【真卷】2018年广东省惠州市中考数学一模试卷和解析
- 格式:doc
- 大小:423.00 KB
- 文档页数:22
2018年广东省中考数学试卷一.选择题(共5小题)1.(2011河南)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。
解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.2.(2018广东)地球半径约为6400000米,用科学记数法表示为()A. 0.64×107B. 6.4×106C. 64×105D. 640×104考点:科学记数法—表示较大的数。
解答:解:6400000=6.4×106.故选B.3.(2018广东)数据8、8、6、5、6、1、6的众数是()A. 1 B. 5 C. 6 D. 8考点:众数。
解答:解:6出现的次数最多,故众数是6.故选C.4.(2018广东)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。
解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.5.(2018广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A. 5 B. 6 C. 11 D. 16考点:三角形三边关系。
解答:解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.二.填空题(共5小题)6.(2018广东)分解因式:2x2﹣10x=2x(x﹣5).考点:因式分解-提公因式法。
解答:解:原式=2x(x﹣5).故答案是:2x(x﹣5).7.(2018广东)不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。
解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.(2018广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.考点:圆周角定理。
解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:509.(2018广东)若x,y为实数,且满足|x﹣3|+=0,则()2018的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。
年广东省惠州市惠阳区中考数学模拟试卷(月份)一、选择题(每小题分,共分).(分)下列各数中,比﹣小的数是()...﹣.﹣.(分)如图是由个大小相同的正方体组合而成的几何体,其俯视图是().....(分)目前,中国网民已经达到人,将数据用科学记数法表示为().×.×.×.×.(分)关于一组数据:,,,,,下列说法错误的是().平均数是.众数是.中位数是.方差是.(分)在平面直角坐标系中.点(,﹣)关于轴对称的点的坐标是().(,).(﹣,﹣).(﹣,).(﹣,).(分)下列运算正确的是().().÷.•.﹣.(分)若关于的方程﹣的解是,则的值是().﹣..﹣..(分)如图,∥,⊥于,∠°,则∠().°.°.°.°.(分)如图,△中,,,点在上,且平分∠,则的长为().....(分)如图,抛物线(,,为常数,且≠)的图象交轴于(﹣,)和点,交轴负半轴于点,抛物线对称轴为﹣.下列结论中,错误的结论是().>.方程的解是﹣,.﹣>.二、填空题(每小题分,共分).(分)﹣的立方根是..(分)函数的自变量的取值范围是..(分)正六边形的每个外角是度..(分)计算:()﹣﹣﹣;.(分)如图,以点为位似中心,将△缩小后得到△′′′,已知′,若△的面积为,则△′′′的面积为;.(分)如图,在△中,,将△绕点顺时针旋转°后得到△,点经过的路径为弧,则图中阴影部分的面积是.三、解答题(一)(每小题分,共分).(分)解不等式组:,并在所给的数轴上表示解集..(分)先化简,再求值:(﹣),其中﹣,..(分)参加足球联赛的每两队之间都要进行一场比赛,共要比赛场,共有多少个队参加足球联赛?四、解答题(二)(每小题分,共分).(分)如图,△中,∠°,⊥,垂足为.()求作∠的平分线,分别交,于,两点;(要求:尺规作图,保留作图痕迹,不写作法)()证明..(分)西宁市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:()此次抽查的样本容量为,请补全条形统计图;()全市约有万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?()七年级()班从选择社会实践的名女生和名男生中选派名参加校级社会实践活动,请你用树状图或列表法求出恰好选到男女的概率是多少?并列举出所有等可能的结果..(分)如图,将△沿着射线方向平移至△′′′,使点′落在∠的外角平分线上,连结′.()判断四边形′′的形状,并说明理由;()在△中,∠°,,∠,求′的长.五、解答题(三)(每小题分,共分).(分)如图,已知直线与反比例函数的图象交于(,)、两点,与轴、轴分别相交于(,)、两点.()求直线的解析式;()连接、,求△的面积;()直接写出关于的不等式<的解集是..(分)如图,在△中,,以为直径的⊙与边交于点,⊥,垂足为,交的延长线于点.()求证:是⊙的切线;()若∠°,,求的长.()若,,求的长..(分)如图,在平面直角坐标系中,矩形的两边分别在轴和轴上,,,现有两动点、分别从、同时出发,在线段上沿方向以每秒的速度匀速运动,在线段上沿方向以每秒的速度匀速运动、设运动时间为秒.()用的式子表示△的面积;()求证:四边形的面积是一个定值,并求出这个定值;()当△与△和△相似时,抛物线经过、两点,过线段上一动点作轴的平行线交抛物线于,当线段的长取最大值时,求直线把四边形分成两部分的面积之比.年广东省惠州市惠阳区中考数学模拟试卷(月份)参考答案与试题解析一、选择题(每小题分,共分).(分)下列各数中,比﹣小的数是()...﹣.﹣【解答】解:﹣>﹣,∴﹣<﹣,故选:..(分)如图是由个大小相同的正方体组合而成的几何体,其俯视图是()....【解答】解:俯视图有列,从左往右小正方形的个数是,,,故选:..(分)目前,中国网民已经达到人,将数据用科学记数法表示为().×.×.×.×【解答】解:×.故选:..(分)关于一组数据:,,,,,下列说法错误的是().平均数是.众数是.中位数是.方差是【解答】解:、平均数为,此选项正确;、出现次数最多,即众数为,此选项正确;、中位数是,此选项错误;、方差为×[(﹣)(﹣)×(﹣)(﹣)],此选项正确;故选:..(分)在平面直角坐标系中.点(,﹣)关于轴对称的点的坐标是().(,).(﹣,﹣).(﹣,).(﹣,)【解答】解:点(,﹣)关于轴的对称点的坐标是(,),故选:..(分)下列运算正确的是().().÷.•.﹣【解答】解:、(),错误,故本选项不符合题意;、÷,错误,故本选项不符合题意;、•,正确,故本选项符合题意;、﹣,错误,故本选项不符合题意;故选:..(分)若关于的方程﹣的解是,则的值是().﹣..﹣.【解答】解:把代入方程得:﹣,解得:,故选:..(分)如图,∥,⊥于,∠°,则∠().°.°.°.°【解答】解:∵∥,∠°,∴∠∠°,又∵⊥,∴∠°﹣∠°,故选:..(分)如图,△中,,,点在上,且平分∠,则的长为()....【解答】解:∵,是∠的角平分线,∴,⊥,在△中,∵,∴,故选:..(分)如图,抛物线(,,为常数,且≠)的图象交轴于(﹣,)和点,交轴负半轴于点,抛物线对称轴为﹣.下列结论中,错误的结论是().>.方程的解是﹣,.﹣>.【解答】解:①观察图象可知:对称轴在轴左侧,∴>,∵抛物线与轴交于负半轴,∴<,∴<,故①错误;②(﹣,),抛物线对称轴为﹣,∴(,),故②正确,③∵抛物线与轴有两个交点,∴﹣>,故③正确;④∵抛物线对称轴为﹣,∴﹣﹣,∴, 故④正确;本题选择错误的,故选:.二、填空题(每小题分,共分).(分)﹣的立方根是 ﹣ .【解答】解:∵(﹣)﹣,∴﹣ 故答案为:﹣..(分)函数的自变量的取值范围是 ≠的一切实数 .【解答】解:﹣≠解得:≠.(分)正六边形的每个外角是 度.【解答】解:正六边形的一个外角度数是:÷°.故答案为:..(分)计算:()﹣﹣﹣ ; 【解答】解:原式﹣.故答案为:..(分)如图,以点为位似中心,将△缩小后得到△′′′,已知′,若△的面积为,则△′′′的面积为 ;【解答】解:∵′,∴,∵以点为位似中心,将△缩小后得到△′′′,∴△′′′∽△,∴.∴,∵△的面积为,∴△′′′的面积为:.故答案为:..(分)如图,在△中,,将△绕点顺时针旋转°后得到△,点经过的路径为弧,则图中阴影部分的面积是π.【解答】解:∵根据旋转的性质知∠°,△≌△,∴△﹣△,∴阴影扇形△﹣△扇形π.故答案是:π.三、解答题(一)(每小题分,共分).(分)解不等式组:,并在所给的数轴上表示解集.【解答】解:,由不等式①,得≥﹣,由不等式②,得<,故原不等式组的解集是﹣≤<,在数轴表示如下图所示,..(分)先化简,再求值:(﹣),其中﹣,.【解答】解:原式÷×,当﹣,时,原式﹣..(分)参加足球联赛的每两队之间都要进行一场比赛,共要比赛场,共有多少个队参加足球联赛?【解答】解:设共有个队参加比赛,则每队要参加(﹣)场比赛,根据题意得:,整理得:﹣﹣,解得:,﹣(不合题意,舍去).答:共有个队参加足球联赛.四、解答题(二)(每小题分,共分).(分)如图,△中,∠°,⊥,垂足为.()求作∠的平分线,分别交,于,两点;(要求:尺规作图,保留作图痕迹,不写作法)()证明.【解答】()解:如图所示,为所求作;()证明:∵平分∠,∴∠∠,∵∠°∴∠∠°,∵⊥,∴∠°,∴∠∠°,∵∠∠,∴∠∠,又∵∠∠,∴∠∠,∴..(分)西宁市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):.课外阅读;.家务劳动;.体育锻炼;.学科学习;.社会实践;.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:()此次抽查的样本容量为,请补全条形统计图;()全市约有万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?()七年级()班从选择社会实践的名女生和名男生中选派名参加校级社会实践活动,请你用树状图或列表法求出恰好选到男女的概率是多少?并列举出所有等可能的结果.【解答】解:()总人数÷,故答案为,组人数﹣﹣﹣﹣﹣人,条形图如图所示:()参加体育锻炼的人数的百分比为,用样本估计总体:×人,答:全市学生中选择体育锻炼的人数约有人.()设两名女生分别用,,一名男生用表示,树状图如下:共有种情形,恰好一男一女的有种可能,所以恰好选到男女的概率是..(分)如图,将△沿着射线方向平移至△′′′,使点′落在∠的外角平分线上,连结′.()判断四边形′′的形状,并说明理由;()在△中,∠°,,∠,求′的长.【解答】解:()四边形′′是菱形,理由如下:由平移的性质可得:'',且'∥'∴四边形′′是平行四边形,由'∥'得:∠'∠'',由题意得:平分∠',∴∠'∠'',∴∠'∠',∴',∴平行四边形′′是菱形;()在△中,∠°,,∴∠,∴,∴,由平移的性质可得:'',由()得四边形′′是菱形,∴',∴''﹣''﹣.五、解答题(三)(每小题分,共分).(分)如图,已知直线与反比例函数的图象交于(,)、两点,与轴、轴分别相交于(,)、两点.()求直线的解析式;()连接、,求△的面积;()直接写出关于的不等式<的解集是<<或>..【解答】解:()将(,)代入,得,∴(,),将(,)和(,)分别代入,得:,解得:﹣,,∴直线解析式为:﹣.()联立,解得或,∵(,),∴(,),∴△△﹣△••﹣••××﹣××,∴△的面积为.()观察图象可知:不等式<的解集是<<或>.故答案为<<或>..(分)如图,在△中,,以为直径的⊙与边交于点,⊥,垂足为,交的延长线于点.()求证:是⊙的切线;()若∠°,,求的长.()若,,求的长.【解答】解:()连接,∵,∴∠∠,∵,∴∠∠,∴∠∠,∴∥,∵⊥,∴⊥,即⊥,∴是⊙的切线;()∵,∴,由()得:∠∠°,∴△是等边三角形,∴∠°∴的长为π,即的长π;()连接,∵⊥∠∠在△中,,设,则,∵是直径,∴∠∠°,∴∠∠°,在△中,∠∠°,∴∠∠,在△中,∠,∵,∴,则,∴,即直径,则,∵∥,∴△∽△,∴即: ,解得:,即的长为..(分)如图,在平面直角坐标系中,矩形的两边分别在轴和轴上,,,现有两动点、分别从、同时出发,在线段上沿方向以每秒的速度匀速运动,在线段上沿方向以每秒的速度匀速运动、设运动时间为秒. ()用的式子表示△的面积;()求证:四边形的面积是一个定值,并求出这个定值;()当△与△和△相似时,抛物线经过、两点,过线段上一动点作轴的平行线交抛物线于,当线段的长取最大值时,求直线把四边形分成两部分的面积之比.【解答】()解:∵,,,∴﹣.∴△(<<);()证明:∵四边形矩形﹣△﹣△;∴四边形的面积为一个定值,且等于;()解:当△与△和△相似时,△必须是一个直角三角形,依题意只能是∠°, 又∵与不平行,∴∠不可能等于∠,∠不可能等于∠,∴根据相似三角形的对应关系只能是△∽△∽△,∴,∴,解得:,经检验:是方程的解且符合题意,不是方程的解,舍去;(从边长关系和速度考虑),∴,∴直线的解析式为:,此时(,);∵(,)且抛物线经过、两点,∴抛物线是,直线是:.设(,)、(,).∵在上运动,∴∵与交于、两点且抛物线的顶点是;∴当时,<∴﹣﹣﹣(﹣)﹣﹣(﹣)﹣﹣﹣﹣﹣,∴当时,有最大值是;∴设与交于点则,;∴△∴△:五边形:∴当取最大值时两部分面积之比是:.。
