)-f(-x)=3x +1,则f(1)=________. 解析:令x =1,得2f(1)-f(-1)=4,① 令x =-1,得2f(-1)-f(1)=-2,② 联立①②得f(1)=2. 答案:213.函数f(x),g(x)分别由下表给出.x 1 2 3 x 1 2 3 f(x)131g(x)321则f(g(1))的值为________;满足f(g(x))>g(f(x))的x 的值为________. 解析:因为g(1)=3,f(3)=1,所以f(g(1))=1.当x =1时,f(g(1))=f(3)=1,g(f(1))=g(1)=3,不合题意. 当x =2时,f(g(2))=f(2)=3,g(f(2))=g(3)=1,符合题意. 当x =3时,f(g(3))=f(1)=1,g(f(3))=g(1)=3,不合题意. 答案:1 214.设函数f(x)=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f(x)≥1的自变量x 的取值范围是________.解析:f(x)≥1等价于⎩⎪⎨⎪⎧x <1,(x +1)2≥1或⎩⎨⎧x ≥1,4-x -1≥1. 由⎩⎪⎨⎪⎧x <1,(x +1)2≥1,得x≤-2或0≤x<1. 由⎩⎨⎧x≥1,4-x -1≥1,得1≤x≤10. 综上所述,x 的取值范围是x≤-2或0≤x≤10. 答案:(-∞,-2]∪[0,10]15.已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x ≥1.若f(1-a)=f(1+a),则a 的值为________.解析:当a>0时,1-a<1,1+a>1,此时f(1-a)=2(1-a)+a =2-a,f(1+a)=-(1+a)-2a =-1-3a.由f(1-a)=f(1+a)得2-a =-1-3a,解得a =-32.不合题意,舍去. 当a<0时,1-a>1,1+a<1,此时f(1-a)=-(1-a)-2a =-1-a, f(1+a)=2(1+a)+a =2+3a,由f(1-a)=f(1+a)得-1-a =2+3a,解得a =-34.综上可知,a 的值为-34.答案:-3416.(2020·杭州市富阳二中高三(上)开学考试)已知函数f(x)=⎩⎪⎨⎪⎧x 2,x ≤1x +6x -6,x>1,则f(f(-2))=________,f(x)的最小值是________.解析:由题意可得f(-2)=(-2)2=4, 所以f(f(-2))=f(4)=4+64-6=-12;因为当x≤1时,f(x)=x 2,由二次函数可知当x =0时,函数取最小值0; 当x>1时,f(x)=x +6x-6,由基本不等式可得f(x)=x +6x -6≥2x ·6x-6 =26-6,当且仅当x =6x 即x =6时取到等号,即此时函数取最小值26-6;因为26-6<0,所以f(x)的最小值为26-6. 答案:-1226-617.已知函数f(x)=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x<0.若a[f(a)-f(-a)]>0,则实数a 的取值范围为________.解析:易知a≠0.由题意得,当a>0时,则-a<0,故a[f(a)-f(-a)]=a(a 2+a -3a)>0,化简可得a 2-2a>0,解得a>2或a<0.又因为a>0,所以a>2.当a<0时,则-a>0,故a[f(a)-f(-a)]=a[-3a -(a 2-a)]>0,化简可得a 2+2a>0,解得a>0或a<-2,又因为a<0,所以a<-2.综上可得,实数a 的取值范围为(-∞,-2)∪(2,+∞).答案:(-∞,-2)∪(2,+∞)[综合题组练]1.设x∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x>0,0,x =0,-1,x<0,则( )A .|x|=x|sgn x|B .|x|=xsgn|x|C .|x|=|x|sgn xD .|x|=xsgn x解析:选D.当x<0时,|x|=-x,x|sgn x|=x,x ·sgn|x|=x,|x|sgn x =(-x)·(-1)=x,排除A,B,C,故选D.2.(2020·宁波市九校期末联考)已知下列各式:①f(|x|+1)=x 2+1;②f(1x 2+1)=x ;③f(x 2-2x)=|x|;④f(|x|)=3x+3-x.其中存在函数f(x)对任意的x∈R 都成立的序号为________.解析:①f(|x|+1)=x 2+1,由t =|x|+1(t≥1),可得|x|=t -1,则f(t)=(t -1)2+1,即有f(x)=(x -1)2+1对x∈R 均成立;②f(1x 2+1)=x,令t =1x 2+1(0<t≤1),x =±1t-1,对0<t≤1,y =f(t)不能构成函数,故不成立;③f(x 2-2x)=|x|,令t =x 2-2x,若t <-1时,x ∈∅;t≥-1,可得x =1±1+t (t≥-1),y =f(t)不能构成函数;④f(|x|)=3x+3-x,当x≥0时,f(x)=3x+3-x;当x <0时,f(-x)=3x+3-x;将x 换为-x 可得f(x)=3x+3-x;故恒成立.