黑龙江省牡丹江市2016年中考数学试题(扫描版)(附答案)
- 格式:doc
- 大小:787.00 KB
- 文档页数:11
:2016年牡丹江中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
牡丹江市中考数学试卷姓名:________班级:________一、 单选题 (共 12 题;共 24 分)成绩:________1. (2 分) (2016 七下·鄂城期中) 在 3.14、、 、﹣ 、个数中,无理数有( )A . 1个B . 2个C . 3个D . 4个2. (2 分) (2019 八下·泰兴期中) 下列分式中,最简分式是( )、 、0.2020020002 这六A.B.C.D. 3. (2 分) (2019 七上·北碚期末) 2018 年 10 月 24 日,被外媒冠以“中国奇迹”之称的“超级工程”港珠 澳大桥,正式通车.港珠澳大桥是新中国建设史上里程最长投资最多施工难度最大的跨海桥梁。
其中最大沉管隧道 排水量超过 75000 吨。
75000 用科学记数法表示为( ) A . 0.75×105 B . 75×103 C . 7.5×104 D . 7.5×105 4. (2 分) (2020·无锡) 下列选项错误的是( )A. B.C. D. 5. (2 分) (2019·萍乡模拟) sin60°的相反数( )A.-第 1 页 共 15 页B.-C.-D.6. (2 分) 下列说法正确的是 A . 相等的圆心角所对的弧相等 B . 无限小数是无理数 C . 阴天会下雨是必然事件 D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为 k,那么位似图形对应点的坐标的比等于 k 或﹣k 7. (2 分) (2016 八上·无锡期末) 下列说法: ①有理数和数轴上的点一一对应; ②成轴对称的两个图形是全等图形;③-是 17 的平方根;④等腰三角形的高线、中线及角平分线重合.其中正确的有( )A . 0个B.1C . 2个D . 3个8. (2 分) (2019·泸州) 四边形的对角线 与 相交于点 ,下列四组条件中,一定能判定四边形为平行四边形的是( )A.B.,C.,D.9. (2 分) (2019·泸州) 如图,一次函数则使成立的 取值范围是( )和反比例函数的图象相交于 , 两点,第 2 页 共 15 页A.或B.或C.或D.或10. (2 分) (2019·泸州) 一个菱形的边长为 ,面积为 ,则该菱形的两条对角线的长度之和为( )A.B.C.D.11. (2 分) (2019·泸州) 如图,等腰的内切圆⊙ 与 , , 分别相切于点 ,, ,且,,则 的长是( )A.B.C.D. 12. (2 分) (2019·泸州) 已知二次函数(其中 是自变量)的图象与 轴没有公共点,且当时, 随 的增大而减小,则实数 的取值范围是( )A.B.C.D.第 3 页 共 15 页二、 填空题 (共 4 题;共 4 分)13. (1 分) 如图,是用火柴棒拼成的图形,则第 n 个图形需________ 根火柴棒.14. (1 分) (2019·泸州) 在平面直角坐标系中,点值是________.15. (1 分) (2019·泸州) 已知 , 是一元二次方程是________.16. (1 分) (2019·泸州) 如图,在等腰中,,点 在边 上,,垂足为 ,则与点关于 轴对称,则的两实根,则,,点长为________.在边的 的值 上,三、 解答题 (共 9 题;共 81 分)17. (5 分) 计算:(1) ﹣x(x2+xy﹣1)(2) (m﹣2n)2(3) (x+3)2(x﹣3)2(4) (x+y﹣3)(x+y+3)18. (5 分) (2019·泸州) 如图,, 和 相交于点 ,.求证:.19. (5 分) (2019·泸州) 化简:.20. (11 分) (2019·泸州) 某市气象局统计了 5 月 1 日至 8 日中午 12 时的气温(单位制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:),整理后分别绘第 4 页 共 15 页(1) 该市 5 月 1 日至 8 日中午时气温的平均数是________ ,中位数是________ ;(2) 求扇形统计图中扇形 的圆心角的度数;(3) 现从该市 5 月 1 日至 5 日的 天中,随机抽取 天,求恰好抽到 天中午 12 时的气温均低于的概率.21. (10 分) (2019·泸州) 某出租汽车公司计划购买 型和 型两种节能汽车,若购买 型汽车 辆,型汽车 辆,共需万元;若购买 型汽车 辆, 型汽车 辆,共需万元.(1) 型和 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买 型和 型两种汽车共 辆,费用不超过万元,且 型汽车的数量少于型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.22. (10 分) (2019·泸州) 一次函数的图象经过点,.(1) 求该一次函数的解析式;(2) 若该一次函数的图象与反比例函数的图象相交于,求 的值.23. (10 分) (2019·泸州) 如图,海中有两个小岛 , ,某渔船在海中的两点,且,处测得小岛 D 位于东北方向上,且相距,该渔船自西向东航行一段时间到达点 处,此时测得小岛 恰好在点 的正北方向上,且相距,又测得点 与小岛 相距.(1) 求的值;(2) 求小岛 , 之间的距离(计算过程中的数据不取近似值).24. (10 分) (2019·泸州) 如图, 为⊙ 的直径,点 在.的延长线上,点在⊙上,且第 5 页 共 15 页(1) 求证: 是⊙ 的切线;(2) 已知,,点 是 的中点,,垂足为 , 交 于点 ,求 的长.25. (15 分) 如图,在平面直角坐标系 xOy 中,已知二次函数 y=ax+bx+c 的图像经过点 A(-2,0),C(0,-6)。