广东省惠州一中中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.-2018的相反数是()A. 2018B.C.D.2.下列运算中,正确的是()A. B. C. D.3.某种细胞的平均直径是0.00000085米,将0.00000085用科学记数法表示为()A. B. C. D.4.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.下列式子中是最简二次根式的是()A. B. C. D.6.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.B.C.D.7.这七人成绩的中位数是()A. 22B. 89C. 92D. 968.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. B. C. D.9.如果等腰三角形的两边长分别是方程x2-10x+21=0的两根,那么它的周长为()A. 17B. 15C. 13D. 13或1710.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.因式分解:x3-9x=______.12.函数的自变量x的取值范围是______.13.闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是______.14.一个多边形的每个外角都等于60°,这个多边形的内角和为______.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为______(结果保留π).三、计算题(本大题共2小题,共13.0分)17.先化简,再求值:(1-)÷,其中a=-1.18.泗州塔,又名西山塔,位于惠州西湖的西上之巅,是惠州著名的旅游景点之一.小明运用所学的数学知识对塔进行测量,测量方法如图所示:在塔的前方C点处,用长为1.5米(即CE=1.5米)的测角仪测得塔顶A的仰角为30°,往前走26米到达D点,在D点处测得塔顶A的仰角为45°,请你用上述数据,帮(结果保留1位小数,参考数据:cos30°≈0.87,tan30°≈0.58,助小明求出塔AB的高度.sin45°≈0.71)四、解答题(本大题共7小题,共53.0分)19.计算:()-1-2sin30°+(3-π)0.20.如图,已知▱ABCD.(1)作∠B的平分线交AD于点E;(用尺规作图法,保留作图痕迹,不要求写作法)(2)若▱ABCD的周长为20,CD=4,求DE的长.21.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,但总费用不超过5720元,这所学校最多购买了多少个B型号篮球?22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有______人,a+b=______,m=______;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.23.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx+b<成立的x的取值范围;(3)求△AOB的面积.24.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2-GB2=DF•GF.25.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点A的坐标为(0,2),点B在抛物线y=ax2+ax-2上.(1)点B的坐标为______,抛物线的关系式为______;(2)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD,当△BCD 的面积最大时,求点D的坐标;(3)若将三角板ABC沿射线BC平移得到△A′B′C′,当C′在抛物线上时,问此时四边形ACC′A′是什么特殊四边形?请证明之,并判断点A′是否在抛物线上,请说明理由.答案和解析1.【答案】A【解析】解:-2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】C【解析】解:A、3a2-a2=2a2,故A选项错误;B、(a2)3=a6,故B选项错误;C、a3•a6=a9,故C选项正确;D、(2a2)2=4a4,故D选项错误.故选:C.根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后即可求得答案,注意排除法在解选择题中的应用.本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方的知识.注意理清指数的变化是解题的关键.3.【答案】A【解析】解:将0.00000085用科学记数法表示为8.5×10-7.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】C【解析】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】D【解析】解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、被开方数含能开得尽方的因数,不是最简二次根式;D、是最简二次根式;故选:D.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.【答案】B【解析】解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选:B.已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.7.【答案】D【解析】解:这七人成绩的中位数是96,故选:D.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.本题考查了确定一组数据的中位数的求法.注意找中位数的时候一定要先排好顺序,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.8.【答案】C【解析】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-20°=25°.故选:C.根据两直线平行,内错角相等求出∠3,再求解即可.本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.9.【答案】A【解析】解:∵等腰三角形的两边长分别是方程x2-10x+21=0的两根,∴方程x2-10x+21=0的两个根分别是x1=3,x2=7,∴等腰三角形的腰长为7,底边长为3,∴等腰三角形的周长为:7+7+3=17.故选:A.首先求出方程x2-10x+21=0的两根,然后确定等腰三角形的腰长和底,进而求出它的周长.本题主要考查了因式分解法解一元二次方程以及三角形三边关系的知识,解答本题的关键是掌握等腰三角形的性质,此题难度一般.10.【答案】B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4-x,∴y=•(4-x)•x=-x2+2x,故选:B.过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.11.【答案】x(x+3)(x-3)【解析】解:x3-9x,=x(x2-9),=x(x+3)(x-3).先提取公因式x,再利用平方差公式进行分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.12.【答案】x≥0且x≠1【解析】解:由题意得,x≥0且x-1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.【答案】【解析】解:∵一碗汤圆,其中有4个花生味和2个芝麻味,∴从中任意吃一个,恰好吃到花生味汤圆的概率是:=.故答案为:先求出所有汤圆的个数,由花生味汤圆为4个,再根据概率公式解答即可.此题考查了概率公式的应用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【答案】720°【解析】解:设多边形的边数为n,∵多边形的每个外角都等于60°,∴n==6,∴这个多边形的内角和=(6-2)×180°=720°.故答案为720°.由一个多边形的每个外角都等于60°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.本题考查了n边形的内角和定理:n边形的内角和=(n-2)•180°;也考查了n边形的外角和为360°.15.【答案】1【解析】解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE-DF=4-3=1.故答案为:1.根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形得到EF的长.本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.【答案】-1【解析】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=,四边形DMCN是正方形,DM=1.则扇形FDE的面积==.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH =S四边形DMCN=1.∴阴影部分的面积=-1.故答案为:-1.连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH =S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.本题考查的是扇形面积的计算,根据题意作出辅助线,构造出正方形,得到S四边形DGCH =S四边形DMCN是解答此题的关键.17.【答案】解:原式==a+1,把a=-1代入a+1=.先根据分式的混合运算化简后,再代入求值即可.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.18.【答案】解:设AH为x米,在Rt△AHF中,∠AFH=45°,则FH=AH=x,在Rt△AHE中,∠AEH=30°,HE=26+x,则tan∠AEH=tan30°==,解得;x≈35.905,故AB=AH+BH≈37.4米.答:塔高AB为37.4米.【解析】设AH为x米,在Rt△AHF中表示出HF,在Rt△AHE中表示出HE,继而根据tan∠AEH的值,可得出方程,解出即可得出答案.本题考查了解直角三角形的应用,解答本题的关键是熟练掌握解直角三角形的知识,属于基础题.19.【答案】解:原式=-2+3-2×+1=1.【解析】直接利用零指数幂的性质以及、负指数幂的性质和特殊角的三角函数值代入求出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)如图所示:(2)∵BE平分∠ABC,∴∠ABE=∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=4,AD=BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=4,∵▱ABCD的周长为20,∴AB+AD=10,∴AD=6,∴DE=AD-AE=6-4=2.(1)以点B为圆心,任意长为半径画弧,交AB,BC于两点,分别以这两点为圆心,大于这两点的距离为半径画弧,在△ABC内交于一点O,作射线BO,交AD于点E即可;(2)利用角平分线的性质以及平行线的性质求出∠ABE=∠AEB,得出AE=AB=4,再由平行四边形的周长求出AD,即可得出结果.本题考查了三角形的角平分线的画法以及角平分线的性质以及平行线的性质等知识,利用角平分线的性质得出AE=AB是解题关键.21.【答案】解:(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,根据题意得,解得:∴一个足球50元、一个篮球80元;(2)设最多买m个B型号篮球m个,则买A型号篮球球(96-m)个,根据题意得:80m+50(96-m)≤5720,解得:m≤30,∵m为整数,∴m最大取30.∴最多购买了30个B型号篮球.【解析】(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,就有3x+2y=310和2x+5y=500,由这两个方程构成方程组求出其解即可;(2)设最多买m个B型号篮球m个,则买A型号篮球球(96-m)个,根据总费用不超过5720元,建立不等式求出其解即可.本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.22.【答案】50 28 8【解析】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50-4-16-8-2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.23.【答案】解:(1)∵点A(m,6),B(3,n)两点在反比例函数y=(x>0)的图象上,∴m=1,n=2,即A(1,6),B(3,2).又∵点A(m,6),B(3,n)两点在一次函数y=kx+b的图象上,∴ .解得,则该一次函数的解析式为:y=-2x+8;(2)根据图象可知使kx+b<成立的x的取值范围是0<x<1或x>3;(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D 点.令-2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,∴S△AOB=S△AOD-S△BOD=×4×6-×4×2=8.(1)先把A、B点坐标代入y=求出m、n的值;然后将其分别代入一次函数解析式,列出关于系数k、b的方程组,通过解方程组求得它们的值即可;(2)根据图象可以直接写出答案;(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x 轴于D点.S△AOB=S△AOD-S△BOD,由三角形的面积公式可以直接求得结果.本题考查了反比例函数与一次函数的交点问题:先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.24.