综上可得①④符合条件.答案:①④3.设函数f(x)=⎩⎪⎨⎪⎧ax +b ,x<0,2x ,x ≥0,且f(-2)=3,f(-1)=f(1).(1)求f(x)的解析式; (2)画出f(x)的图象.解:(1)由f(-2)=3,f(-1)=f(1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1,所以f(x)=⎩⎪⎨⎪⎧-x +1,x<0,2x ,x ≥0.(2)f(x)的图象如图:4.已知f(x)=x 2-1,g(x)=⎩⎪⎨⎪⎧x -1,x>0,2-x ,x<0.(1)求f(g(2))与g(f(2)); (2)求f(g(x))与g(f(x))的表达式.解:(1)g(2)=1,f(g(2))=f(1)=0;f(2)=3,g(f(2))=g(3)=2. (2)当x>0时,f(g(x))=f(x -1)=(x -1)2-1=x 2-2x ; 当x<0时,f(g(x))=f(2-x)=(2-x)2-1=x 2-4x +3.所以f(g(x))=⎩⎪⎨⎪⎧x 2-2x ,x>0,x 2-4x +3,x<0.同理可得g(f(x))=⎩⎪⎨⎪⎧x 2-2,x<-1或x>1,3-x 2,-1<x<1. 5.设计一个水渠,其横截面为等腰梯形(如图),要求满足条件AB +BC +CD =a(常数),∠ABC =120°,写出横截面的面积 y 关于腰长x 的函数,并求它的定义域和值域.解:如图,因为AB +BC +CD =a,所以BC =EF =a -2x>0, 即0<x<a2,因为∠ABC=120°,所以∠A=60°,所以AE =DF =x 2,BE =32x,y =12(BC +AD)·BE=3x 4⎣⎢⎡⎦⎥⎤2(a -2x )+x 2+x 2=34(2a -3x)x =-34(3x 2-2ax) =-334⎝ ⎛⎭⎪⎫x -a 32+312a 2, 故当x =a 3时,y 有最大值312a 2,它的定义域为⎝ ⎛⎭⎪⎫0,a 2,值域为⎝ ⎛⎦⎥⎤0,312a 2. 6.已知函数f(x)对任意实数x 均有f(x)=-2f(x +1),且f(x)在区间[0,1]上有表达式f(x)=x 2. (1)求f(-1),f(1.5);(2)写出f(x)在区间[-2,2]上的表达式.解:(1)由题意知f(-1)=-2f(-1+1)=-2f(0)=0, f(1.5)=f(1+0.5)=-12f(0.5)=-12×14=-18.(2)当x∈[0,1]时,f(x)=x 2;当x∈(1,2]时,x -1∈(0,1],f(x)=-12f(x -1)=-12(x -1)2;当x∈[-1,0)时,x +1∈[0,1), f(x)=-2f(x +1)=-2(x +1)2; 当x∈[-2,-1)时,x +1∈[-1,0),f(x)=-2f(x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f(x)=⎩⎪⎨⎪⎧-12(x -1)2,x ∈(1,2]x 2,x ∈[0,1]-2(x +1)2,x ∈[-1,0)4(x +2)2,x ∈[-2,-1).。
新高考数学大一轮复习第二章函数概念与基本初等函数I2-1函数及其表示教师用书1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】1.函数实质上就是数集上的一种映射,即函数是一种特殊的映射,而映射可以看作函数概念的推广.2.函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数有几段,它的图象就由几条曲线组成,同时要注意每段曲线端点的虚实,而且横坐标相同的地方不能有两个及两个以上的点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.( ×)(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ×)(3)映射是特殊的函数.( ×)(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( ×)(5)分段函数是由两个或几个函数组成的.( ×)1.(教材改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )答案B解析A中函数的定义域不是[-2,2],C中图象不表示函数,D中函数值域不是[0,2],故选B.2.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg x C.y=2x D.y=1x答案D解析函数y=10lg x的定义域为{x|x>0},值域为{y|y>0},所以与其定义域和值域分别相同的函数为y=,故选D.3.已知f()=x2+5x,则f(x)=________.