2016年黑龙江省牡丹江市中考数学试卷一、选择题(每小题3分,共36分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.正五边形 C.矩形 D.平行四边形2.下列计算正确的是()A.2a3?3a2=6a6 B.a3+2a3=3a6C.a÷b×=a D.(﹣2a2b)3=﹣8a6b33.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最少是()A.8 B.9 C.10 D.114.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≤1 D.x≥15.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.6.在平面直角坐标系中,直线y=2x﹣6不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.58.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.109.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C.3D.210.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89[来源:学。
科。
网]11.如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为()A.(4,0) B.(5,0) C.(4,0)或(﹣4,0) D.(5,0)或(﹣5,0)12.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG?DG,其中正确结论的个数为()A.2 B.3 C.4 D.5二、填空题(每小题3分,满分24分)13.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为______.14.如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE (只添一个即可),你所添加的条件是______.15.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件______元.16.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为______.17.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=______度.18.已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=______.19.如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC=______.20.在矩形ABCD中,对角线AC,BD相交于点O,AC+BD=40,AB=12,点E是BC边上一点,直线OE交CD边所在的直线于点F,若OE=2,则DF=______.三、解答题(满分60分)21.先化简,再求值:÷(x﹣),其中x=﹣2.22.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)23.在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,BC=6,CD=5,过点A作AE⊥AD且AE=AD,过点E作EF垂直于AC边所在的直线,垂足为点F,连接DF,请你画出图形,并直接写出线段DF的长.24.为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表进球数(个)人数0 11 22 x3 y4 45 2(1)求这个班级的男生人数;(2)补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;(3)该校共有学生1880人,请你估计全校进球数不低于3个的学生大约有______人.25.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.26.在?ABCD中,点P和点Q是直线BD上不重合的两个动点,AP∥CQ,AD=BD.(1)如图①,求证:BP+BQ=BC;(2)请直接写出图②,图③中BP、BQ、BC三者之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,若DQ=1,DP=3,则BC=______.27.某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A 中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.28.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA>OC).(1)求点A,C的坐标;(2)直线AB与直线CD交于点E,若点E是线段AB的中点,反比例函数y=(k≠0)的图象的一个分支经过点E,求k的值;(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.[来源:学。