【答案】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°,又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°,∴OB⊥FB,∵AB是⊙O的弦,∴点B在⊙O上,∴BF是⊙O的切线;(2)解:∵AC∥BF,∴∠ACF=∠F,∵CD=a,OA⊥CD,∴CE=CD=a,∵tan F=,∴tan∠ACF==,即=,解得AE=a,连接OC,设圆的半径为r,则OE=r-a,在Rt△OCE中,CE2+OE2=OC2,即(a)2+(r-a)2=r2,解得r=a;(3)证明:连接BD,∵∠DBG=∠ACF,∠ACF=∠F(已证),∴∠DBG=∠F,又∵∠FGB=∠BGF,∴△BDG∽△FBG,∴=,即GB2=DG•GF,∴GF2-GB2=GF2-DG•GF=GF(GF-DG)=GF•DF,即GF2-GB2=DF•GF.【解析】(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE= CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r;(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.本题是圆的综合题型,主要考查了切线的证明,解直角三角形,勾股定理的应用,相似三角形的判定与性质,作辅助线构造出直角三角形与相似三角形是解题的关键,(3)的证明比较灵活,想到计算整理后得证是解题的关键.25.【答案】(-3,1);y=x2+x-2【解析】解:(1)作BM⊥x轴于M,如图1所示:则∠BMC=90°,∴∠CBM+∠BCM=90°,∵C的坐标为(-1,0),点A的坐标为(0,2),∴CO=1,OA=2,∵△ABC是等腰直角三角形,∴BC=CA,∠ACB=90°,∴∠CBM=∠ACO,在△BCM和△CAO中,,∴△BCM≌△CAO(AAS),∴BM=CO=1,MC=OA=2,∴OM=2+1=3,∴点B的坐标为:(-3,1);故答案为:(-3,1);把B(-3,1)代入抛物线y=ax2+ax-2得:9a-3a-2=1,解得:a=,∴抛物线的解析式为:y=x2+x-2;故答案为:y=x2+x-2;(2)设直线BC的解析式为:y=kx+b,根据题意得:,解得:k=-,b=-,∴直线BC的解析式为:y=-x-,作直线l∥BC,交抛物线于D,如图2所示:设直线l的解析式为:y=-x+c,解方程组,即x2+x-2=-x+c,整理得:x2+2x-4-2c=0,当△=0时,S△BCD最大,此时x1=x2=-1,y=-2,∴点D的坐标为:(-1,-2);(3)四边形ACC′A′是正方形;点A′在抛物线上;理由如下:根据题意得:点C′为直线BC与抛物线的交点,解方程组得:,或(舍去),∴点C′的坐标为:(1,-1),设直线AC的解析式为:y=kx+b,根据题意得:,解得:k=2,b=2,∴直线AC的解析式为:y=2x+2,∵A′C′∥AC,设直线A′C′的解析式为:y=2x+c,把点C′(1,-1)代入得:c=-3,∴直线A′C′的解析式为:y=2x-3,设直线A′C′与抛物线y=x2+x-2交于另一点G,解方程组得:,或(舍去),∴点G的坐标为:(2,1),∴C′G==,∵AC==,∴A′与G重合,∴A′在抛物线上;作C′F⊥x轴于F,如图3所示:根据勾股定理得:CC′==,∴CC′=A′C′,∵AC∥A′C′,AC=A′C′,∴四边形ACC′A′是平行四边形,又∵∠ACC′=90°,(1)作BM⊥x轴于M,先证明△BCM≌△CAO,得出BM=CO=1,MC=OA=2,再求出OM,即可得出点B的坐标;把点B的坐标代入抛物线y=ax2+ax-2,求出a的值,即可得出抛物线的解析式;(2)作直线l∥BC,交抛物线于D,先用待定系数法求出直线BC的解析式,由直线l的解析式和抛物线构成方程组,得出一元二次方程,由△=0时,S△BCD 最大,即可求出点D的坐标;(3)先求出点C′的坐标,再求出直线AC和A′C′的解析式,求出直线A′C′与抛物线y=x2+x-2另一交点G的坐标,A′与G重合,得出A′在抛物线上;由平移的性质得出四边形ACC′A′是平行四边形,再由CC′=A′C′,∠ACC′=90°,即可证出四边形ACC′A′是正方形.本题是二次函数综合题目,考查了二次函数解析式的求法、等腰直角三角形的性质、全等三角形的判定与性质、一次函数解析式的求法、勾股定理、平移的性质、正方形的判定等知识;本题难度较大,综合性强,特别是(2)(3)中,需要多次求直线的解析式和解方程组才能得出结果.。
2018年广东省惠州市中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,2830000000可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×1073.(3分)如图,∠1=75°,要使a∥b,则∠2等于()A.75°B.95°C.105° D.115°4.(3分)方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=25.(3分)数据2,7,3,7,5,3,7的众数是()A.2 B.3 C.5 D.76.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.7.(3分)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB 最短时,点B的坐标为()A.(0,0) B.(,﹣) C.(,﹣)D.(﹣,)8.(3分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣19.(3分)已知在⊙O 上依次有A、B、C三点,∠AOB=100°,则∠ACB的度数是()A.50°B.130°C.50°或l30°D.100°10.(3分)已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)S=3S△AGE.其中正确的结论有()△ABEA.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共24分)11.(4分)因式分解:a2﹣6a+9=.12.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.13.(4分)如果|x|=6,则x=.14.(4分)在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.15.(4分)若3a2﹣a﹣2=0,则5+2a﹣6a2=.16.(4分)如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(每小题6分,共18分)17.(6分)+|﹣|﹣(﹣2006)0+()﹣118.(6分)先化简,再求值:(+),其中a=﹣4.19.(6分)列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.四、解答题(二)(每小题7分,共21分)20.(7分)如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的角平分线AE;(2)根据你所画的图形求∠BAE的度数.21.(7分)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.22.(7分)一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图,求两次都摸到红球的概率.五、解答题(三)(每小题9分,共27分)23.(9分)已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.24.(9分)已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.25.(9分)已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.2018年广东省惠州市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故选:D.2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,2830000000可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2830000000=2.83×109,故选:B.3.(3分)如图,∠1=75°,要使a∥b,则∠2等于()A.75°B.95°C.105° D.115°【分析】根据平行线的性质,求解即可.【解答】解:∵a∥b,∴∠1=∠3又∵∠1=75°,∴∠3=75°根据邻补角定义,∠2=180°﹣75°=105°,故选:C.4.(3分)方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x(x+2)=0,⇒x=0或x+2=0,解得x1=0,x2=﹣2.故选:C.5.(3分)数据2,7,3,7,5,3,7的众数是()A.2 B.3 C.5 D.7【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据7出现了三次最多为众数.故选:D.6.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形.故错误;B、既是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:B.7.(3分)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB 最短时,点B的坐标为()A.(0,0) B.(,﹣) C.(,﹣)D.(﹣,)【分析】线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.【解答】解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.8.(3分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x3•x9=x12,故本选项错误;C、应为(x2)3=x6,故本选项错误;D、x÷x2=x1﹣2=x﹣1,正确.故选:D.9.(3分)已知在⊙O 上依次有A、B、C三点,∠AOB=100°,则∠ACB的度数是()A.50°B.130°C.50°或l30°D.100°【分析】分两种情况,根据圆周角定理以及圆内接四边形的性质即可求解.【解答】解:分两种情况:如图1,∠ACB=∠AOB=×100°=50°.如图2.在优弧上任意选取一点D,连接AD、BD.则∠ADB=∠AOB=×100°=50°,∴∠ACB=180°﹣∠ADB=130°,故选:C.10.(3分)已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)S=3S△AGE.其中正确的结论有()△ABEA.1个 B.2个 C.3个 D.4个【分析】(1)根据BF∥DE,BF=DE可证BEDF为平行四边形;(2)根据平行线等分线段定理判断;(3)根据△AGE∽△CGB可得;(4)由(3)可得△ABG的面积=△AGE面积×2.【解答】解:(1)∵▱ABCD,∴AD=BC,AD∥BC.E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=GH=HC.故正确;(3)∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.(4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,=3S△AGE.故正确.∴S△ABE故选:D.二、填空题(每小题4分,共24分)11.(4分)因式分解:a2﹣6a+9=(a﹣3)2.【分析】本题是一个二次三项式,且a2和9分别是a和3的平方,6a是它们二者积的两倍,符合完全平方公式的结构特点,因此可用完全平方公式进行因式分解.【解答】解:a2﹣6a+9=(a﹣3)2.12.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为24.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为2413.(4分)如果|x|=6,则x=±6.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6.【解答】解:|x|=6,所以x=±6.故本题的答案是±6.14.(4分)在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是0.88.【分析】中奖与不中奖的总概率和为1,只要用1减去中奖的概率即可得出不中奖的概率.【解答】解:不中奖的概率为:1﹣0.12=0.88.15.(4分)若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.16.(4分)如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有①②③.(把你认为正确的序号都填上)【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.三、解答题(每小题6分,共18分)17.(6分)+|﹣|﹣(﹣2006)0+()﹣1【分析】先化简二次根式、计算绝对值、零指数幂和负整数指数幂,再合并同类二次根式即可得.【解答】解:原式=2+﹣1+2=1+3.18.(6分)先化简,再求值:(+),其中a=﹣4.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣4时,原式=•===319.