答案(x≠0)解析令=t(t≠0),则f(t)=+5=,∴f(x)=(x≠0).4.(2016·诸暨期末)已知函数f(x)=则f[f(0)]=________;若f[f(x0)]=2,则x0=________.答案 6 2或-2解析由题意知f(0)=4,f(4)=6,设f(x0)=t,则f(t)=2,当t>0时,-t+10=2,得t=8,当t<0时,t2+4=2,无解,当x0>0时,由-x0+10=8,得x0=2,当x0≤0时,由x+4=8,得x0=-2,所以x0=2或-2.题型一函数的概念例1 有以下判断:①f(x)=与g(x)=表示同一函数;②函数y=f(x)的图象与直线x=1的交点最多有1个;③f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;④若f(x)=|x-1|-|x|,则f=0.其中正确判断的序号是________.答案②③解析对于①,由于函数f(x)=的定义域为{x|x∈R且x≠0},而函数g(x)=的定义域是R,所以二者不是同一函数;对于②,若x=1不是y=f(x)定义域内的值,则直线x=1与y=f(x)的图象没有交点,如果x=1是y=f(x)定义域内的值,由函数定义可知,直线x=1与y=f(x)的图象只有一个交点,即y=f(x)的图象与直线x=1最多有一个交点;对于③,f(x)与g(t)的定义域、值域和对应关系均相同,所以f(x)和g(t)表示同一函数;对于④,由于f=-=0,所以f=f(0)=1.综上可知,正确的判断是②③.思维升华函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列所给图象中函数图象的个数为( )A.1 B.2C.3 D.4(2)下列各组函数中,表示同一个函数的是( )A.y=x-1和y=x2-1x+1B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=和g(x)=xx答案(1)B (2)D解析(1)①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象,故选B.(2)A中两个函数的定义域不同;B中y=x0的x不能取0;C中两函数的对应关系不同.故选D.题型二函数的定义域问题命题点1 求函数的定义域例2 (2016·临安中学一模)(1)函数f(x)=+的定义域为( ) A.(-3,0] B.(-3,1]C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1](2)若函数y=f(x)的定义域为[0,2],则函数g(x)=的定义域是________.答案(1)A (2)[0,1)解析(1)由题意得解得-3<x≤0.所以函数f(x)的定义域为(-3,0].(2)由0≤2x≤2,得0≤x≤1,又x-1≠0,即x≠1,所以0≤x<1,即g(x)的定义域为[0,1).引申探究例2(2)中,若将“函数y=f(x)的定义域为[0,2]”改为“函数y=f(x+1)的定义域为[0,2]”,则函数g(x)=的定义域为________________.答案[,1)∪(1,]解析由函数y=f(x+1)的定义域为[0,2],得函数y=f(x)的定义域为[1,3],令得≤x≤且x≠1,∴g(x)的定义域为[,1)∪(1,].命题点2 已知函数的定义域求参数范围例3 (1)若函数f(x)=的定义域为R ,则a 的取值范围为________(2)若函数y =的定义域为R ,则实数a 的取值范围是________. 答案 (1)[-1,0] (2)[0,3)解析 (1)因为函数f(x)的定义域为R ,所以对x∈R 恒成立,22210x ax a +--≥即,x2+2ax -a≥0恒成立,22022x ax a +-≥因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.(2)因为函数y =的定义域为R ,所以ax2+2ax +3=0无实数解,即函数y =ax2+2ax +3的图象与x 轴无交点.当a =0时,函数y =3的图象与x 轴无交点;当a≠0时,则Δ=(2a)2-4·3a<0,解得0<a<3.综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f(x)的定义域为(a ,b),则解不等式a<g(x)<b 即可求出y =f(g(x))的定义域;②若y =f(g(x))的定义域为(a ,b),则求出g(x)在(a ,b)上的值域即得f(x)的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f(x)的定义域为[3,6],则函数y =的定义域为(A .[,+∞)B .[,2)C .(,+∞)D .[,2)(2)若函数y = 的定义域为R ,则实数m 的取值范围是( )A .(0,]B .(0,)C .[0,]D .