(6分)列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【分析】通过理解题意可知本题存在两个等量关系:去年参加了此项活动的城市个数+今年参加了此项活动的城市个数=119;今年参加活动的城市个数=去年的3倍﹣13个,列出方程组即可.【解答】解:设中国内地去年有x个城市参加了此项活动,今年有y个城市参加了此项活动.依题意,得,解得:,答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动.四、解答题(二)(每小题7分,共21分)20.(7分)如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的角平分线AE;(2)根据你所画的图形求∠BAE的度数.【分析】(1)利用基本作图(作一个角等于已知角)作∠BAC的平分线AE;(2)先利用三角形内角和计算出∠BAC,然后利用角平分线的定义求解.【解答】解:(1)如图,AE为所作;(2)∵∠B=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵AE平分∠BAC,∴∠BAE=BAC=30°.21.(7分)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.【分析】(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,和等腰梯形的性质得到∠B=∠C.则∠B=∠GFC,得到AE∥FG.(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,结合∠FGC=2∠EFB和∠GFC=∠C,得到∠BFE+∠GFC=90°.则∠EFG=90°.【解答】证明:(1)∵在梯形ABCD中,AB=DC,∴∠B=∠C.∵GF=GC,∴∠C=∠GFC,∴∠B=∠GFC∴AB∥GF,即AE∥GF.∵AE=GF,∴四边形AEFG是平行四边形.(2)∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.22.(7分)一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图,求两次都摸到红球的概率.【分析】(1)首先设袋中的绿球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【解答】解:(1)设绿球的个数为x.由题意,得=,解得x=1,经检验x=1是所列方程的根,所以绿球有1个;(2)根据题意,画表格如下:由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种,所以两次都摸到红球的概率为=.五、解答题(三)(每小题9分,共27分)23.(9分)已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.【分析】(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到a的值,即可得出抛物线的函数解析式;(2)根据图象和性质直接写出顶点坐标、对称轴;(3)把点B(﹣1,﹣4)代入解析式,即可判断点B(﹣1,﹣4)是否在此抛物线上;(4)把y=﹣6代入解析式,即可求得纵坐标为﹣6的点的坐标.【解答】解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),∴a•(﹣2)2=﹣8,∴a=﹣2,∴此抛物线对应的函数解析式为y=﹣2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,∴点B(﹣1,﹣4)不在此抛物线上;(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,解得x=±,∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).24.(9分)已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.【分析】(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;(3)证明△ABC是等边三角形,根据正弦的定义计算即可.【解答】(1)证明:如图1,连接AD,∵AB是⊙O的直径,∴AD⊥BC,又DC=BD,∴AB=AC;(2)证明:如图2,连接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位线,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线;(3)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴BC=AC=10,∴CD=5,∵△ABC是等边三角形,∴∠C=60°,在Rt△DEC中,DE=CD×sinC=.25.(9分)已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.【分析】(1)要求△FCG的面积,可以转化到面积易求的三角形中,通过证明△DGH≌△CFG得出.(2)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得;(3)若S=1,由S△FCG=6﹣x,得x=5,此时,在△DGH中,HG=.相应地,△FCG在△AHE中,AE=,即点E已经不在边AB上.故不可能有S=1.△FCG【解答】解:(1)∵正方形ABCD中,AH=2,∴DH=4,∵DG=2,∴HG=2,即菱形EFGH的边长为2.在△AHE和△DGH中,∵∠A=∠D=90°,AH=DG=2,EH=HG=2,∴△AHE≌△DGH(HL),∴∠AHE=∠DGH,∵∠DGH+∠DHG=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,即菱形EFGH是正方形,同理可以证明△DGH≌△CFG,∴∠FCG=90°,即点F在BC边上,同时可得CF=2,从而S=×4×2=4.(2分)△FCG(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S=×2×(6﹣x)=6﹣x.(6分)△FCG(3)若S=1,由(2)知S△FCG=6﹣x,得x=5,△FCG∴在△DGH中,HG=,∴在△AHE中,AE=,即点E已经不在边AB上.∴不可能有S=1.(9分)△FCG另法:∵点G在边DC上,∴菱形的边长至少为DH=4,当菱形的边长为4时:∵点E在AB边上且满足AE=2,此时,当点E逐渐向右运动至点B时,HE的长(即菱形的边长)将逐渐变大,∴最大值为HE=2.此时,DG=2,故0≤x≤2.∵函数S=6﹣x的值随着x的增大而减小,△FCG取得最小值为6﹣2.∴当x=2时,S△FCG又∵6﹣2=1,∴△FCG的面积不可能等于1.(9分)。
广东省惠州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·揭西月考) 一个数是10,另一个数比10的相反数小2,则这两个数的和为()A . 18B . 2C . -18D . -22. (2分) (2016九上·沙坪坝期中) 下列计算正确的是()A . (a2)3=a5B . (ab2)2=ab4C . a4÷a=a4D . a2•a2=a43. (2分)(2012·抚顺) 2012年6月2日新疆科克苏湿地进行第四次生态补水,补水约46万米3 , 46万米3用科学记数法表示为()A . 4.6×106米3B . 4.6×105米3C . 4.6×102米3D . 4.6×10米34. (2分)下列图形中,既是中心对称图形,又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 等腰三角形D . 菱形5. (2分)(2017·呼和浩特) 下列运算正确的是()A . (a2+2b2)﹣2(﹣a2+b2)=3a2+b2B . ﹣a﹣1=C . (﹣a)3m÷am=(﹣1)ma2mD . 6x2﹣5x﹣1=(2x﹣1)(3x﹣1)6. (2分) (2017九上·宣化期末) 某品牌LED电视机经过连续两次降价,每台售价由原来的4000元降到了2980元,设平均每次降价的百分率为x,则下列方程中正确的是()A . 4000(1+x)2=2980B . 2980(1+x)2=4000C . 2980(1﹣x)2=4000D . 4000(1﹣x)2=29807. (2分)(2017·荆州) 如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD 的度数为()A . 30°B . 45°C . 50°D . 75°8. (2分)如图,PA,PB是☉O的切线,A,B为切点,AC是☉O的直径,已知∠BAC=15°,则∠P的度数为()A . 30°B . 35°C . 40°D . 45°9. (2分)(2017·济宁模拟) 在下列网格中,小正方形的边长为1,点A,B,O都在格点上,求∠A的余弦值()A .B .C .D .10. (2分)(2019·衢州) 如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2020八上·醴陵期末) 已知,化简 ________12. (1分)(2019·湖州模拟) 因式分解: =________.13. (1分)一次函数y=﹣x+1与反比例函数y=﹣, x与y的对应值如下表:﹣3 ﹣2 ﹣1 1 2 3y=ax+b 4 3 2 0 ﹣1 ﹣2y=﹣ 1 2 ﹣2 ﹣1 ﹣方程﹣x+1=﹣的解为________ ;不等式﹣x+1>﹣的解集为________ .14. (1分)若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:①以a2,b2,c2的长为边的三条线段能组成一个三角形;②以,,的长为边的三条线段能组成一个三角形;③以a+b,c+h,h的长为边的三条线段能组成直角三角形;④以 , , 的长为边的三条线段能组成直角三角形,正确结论的序号为________.三、解答题 (共9题;共79分)15. (5分)(2018·吉林模拟) 解不等式组:,并在数轴上表示不等式组的解集.16. (10分) (2019七下·兴化月考) 如图,△ABC的顶点都在方格纸的格点上,将△ABC向右平移4格,再向上平移2格,其中每个格子的边长为1个单位长度.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′、CC′,则这两条线段的关系是________;(3)作△ABC的高AD,并求△ABC的面积17. (5分) (2017八下·临泽开学考) 小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?18. (3分)探索题:(1)通过计算比较下列各式中两数的大小(填“>”“<”或“=”):①12________21,②23________32,③34________43,④45________54,⑤56________65,….(2)由(1)可以猜测nn+1与(n+1)n(n为正整数)的大小关系:当n________时,nn+1<(n+1)n;当n________时,nn+1>(n+1)n.(3)根据上面的猜想,可知20172018________20182017(填“>”“<”或“=”).19. (5分) (2016九上·宁波期末) A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P 在A的北偏东30°和B的正西方向上,现计划修建的一条高速公路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内,请问这条高速公路会不会穿越保护区?为什么?(sin15°=0.259,cos15°=0.966,tan15°=0.268)20. (10分) (2019八上·江阴月考) 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=3,AD是△ABC 的角平分线,DE⊥AB于点E,连接CE.求CE的长;21. (11分) (2018九上·焦作期末) 有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?22. (15分)(2017·南京) 已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A . 0B . 1C . 2D . 1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.23. (15分) (2019八上·咸阳期中) 同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是,它是一个无理数.(1)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长,所以数轴上点O′代表的实数就是________,它是一个无理数.(2)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据已知可求得AB=________,它是一个无理数.(3)相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中作出两个无理数吧:①你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?②学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示-的点吗?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共79分)15-1、16-1、16-2、16-3、17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
惠州市2018年中考数学试题及答案(试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考点考场号、座位号。
2.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .16 8.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为第二部分(非选择题 共120分)二、填空题(本大题6小题,每小题3分,共18分)11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x x y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(本大题 共9个小题,满分102分)17.(本小题满分9分)计算:1-0212018-2-⎪⎭⎫ ⎝⎛+ 18.(本小题满分9分)先化简,再求值:.2341642222=--⋅+a a a a a a ,其中 19.(本小题满分10分)如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.(本小题满分10分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
2018年广东省中考数学试题含答案解析2018年广东省中考数学试卷;;一、选择题在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.; 1.四个实数0、、﹣、2中,最小的数是A.0 B.C.﹣D.2 2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A.×107 B.×107 C.×108 D.×108 3.如图,5个相同正方体组合而成的几何体,它的主视图是A.B.C.D.4.数据1、5、7、4、8的中位数是A.4 B.5 C.6 D.7 5.下列所述图形中,是轴对称图形但不是中心对称图形的是A.圆B.菱形C.平行四边形D.等腰三角形;; 6.不等式3x﹣1≥x+3的解集是A.x≤4 B.x≥4 C.x≤2 D.x≥2 7.在△ABC中,点D、E分别为边AB、AC的中点,则△ADE 与△ABC的面积之比为A.B.C.D.8.如图,AB ∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是A.30°B.40°C.50° D.60°9.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是A.m <B.m≤ C.m>D.m≥ 10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P 点的运动时间为x,则y关于x的函数图象大致为A.B.C.D.二、填空题11.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.分解因式:x2﹣2x+1=.13.一个正数的平方根分别是x+1和x﹣5,则x=.14.已知+|b﹣1|=0,则a+1=.15.如图,矩形ABCD 中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.16.如图,已知等边△OA1B1,顶点A1在双曲线y=上,点B1的坐标为.过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题17.计算:|﹣2|﹣20180+﹣1 18.先化简,再求值:?,其中a=.19.如图,BD是菱形ABCD的对角线,∠CBD=75°,请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;在条件下,连接BF,求∠DBF的度数.20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.求该公司购买的A、B型芯片的单价各是多少元?若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.被调查员工人数为人:把条形统计图补充完整;若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.求证:△ADE≌△CED;求证:△DEF是等腰三角形.23.如图,已知顶点为C的抛物线y=ax2+b与x轴交于A,B两点,直线y=x+m过顶点C和点B.求m的值;求函数y=ax2+b的解析式;抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.证明:OD∥BC;若tan∠ABC=2,证明:DA与⊙O相切;在条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.填空:∠OBC=°;如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、、﹣、2中,最小的数是A.0 B.C.﹣D.2 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣<0<<2,所以最小的数是﹣.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A.×107 B.×107 C.×108 D.×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.如图,5个相同正方体组合而成的几何体,它的主视图是A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B 中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.数据1、5、7、4、8的中位数是A.4 B.5 C.6 D.7 【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5 故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大重新排列后,最中间的那个数,叫做这组数据的中位数.5.下列所述图形中,是轴对称图形但不是中心对称图形的是A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.不等式3x﹣1≥x+3的解集是A.x≤4 B.x≥4 C.x≤2 D.x≥2 【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.在△ABC中,点D、E 分别为边AB、AC的中点,则△ADE与△ABC的面积之比为A.B.C.D.【分析】点D、E分别为边AB、AC的中点,可得出DE 为△ABC的中位线,进而可得出DE∥BC 及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC 的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE ∥BC是解题的关键.8.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是A.30° B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是A.m<B.m≤ C.m>D.m≥ 【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:△>0?方程有两个不相等的实数根;△=0?方程有两个相等的实数根;△<0?方程没有实数根.10.如图,点P是菱形ABCD 边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP?h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P 在边BC上时,如图2,y=AD?h,AD和h都不变,∴在这个过程中,y 不变,故选项A不正确;③当P 在边CD上时,如图3,y=PD?h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题11.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.分解因式:x2﹣2x+1= 2 .【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.如图,矩形ABCD中,BC=4,CD=2,以AD 为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π .+|b﹣1|=0,【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S 正方形OECD﹣S扇形EOD计算弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.。
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S=•OA•AB=×2×2=2,△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
中考第一次模拟考试数学试题含答案一.选择题(共10小题)1.把图形绕O点顺时针旋转90°度后,得到的图形是()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标为()A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(2,1)3.方程x2﹣2x=5的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根4.半径为5的⊙O,圆心在直角坐标系的原点O,则点P(3,4)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定5.已知弦AB把圆周分成1:3的两部分,则弦AB所对的圆周角的度数为()A.45°B.90°C.90°或27°D.45°或135°6.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()A.B.C.D.7.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x,可列方程为()A.30(1+x)2=48 B.48(1+x)2=30C.30(1﹣x)2=48 D.48(1﹣x)2=308.如图,在△ABC中,AB=,AC=,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3 B.2C.2D.49.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°10.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A.(6052,0)B.(6054,2)C.(6058,0)D.(6060,2)二.填空题(共8小题)11.若点A(3,1)与B(﹣3,m)关于原点对称,则m的值是.12.关于x的一元二次方程kx2﹣4x+3=0有实数根,则k应满足的条件是.13.如果二次函数y=x2﹣3x+2m+1的图象经过原点,那么m的值是.14.如果点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,那么y1y2.(填“>”、“=”或“<”)15.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有种16.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=4,则⊙O的半径为.17.把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为.18.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n∁都是正方形,则正方形A n﹣1B n A n∁n的周长为.n三.解答题(共8小题)19.①计算:②解方程:9x2﹣6x+1=020.如图,已知平面直角坐标系中,△ABC的顶点坐标分别A(1,3),B(2,1),C(4,2).(1)将△ABC以原点O为旋转中心旋转180°得到△A1B1C1,画出△A1B1C1;(2)平移△ABC,使点A的对应点A2坐标为(5,﹣5),画出平移后的△A2B2C2;(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,请直接写出这个点的坐标.21.如图,AB是⊙O直径,CD为⊙O的切线,C为切点,过A作CD的垂线,垂足为D.(1)求证:AC平分∠BAD;(2)若⊙O半径为5,CD=4,求AD的长.22.如图,抛物线y=x2+bx+c与x轴交于A,C两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(﹣1,0),点B的坐标为(0,﹣3).(1)求抛物线的解析式及顶点D的坐标.(2)求△ACD的面积.23.某灯饰商店销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定该品牌的护眼灯售价不能超过36元.(1)如果该商店想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设该商店每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?24.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA 的延长线于点E.(1)求证:CD为⊙O的切线;(2)若OF⊥BD于点F,且OF=2,BD=4,求图中阴影部分的面积.25.