[0,) 答案 (1)B (2)D解析 (1)要使函数y需满足))⇒⇒≤x<2.(2)要使函数的定义域为R ,则mx2+4mx +3≠0恒成立.①当m =0时,得到不等式3≠0,恒成立;②当m≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧ m>0,Δ=-4×m×3<0,即或即⎩⎪⎨⎪⎧ m<0,-解得0<m<.由①②得0≤m<,故选D.题型三 求函数解析式例4 (1)已知f(+1)=lg x ,则f(x)=________.(2)已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,则f(x)=________.(3)已知函数f(x)的定义域为(0,+∞),且f(x)=2f()·-1,则f(x)=________.答案 (1)lg(x>1) (2)2x +7 (3)+13解析 (1)(换元法)令t =+1(t>1),则x =,∴f(t)=lg ,即f(x)=lg(x>1).(2)(待定系数法)设f(x)=ax +b(a≠0),则3f(x +1)-2f(x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴解得⎩⎪⎨⎪⎧ a =2,b =7,∴f(x)=2x +7.(3)(消去法)在f(x)=2f()·-1中,用代替x ,得f()=2f(x)·-1,将f()=-1代入f(x)=2f()·-1中,可求得f(x)=+.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的解析式.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).(1)已知f(+1)=x +2,求f(x)的解析式;(2)已知一次函数f(x)满足f(f(x))=4x -1,求f(x);(3)已知f(x)+3f(-x)=2x +1,求f(x).解 (1)设+1=t(t≥1),∴f(t)=(t -1)2+2(t -1)=t2-1,∴f(x)=x2-1(x≥1).(2)设f(x)=kx +b(k≠0),则f(f(x))=k2x +kb +b ,即k2x +kb +b =4x -1,∴∴或⎩⎪⎨⎪⎧ k =-2,b =1.故f(x)=2x -或f(x)=-2x +1.(3)以-x 代替x ,得f(-x)+3f(x)=-2x +1,∴f(-x)=-3f(x)-2x +1,代入f(x)+3f(-x)=2x +1,可得f(x)=-x +.2.分类讨论思想在函数中的应用典例 (1)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a 的值为________________.(2)(2015·山东)设函数f(x)=则满足f(f(a))=2f(a)的a 的取值范围是( )A.B .[0,1] C. D .[1, +∞)思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解.(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 解析 (1)当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a),可得2(1-a)+a =-(1+a)-2a ,解得a =-,不合题意.当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a),可得-(1-a)-2a =2(1+a)+a ,解得a =-,符合题意.(2)由f(f(a))=2f(a),得f(a)≥1.当a<1时,有3a -1≥1,∴a≥,∴≤a<1.当a≥1时,有2a≥1,∴a≥0,∴a≥1.综上,a≥,故选C.答案 (1)- (2)C1.下列各组函数中,表示同一函数的是( )A .y =与y =x +3B .y =-1与y =x -1C .y =x0(x≠0)与y =1(x≠0)D .y =2x +1,x∈Z 与y =2x -1,x∈Z答案 C解析 A 项中两函数的定义域不同;B 项、D 项中两函数的对应关系不同,故选C.2.函数f(x)=的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10] 答案 D解析 要使函数f(x)有意义,则x 需满足⎩⎪⎨⎪⎧ 10+9x -x2≥0,x -1>0,-,即⎩⎪⎨⎪⎧ +-,x>1,x≠2,解得1<x<2或2<x≤10,所以函数f(x)的定义域为(1,2)∪(2,10].3.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )A .g(x)=2x2-3xB .g(x)=3x2-2xC .g(x)=3x2+2xD .g(x)=-3x2-2x 答案 B解析 (待定系数法)设g(x)=ax2+bx +c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴解得⎩⎪⎨⎪⎧ a =3,b =-2,c =0,∴g(x)=3x2-2x ,故选B.4.(2015·陕西)设f(x)=则f(f(-2))等于( )A .-1 B. C. D.32答案 C解析 ∵f(-2)=2-2=>0,则f(f(-2))=f =1-=1-=,故选C.5.(2016·余杭六校联考)已知函数f(x)=x|x|,若f(x0)=4,则x0的值为( )A .-2B .2C .-2或2 D. 2答案 B解析 当x≥0时,f(x)=x2,f(x0)=4,即x =4,解得x0=2.当x<0时,f(x)=-x2,f(x0)=4,即-x =4,无解,所以x0=2,故选B.*6.(2016·嘉兴期末)已知f(x)=的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,)C .[-1,)D .(0,) 答案 C解析 要使函数f(x)的值域为R ,需使⎩⎪⎨⎪⎧ 1-2a>0,ln 1≤1-2a +3a ,∴∴-1≤a<.即a 的取值范围是[-1,).7.(2016·济南模拟)已知函数f()=x ,则f(2)=________. 答案 -13解析 令t =,则x =,∴f(t)=,即f(x)=,∴f(2)==-.8.(2017·金华十校调研)已知函数f(x)=则f(f(2))=________,值域为______.答案 2 (-1,2]解析 ∵f(2)=f(1)=2,∴f[f(2)]=f(2)=2.又x>1时,f(x)=f(x -1),∴f(x)的值域即为x≤1时函数值的范围.又x≤1时,-1<3x -1≤2,故f(x)的值域为(-1,2].9.(2015·浙江)已知函数f(x)=⎩⎪⎨⎪⎧ x +2x-3,x≥1,+,x <1,则f(f(-3))=________,f(x)的最小值是________.答案 0 2-3解析 ∵f(-3)=lg[(-3)2+1]=lg 10=1,∴f(f(-3))=f(1)=0,当x≥1时,f(x)=x +-3≥2-3,当且仅当x =时,取等号,此时f(x)min =2-3<0;当x <1时,f(x)=lg(x2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f(x)min =0.∴f(x)的最小值为2-3.*10.具有性质:f =-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①f(x)=x -;②f(x)=x +;③f(x)=⎩⎪⎨⎪⎧ x ,0<x<1,0,x =1,-1x ,x>1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f(x)=x -,f =-x =-f(x),满足;对于②,f =+x =f(x),不满足;对于③,f =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f =⎩⎪⎨⎪⎧1x ,x>1,0,x =1,-x ,0<x<1, 故f =-f(x),满足.综上可知,满足“倒负”变换的函数是①③.11.已知f(x)=⎩⎪⎨⎪⎧ +,-2<x<0,2x +1,0≤x<2,x2-1,x≥2.(1)求f(-)的值;(2)若f(a)=4且a>0,求实数a 的值.解 (1)由题意,得f(-)=f(-+1)=f(-)=f(-+1)=f()=2×+1=2.(2)当0<a<2时,由f(a)=2a +1=4,得a =,当a≥2时,由f(a)=a2-1=4,得a =或a =-(舍去).综上所述,a =或a =.12.若函数f(x)=.(1)求的值;(2)求f(3)+f(4)+…+f(2 017)+f()+f()+…+f()的值. 解 (1)∵f(2)=,f()=-,∴=-1.(2)∵f()===-f(x),∴f(3)+f()=0,f(4)+f()=0,…,f(2 017)+f()=0,故f(3)+f(4)+…+f(2 017)+f()+f()+…+f()=0. 13.(2016·嘉兴期末)已知函数f(x)=x2+mx+n (m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(1)求函数f(x)的解析式;(2)当x∈[0,3]时,求函数f(x)的值域.解(1)∵f(x)=x2+mx+n且f(0)=f(1),∴n=1+m+n,∴m=-1,∴f(x)=x2-x+n.∵方程x=f(x)有两个相等的实数根,∴方程x=x2-x+n有两个相等的实数根,即方程x2-2x+n=0有两个相等的实数根,∴(-2)2-4n=0,∴n=1.∴f(x)=x2-x+1.(2)由(1),知f(x)=x2-x+1.此函数的图象是开口向上,对称轴为直线x=的抛物线,∴当x=时,f(x)有最小值f().∴f()=()2-+1=,∵f(0)=1,f(3)=32-3+1=7,∴当x∈[0,3]时,函数f(x)的值域是[,7].。