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.26.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.把图形绕O点顺时针旋转90°度后,得到的图形是()A.B.C.D.【分析】根据旋转的性质和定义,原图竖直的线段顺时针旋转后变为水平,小三角形在水平线的下方.【解答】解:原图顺时针旋转90度后,竖直的线段成水平,排除B和C,三角形应该在水平线的下方,所以D答案正确.故选:D.2.抛物线y=(x﹣1)2+2的顶点坐标为()A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(2,1)【分析】直接根据二次函数的顶点式可得出结论.【解答】解:∵抛物线的解析式为:y=(x﹣1)2+2,∴其顶点坐标为(1,2).故选:B.3.方程x2﹣2x=5的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根【分析】根据根的判别式即可求出答案.【解答】解:原方程化为:x2﹣2x﹣5=0,∴△=4+4×5=24>0,故选:A.4.半径为5的⊙O,圆心在直角坐标系的原点O,则点P(3,4)与⊙O的位置关系是()A.在⊙O上B.在⊙O内C.在⊙O外D.不能确定【分析】先利用两点间的距离公式求出点P到原点的距离OP,再判断OP与半径r的大小关系,从而得出答案.【解答】解:∵点P(3,4),∴OP==5,则OP=r,∴点P在⊙O上,故选:A.5.已知弦AB把圆周分成1:3的两部分,则弦AB所对的圆周角的度数为()A.45°B.90°C.90°或27°D.45°或135°【分析】首先根据题意画出图形,然后由圆的一条弦把圆周分成1:3两部分,求得∠AOB 的度数,又由圆周角定理,求得∠ACB的度数,然后根据圆的内接四边形的对角互补,求得∠ADB的度数,继而可求得答案.【解答】解:解:∵弦AB把⊙O分成1:3两部分,∴∠AOB=×360°=90°,∴∠ACB=∠AOB=45°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB=180°﹣∠ACB=135°.∴这条弦所对的圆周角的度数是:45°或135°,故选:D.6.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()A.B.C.D.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】C解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2﹣bx来说,对称轴x=﹣>0,在y轴的右侧,符合题意,图形正确.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2﹣bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴=﹣<0,应位于y轴的左侧,故不合题意,图形错误,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向上,故不合题意,图形错误.故选:A.7.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x,可列方程为()A.30(1+x)2=48 B.48(1+x)2=30C.30(1﹣x)2=48 D.48(1﹣x)2=30【分析】等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30.【解答】解:设平均每次降价的百分率为x,则第一次降价后的价格为48×(1﹣x),第二次降价后的价格为48(1﹣x)(1﹣x),由题意,可列方程为48(1﹣x)2=30.故选:D.8.如图,在△ABC中,AB=,AC=,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3 B.2C.2D.4【分析】根据旋转的性质得出∠CAC1=60°,AC=AC1=,求出∠BAC1=90°,根据勾股定理求出即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,AB=,AC=,∴∠CAC1=60°,AC=AC1=,∵∠BAC=30°,∴∠BAC1=30°+60°=90°,在Rt△BAC1中,由勾股定理得:BC1===3,故选:A.9.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°【分析】由等腰三角形的性质可得∠ABC=∠ACB,进而可求出∠B的度数,再由圆内接四边形定理即可求出∠ADC的度数.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵∠CAB=56°,∴∠ABC==62°,∵D是等腰△ABC外接圆弧AC上的点,∴∠ABC+∠ADC=180°,∴∠ADC=118°,故选:B.10.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A.(6052,0)B.(6054,2)C.(6058,0)D.(6060,2)【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2019的坐标.【解答】解:∵AO=,BO=2,∴AB===,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054.∴点B2018的纵坐标为:2.∴点B2018的坐标为:(6054,2),∴B2019的横坐标为6054++=6058,∴点B2017的坐标为(6058,0),故选:C.二.填空题(共8小题)11.若点A(3,1)与B(﹣3,m)关于原点对称,则m的值是﹣1 .【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:∵点A(3,1)与B(﹣3,m)关于原点对称,∴m=﹣1,故答案为:﹣1.12.关于x的一元二次方程kx2﹣4x+3=0有实数根,则k应满足的条件是k≤且k≠0 .【分析】根据一元二次方程的定义和根的判别式得出k≠0且△=(﹣4)2﹣4•k•3≥0,求出解集即可.【解答】解:∵关于x的一元二次方程kx2﹣4x+3=0有实数根∴k≠0且△=(﹣4)2﹣4•k•3=16﹣12k≥0,解得:k≤且k≠0,故答案为:k≤且k≠0.13.如果二次函数y=x2﹣3x+2m+1的图象经过原点,那么m的值是﹣0.5 .【分析】根据二次函数y=x2﹣3x+2m+1的图象经过原点,可以求得m的值.【解答】解:∵二次函数y=x2﹣3x+2m+1的图象经过原点,∴0=02﹣3×0+2m+1,解得,m=﹣0.5,故答案为:﹣0.5.14.如果点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,那么y1<y2.(填“>”、“=”或“<”)【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【解答】解:∵二次函数y=x2﹣2x+1的图象的对称轴是x=1,在对称轴的右面y随x的增大而增大,∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,2<3,∴y1<y2.故答案为:<.15.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有 2 种【分析】根据轴对称的概念求解可得.【解答】解:如图所示,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有2种,故答案为:2.16.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=4,则⊙O的半径为.【分析】根据垂径定理求出CM,根据勾股定理得出方程,求出方程的解即可.【解答】解:设⊙O的半径为R,∵EM=4,∴OC=R,OM=4﹣R,∵直径EF⊥CD,垂足为M,CD=2,∴∠OMC=90°,CM=DM=1,由勾股定理得:OC2=OM2+CM2,即R2=(4﹣R)2+12,解得:R=,故答案为:.17.把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为(x+3)2=10 .【分析】根据配方法即可求出答案.【解答】解:∵x2+6x﹣1=0,∴x2+6x=1,∴(x+3)2=10,故答案为:(x+3)2=1018.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n∁都是正方形,则正方形A n﹣1B n A n∁n的周长为4n.n【分析】由于△A0B1A1,△A1B2A2,△A2B3A3,…,都是等腰直角三角形,因此∠B1A0x=90°,可先设出△A0B1A1的直角边长,然后表示出B1的坐标,代入抛物线的解析式中即可求得△A0B1A1的直角边长,用同样的方法可求得△A0B1A1,△A1B2A2,△A2B3A3,…的直角边长,然后根据各边长的特点总结出此题的一般化规律,根据正方形的性质易求正方形A n﹣1B n A n ∁n的周长.【解答】解:∵四边形A0B1A1C1是正方形,∠A0B1A1=90°,∴△A0B1A1是等腰直角三角形.设△A0B1A1的直角边长为m1,则B1(m,m);代入抛物线的解析式中得:(m)2=m,解得m1=0(舍去),m1=;故△A0B1A1的直角边长为,同理可求得等腰直角△A1B2A2的直角边长为2,…依此类推,等腰直角△A n﹣1B n A n的直角边长为n,故正方形A n﹣1B n A n∁n的周长为4n.故答案是:4n.三.解答题(共8小题)19.①计算:②解方程:9x2﹣6x+1=0【分析】①利用零指数幂、负整数指数幂法则,以及化简二次根式即可求出值;②利用因式分解法求解可得.【解答】解:①原式=4﹣1﹣2+,=1﹣.②9x2﹣6x+1=0,∴(3x﹣1)2=0∴x1=x2=.20.如图,已知平面直角坐标系中,△ABC的顶点坐标分别A(1,3),B(2,1),C(4,2).(1)将△ABC以原点O为旋转中心旋转180°得到△A1B1C1,画出△A1B1C1;(2)平移△ABC,使点A的对应点A2坐标为(5,﹣5),画出平移后的△A2B2C2;(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,请直接写出这个点的坐标.【分析】(1)依据△ABC以原点O为旋转中心旋转180°,即可得到△A1B1C1;(2)依据点A的对应点A2坐标为(5,﹣5),即可画出平移后的△A2B2C2;(3)两对对应点连线的垂直平分线的交点,即为旋转中心的位置.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,将△A1B1C1绕点P(2,﹣4)旋转可得到△A2B2C2.21.如图,AB是⊙O直径,CD为⊙O的切线,C为切点,过A作CD的垂线,垂足为D.(1)求证:AC平分∠BAD;(2)若⊙O半径为5,CD=4,求AD的长.【分析】(1)利用切线的性质得OC⊥CD,根据CD⊥AD,则OC∥AD,所以∠DAC=∠ACO,然后证明∠DAC=∠CAO即可;(2)过点O作OE⊥AD于点E,则四边形OEDC是矩形,由勾股定理可求出AE长,则AD 长可求出.【解答】(1)证明:如图1,连接OC,∵直线CD切半圆O于点C,∴OC⊥CD,∵CD⊥AD,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,∴AC平分∠BAD;(2)如图2,过点O作OE⊥AD于点E,∵∠OCD=∠OED=∠CDE=90°,∴四边形OEDC是矩形,∴DC=OE=4,∴==3,∴AD=AE+DE=3+5=8.22.如图,抛物线y=x2+bx+c与x轴交于A,C两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(﹣1,0),点B的坐标为(0,﹣3).(1)求抛物线的解析式及顶点D的坐标.(2)求△ACD的面积.【分析】(1)利用待定系数法确定函数解析式;(2)由三角形的面积公式解答.【解答】解:(1)把(﹣1,0),(0,﹣3)分别代入y=x2+bx+c,得:.解得:b=﹣2,c=﹣3.故该二次函数解析式为:y=x2﹣2x﹣3;由于y=x2﹣2x﹣3=(x﹣1)2﹣4,则其顶点坐标是(1,﹣4);(2)由y=x2﹣2x﹣3知,C(0,﹣3).所以AC=4.∴S△ACD=AC•|y D|==8.∴△ACD的面积是8.23.某灯饰商店销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定该品牌的护眼灯售价不能超过36元.(1)如果该商店想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设该商店每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出一元二次方程,解方程即可;(2)根据题意可以写出w关于x的函数关系式,从而可以求得函数的最大值,本题得以解决.【解答】解:(1)由题意可得:(x﹣20)(﹣10x+500)=2000解得x1=30,x2=40,∵x≤36,∴x=40(舍去)x=30.答:如果该商店想要每月获得2000元的利润,那么销售单价应定为30元.(2)W=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000,∵﹣10<0,∴W有最大值,当(元),(元)答:当销售单价定为35元时,每月可获得最大利润?最大利润为2250元.24.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA 的延长线于点E.(1)求证:CD为⊙O的切线;(2)若OF⊥BD于点F,且OF=2,BD=4,求图中阴影部分的面积.【分析】(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,求出∠ABD=30°,得出∠BOD的度数,又由S阴影=S扇形OBD﹣S△BOD,即可求得答案.【解答】(1)证明:连接OD,如图所示:∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:∵OF⊥BD,∴BF=BD=2,OB===4,∴OF=OB,∴∠OBF=30°,∴∠BOF=60°,∴∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×4×2=﹣4.25.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.【分析】(1)由旋转的性质可得△BCD'≌△ACE,可得BC=AC,即可求旋转角的度数;(2)由全等三角形的性质可得∠DBC=∠EAC,由直角三角形的性质可求∠AND=90°,即可得AE⊥BD;(3)由勾股定理可求DE的长,再由勾股定理可求AE=BD的长.【解答】解:(1)∵将△BCD绕点C顺时针旋转得到△ACE∴△BCD'≌△ACE∴AC=BC,又∵∠ABC=45°,∴∠ABC=∠BAC=45°∴∠ACB=90°故旋转角的度数为90°(2)AE⊥BD.理由如下:在Rt△BCM中,∠BCM=90°∴∠MBC+∠BMC=90°∵△BCD'≌△ACE∴∠DBC=∠EAC即∠MBC=∠NAM又∵∠BMC=∠AMN∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD(3)如图,连接DE,由旋转图形的性质可知CD=CE,BD=AE,旋转角∠DCE=90°∴∠EDC=∠CED=45°∵CD=3,∴CE=3在Rt△DCE中,∠DCE=90°∴DE===3∵∠ADC=45°∴∠ADE=∠ADC+∠EDC=90°在Rt△ADE中,∠ADE=90°∴EA===∴BD=26.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2即可求解;(2)由S△BCD=2S△AOC得:,即可求解;(3)分BC是平行四边形的边、BC为对角线两种情况,分别求解即可.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD=2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).中考第一次模拟考试数学试卷含答案(1)一.选择题(共10小题)1.有理数﹣2的绝对值是()A.2 B.﹣2 C.D.2.下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9C.(xy2)3=x3y6D.x10÷x5=x23.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°4.下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件5.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=6.已知关于x的不等式组只有2个整数解,则m的取值范围为()A.m>4 B.4<m<5 C.4≤m<5 D.4<m≤57.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有()A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5二.填空题(共6小题)11.要使二次根式有意义,则x的取值范围是.12.地球与月球的平均距离大约384000km,用科学记数法表示这个距离为km.13.分解因式:x3﹣4x=.14.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为m2.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.16.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y =3,y=x+2,y=﹣x+4.如图所示,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线y=(x﹣a)2+b经过B、C两点,顶点D在正方形内部.(1)写出点M(2,3)任意两条特征线为;(2)若点D有一条特征线是y=x+1,则此抛物线的解析式为.三.解答题(共10小题)17.计算:18.先化简,再求值:,其中x的值是方程x2+2x=0的根.19.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若BA⊥AC,试判断四边形AFBD的形状,并证明你的结论.20.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了名市民;扇形统计图中B项对应的圆心角是度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.22.某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在水平地面上BD 上,在C点测得点A的仰角为30°,斜面EC的坡度为1:,测得B、E间距离为10米,立柱AB高30米,求立柱CD的高(结果保留根号).23.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,CA∥y轴,且CB⊥AB.(1)求反比例函数的解析式及点B的坐标:(2)求tan C的值和△ABC的面积.24.如图所示,AB是⊙O的直径,G为弦AE的中点,OG的延长线交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)求证:BC是⊙O的切线:(2)⊙O的半径为10,tan A=,求BF的长.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.参考答案与试题解析一.选择题(共10小题)1.有理数﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣2|=2.故选:A.2.下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的法则解答即可.【解答】解:A、原式不能合并,错误;B、(x+3)2=x2+6x+9,错误;C、(xy2)3=x3y6,正确;D、x10÷x5=x5,错误;故选:C.3.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=52°,则∠2的度数为()A.92°B.98°C.102°D.108°【分析】依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣52°﹣30°=98°,故选:B.4.下列说法正确的是()A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则甲的成绩比乙稳定C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件【分析】根据抽样调查和全面调查的概念、方差的意义、利列表法和树状图法求随机事件的概率及不可能事件的概念逐一求解可得.【解答】解:A.了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B.甲乙两人跳绳各10次,其成绩的平均数相等,S>S,则乙的成绩比甲稳定,此选项错误;C.一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是,此选项错误;D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确;故选:D.5.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.。
惠州市初三中考数学第一次模拟试卷【含答案】一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点评】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B 重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF 沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC 和BC均相切.综上,此题得解.【解答】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2 =r2 ﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点评】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)①根据全等三角形的性质和等腰直角三角形的判定和性质解答即可;②在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H,根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】(1)证明:∵四边形ABCD和四边形CGFE是正方形,∴CE=FE,AD=DC,∠CEF=90°,AD∥EF.∴∠1=∠2.在△AMD和△FMN中,∵∴△AMD≌△FMN(ASA)(2)答:△DEM是等腰直角三角形.由(1)得△AMD≌△FMN,∴MD=MN,AD=FN.在正方形ABCD中,∵AD=DC,∴DC=NF,又∵EC=EF,∴EC﹣DC=EF﹣NF,即ED=EN.又∵∠DEN=90°,∴△DEN是等腰直角三角形.∴EM⊥MD,ME=MD.∴△DEM是等腰直角三角形;(3)答:仍然成立.如图,在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H.在△AMD和△FMP中,∵∴△AMD≌△FMP(SAS).∴∠3=∠4,AD=PF,又∵四边形ABCD、四边形CGFE均为正方形,∴CE=FE,AD=DC,∠ADC=90°,∠CEF=∠ADC=∠EFG=∠ECG=90°.∴DC=PF.∵∠3=∠4,∴AD∥FH.∴∠H=∠ADC=90°.∵∠G=90°,∠5=∠6,∠GCH=180°﹣∠H﹣∠5,∠GFH=180°﹣∠G﹣∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE,在△DCE和△PFE中,∵∴△DCE≌△PFE(SAS).∴ED=EP,∠DEC=∠PEF,∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD,∴△DEM是等腰直角三角形.【点评】本题考查的是四边形的综合题,关键是根据正方形的性质、全等三角形的判定定理和性质定理以及等腰直角三角形的判定进行解答.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.。
2018年广东省惠州市中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,2830000000可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×1073.(3分)如图,∠1=75°,要使a∥b,则∠2等于()A.75°B.95°C.105° D.115°4.(3分)方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=25.(3分)数据2,7,3,7,5,3,7的众数是()A.2 B.3 C.5 D.76.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.7.(3分)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB 最短时,点B的坐标为()A.(0,0) B.(,﹣) C.(,﹣)D.(﹣,)8.(3分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣19.(3分)已知在⊙O 上依次有A、B、C三点,∠AOB=100°,则∠ACB的度数是()A.50°B.130°C.50°或l30°D.100°10.(3分)已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;=3S△AGE.其中正确的结论有()(4)S△ABEA.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共24分)11.(4分)因式分解:a2﹣6a+9=.12.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.13.(4分)如果|x|=6,则x=.14.(4分)在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.15.(4分)若3a2﹣a﹣2=0,则5+2a﹣6a2=.16.(4分)如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(每小题6分,共18分)17.(6分)+|﹣|﹣(﹣2006)0+()﹣118.(6分)先化简,再求值:(+),其中a=﹣4.19.(6分)列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.四、解答题(二)(每小题7分,共21分)20.(7分)如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的角平分线AE;(2)根据你所画的图形求∠BAE的度数.21.(7分)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.22.(7分)一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图,求两次都摸到红球的概率.五、解答题(三)(每小题9分,共27分)23.(9分)已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.24.(9分)已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.25.(9分)已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.2018年广东省惠州市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故选:D.2.(3分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,2830000000可用科学记数法表示为()A.28.3×108B.2.83×109C.2.83×10 D.2.83×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2830000000=2.83×109,故选:B.3.(3分)如图,∠1=75°,要使a∥b,则∠2等于()A.75°B.95°C.105° D.115°【分析】根据平行线的性质,求解即可.【解答】解:∵a∥b,∴∠1=∠3又∵∠1=75°,∴∠3=75°根据邻补角定义,∠2=180°﹣75°=105°,故选:C.4.(3分)方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x(x+2)=0,⇒x=0或x+2=0,解得x1=0,x2=﹣2.故选:C.5.(3分)数据2,7,3,7,5,3,7的众数是()A.2 B.3 C.5 D.7【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据7出现了三次最多为众数.故选:D.6.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形.故错误;B、既是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:B.7.(3分)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB 最短时,点B的坐标为()A.(0,0) B.(,﹣) C.(,﹣)D.(﹣,)【分析】线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.【解答】解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,﹣).故选:B.8.(3分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣1【分析】根据合并同类项的法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x3•x9=x12,故本选项错误;C、应为(x2)3=x6,故本选项错误;D、x÷x2=x1﹣2=x﹣1,正确.故选:D.9.(3分)已知在⊙O 上依次有A、B、C三点,∠AOB=100°,则∠ACB的度数是()A.50°B.130°C.50°或l30°D.100°【分析】分两种情况,根据圆周角定理以及圆内接四边形的性质即可求解.【解答】解:分两种情况:如图1,∠ACB=∠AOB=×100°=50°.如图2.在优弧上任意选取一点D,连接AD、BD.则∠ADB=∠AOB=×100°=50°,∴∠ACB=180°﹣∠ADB=130°,故选:C.10.(3分)已知:如图,在▱ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H.请判断下列结论:(1)BE=DF;(2)AG=GH=HC;(3)EG=BG;(4)S=3S△AGE.其中正确的结论有()△ABEA.1个 B.2个 C.3个 D.4个【分析】(1)根据BF∥DE,BF=DE可证BEDF为平行四边形;(2)根据平行线等分线段定理判断;(3)根据△AGE∽△CGB可得;(4)由(3)可得△ABG的面积=△AGE面积×2.【解答】解:(1)∵▱ABCD,∴AD=BC,AD∥BC.E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=GH=HC.故正确;(3)∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.(4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,=3S△AGE.故正确.∴S△ABE故选:D.二、填空题(每小题4分,共24分)11.(4分)因式分解:a2﹣6a+9=(a﹣3)2.【分析】本题是一个二次三项式,且a2和9分别是a和3的平方,6a是它们二者积的两倍,符合完全平方公式的结构特点,因此可用完全平方公式进行因式分解.【解答】解:a2﹣6a+9=(a﹣3)2.12.(4分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为24.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为2413.(4分)如果|x|=6,则x=±6.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6.【解答】解:|x|=6,所以x=±6.故本题的答案是±6.14.(4分)在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是0.88.【分析】中奖与不中奖的总概率和为1,只要用1减去中奖的概率即可得出不中奖的概率.【解答】解:不中奖的概率为:1﹣0.12=0.88.15.(4分)若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.16.(4分)如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有①②③.(把你认为正确的序号都填上)【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.三、解答题(每小题6分,共18分)17.(6分)+|﹣|﹣(﹣2006)0+()﹣1【分析】先化简二次根式、计算绝对值、零指数幂和负整数指数幂,再合并同类二次根式即可得.【解答】解:原式=2+﹣1+2=1+3.18.(6分)先化简,再求值:(+),其中a=﹣4.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣4时,原式=•===319.(6分)列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【分析】通过理解题意可知本题存在两个等量关系:去年参加了此项活动的城市个数+今年参加了此项活动的城市个数=119;今年参加活动的城市个数=去年的3倍﹣13个,列出方程组即可.【解答】解:设中国内地去年有x个城市参加了此项活动,今年有y个城市参加了此项活动.依题意,得,解得:,答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动.四、解答题(二)(每小题7分,共21分)20.(7分)如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的角平分线AE;(2)根据你所画的图形求∠BAE的度数.【分析】(1)利用基本作图(作一个角等于已知角)作∠BAC的平分线AE;(2)先利用三角形内角和计算出∠BAC,然后利用角平分线的定义求解.【解答】解:(1)如图,AE为所作;(2)∵∠B=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵AE平分∠BAC,∴∠BAE=BAC=30°.21.(7分)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.【分析】(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,和等腰梯形的性质得到∠B=∠C.则∠B=∠GFC,得到AE∥FG.(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,结合∠FGC=2∠EFB和∠GFC=∠C,得到∠BFE+∠GFC=90°.则∠EFG=90°.【解答】证明:(1)∵在梯形ABCD中,AB=DC,∴∠B=∠C.∵GF=GC,∴∠C=∠GFC,∴∠B=∠GFC∴AB∥GF,即AE∥GF.∵AE=GF,∴四边形AEFG是平行四边形.(2)∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.22.(7分)一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图,求两次都摸到红球的概率.【分析】(1)首先设袋中的绿球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【解答】解:(1)设绿球的个数为x.由题意,得=,解得x=1,经检验x=1是所列方程的根,所以绿球有1个;(2)根据题意,画表格如下:由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种,所以两次都摸到红球的概率为=.五、解答题(三)(每小题9分,共27分)23.(9分)已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.【分析】(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到a的值,即可得出抛物线的函数解析式;(2)根据图象和性质直接写出顶点坐标、对称轴;(3)把点B(﹣1,﹣4)代入解析式,即可判断点B(﹣1,﹣4)是否在此抛物线上;(4)把y=﹣6代入解析式,即可求得纵坐标为﹣6的点的坐标.【解答】解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),∴a•(﹣2)2=﹣8,∴a=﹣2,∴此抛物线对应的函数解析式为y=﹣2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,∴点B(﹣1,﹣4)不在此抛物线上;(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,解得x=±,∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).24.(9分)已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.【分析】(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;(3)证明△ABC是等边三角形,根据正弦的定义计算即可.【解答】(1)证明:如图1,连接AD,∵AB是⊙O的直径,∴AD⊥BC,又DC=BD,∴AB=AC;(2)证明:如图2,连接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位线,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线;(3)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴BC=AC=10,∴CD=5,∵△ABC是等边三角形,∴∠C=60°,在Rt△DEC中,DE=CD×sinC=.25.(9分)已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.【分析】(1)要求△FCG的面积,可以转化到面积易求的三角形中,通过证明△DGH≌△CFG得出.(2)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得;(3)若S=1,由S△FCG=6﹣x,得x=5,此时,在△DGH中,HG=.相应地,△FCG在△AHE中,AE=,即点E已经不在边AB上.故不可能有S=1.△FCG【解答】解:(1)∵正方形ABCD中,AH=2,∴DH=4,∵DG=2,∴HG=2,即菱形EFGH的边长为2.在△AHE和△DGH中,∵∠A=∠D=90°,AH=DG=2,EH=HG=2,∴△AHE≌△DGH(HL),∴∠AHE=∠DGH,∵∠DGH+∠DHG=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,即菱形EFGH是正方形,同理可以证明△DGH≌△CFG,∴∠FCG=90°,即点F在BC边上,同时可得CF=2,从而S=×4×2=4.(2分)△FCG(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S=×2×(6﹣x)=6﹣x.(6分)△FCG(3)若S=1,由(2)知S△FCG=6﹣x,得x=5,△FCG∴在△DGH中,HG=,∴在△AHE中,AE=,即点E已经不在边AB上.∴不可能有S=1.(9分)△FCG另法:∵点G在边DC上,∴菱形的边长至少为DH=4,当菱形的边长为4时:∵点E在AB边上且满足AE=2,此时,当点E逐渐向右运动至点B时,HE的长(即菱形的边长)将逐渐变大,∴最大值为HE=2.此时,DG=2,故0≤x≤2.∵函数S=6﹣x的值随着x的增大而减小,△FCG取得最小值为6﹣2.∴当x=2时,S△FCG又∵6﹣2=1,∴△FCG的面积不可能等于1.(9分)。