2016-2017学年黑龙江省牡丹江市七年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.(3分)如果收入1000元记作+1000元,那么“﹣300元”表示()A.收入300元B.支出300元C.支出﹣300元D.获利300元2.(3分)下列计算正确的是()A.﹣3a+4a=﹣7a B.4m+2n=6mnC.5x+4x=20x2D.6xy3﹣2xy3=4xy33.(3分)数轴上一动点A向左移动3个单位长度到达点B,再向右移动7个单位长度到达点C,若点C表示的数是2,则点A表示的数是()A.1 B.2 C.﹣1 D.﹣24.(3分)如果单项式6a m+2b3与﹣4.3b n a4的和仍是单项式,则﹣2mn的值为()A.6 B.﹣2 C.﹣12 D.15.(3分)已知a<3,且|3﹣a|=|﹣5|,则a3的倒数是()A.B.C.8 D.﹣86.(3分)近似数3.27的准确值a的取值范围是()A.3.265≤a<3.275 B.3.265<a<3.275C.3.265≤a≤3.274 D.3.265<a≤3.2757.(3分)下列多项式中,是四次三项式的是()A.x4+4x4y﹣2x3 B.﹣πx4﹣3x2+x C.﹣x4+5y3+xy﹣2 D.8.(3分)如图1,将一个长为a、宽为b的长方形(a>b)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A. B.a﹣b C.D.9.(3分)下列说法正确的有()①﹣(﹣3)的相反数是﹣3②近似数1.900×105精确到百位③代数式|x+2|﹣3的最小值是0④两个六次多项式的和一定是六次多项式.A.1个 B.2个 C.3个 D.4个10.(3分)一个多项式A减去多项式2x2+5x﹣3,某同学将减号抄成了加号,运算结果为﹣x2+3x﹣5,那么正确的运算结果是()A.﹣3x2﹣2x﹣4 B.﹣x2+3x﹣7 C.﹣5x2﹣7x+1 D.无法确定二、填空题:每小题3分,共30分.11.(3分)比较大小:﹣|﹣3.6| ﹣(﹣).12.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为.13.(3分)﹣7的绝对值的相反数的倒数为.14.(3分)多项式3(x2+2xy﹣4y2)﹣(2x2﹣2mxy﹣2y2)中不含xy项,则m=.15.(3分)满足下列三个条件的单项式个数是.①只含有字母x、y、z;②系数为﹣2;③次数为5.16.(3分)若a2﹣3b﹣3=2,则6b﹣2a2+2016=.17.(3分)甲、乙两地相距a千米,小李计划3小时由甲地到乙地,如果想提前1小时到达,那么每小时应多走千米.18.(3分)规定一种新运算:a△b=a•b﹣a+b+1,如3△4=3•4﹣3+4+1,请比较大小:(﹣3)△44△(﹣3)(填“>”、“=”或“<”)19.(3分)如图是一个运算程序的示意图,若开始输入x的值为9,则第2016次输出的结果为.20.(3分)已知|x|=3,|x+y|=4,则x+|y|=.三、解答题:共60分.21.(16分)计算:(1)9+(﹣)﹣5﹣(﹣0.25);(2)﹣45×(+1﹣0.6);(3)(﹣81)÷2+÷(﹣16);(4)﹣32﹣[(﹣5)3+(1﹣0.2×)÷(﹣0.2)].22.(5分)若a、b互为倒数,b、c互为相反数,m的绝对值为,求代数式﹣m2的值.23.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.24.(7分)某电动车厂计划一周生产电动车1200辆,计划平均每天生产200辆,但由于种种原因,实际每天生产量与计划生产量相比有出入.下表是某周(6天)的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,该厂星期四生产电动车辆;(2)根据记录的数据可知该厂本周实际生产自行车辆;(3)该厂实行每日计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?25.(8分)已知4|x+2|+(y﹣5)2=0,A=3x2﹣2xy+y2,B=x2+xy﹣5y2,求A﹣3B的值.26.(9分)已知a、b、c在数轴上的位置如图所示:(1)求+﹣;(2)比较a+b,b﹣c,a+c的大小,并用“<”将它们连接起来.27.(9分)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元;(用含x的式子表示)若该客户按方案二购买,需付款元;(用含x的式子表示)(2)若x=35,通过计算说明此时按哪种方案购买较为合算?(3)当x=35时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案.2016-2017学年黑龙江省牡丹江市七年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共30分.1.(3分)如果收入1000元记作+1000元,那么“﹣300元”表示()A.收入300元B.支出300元C.支出﹣300元D.获利300元【解答】解:由题意得:﹣300元表示支出300元.故选:B.2.(3分)下列计算正确的是()A.﹣3a+4a=﹣7a B.4m+2n=6mnC.5x+4x=20x2D.6xy3﹣2xy3=4xy3【解答】解:(A)原式=a,故A错误;(B)4m+2n已化到最简,故B错误;(C)5x+4x=9x,故C错误;故选:D.3.(3分)数轴上一动点A向左移动3个单位长度到达点B,再向右移动7个单位长度到达点C,若点C表示的数是2,则点A表示的数是()A.1 B.2 C.﹣1 D.﹣2【解答】解:设动点A开始移动时所在的位置对应的数为x,则x﹣3+7=2,解得,x=﹣2,故选:D.4.(3分)如果单项式6a m+2b3与﹣4.3b n a4的和仍是单项式,则﹣2mn的值为()A.6 B.﹣2 C.﹣12 D.1【解答】解:由题意可知:m+2=4,3=n,∴m=2,n=3,∴原式=﹣2×2×3=﹣12,故选:C.5.(3分)已知a<3,且|3﹣a|=|﹣5|,则a3的倒数是()A.B.C.8 D.﹣8【解答】解:由a<3,且|3﹣a|=|﹣5|,故方程可化为:3﹣a=5,解得:a=﹣2,∴a3=(﹣2)3=﹣8,﹣8的倒数为﹣.故选:B.6.(3分)近似数3.27的准确值a的取值范围是()A.3.265≤a<3.275 B.3.265<a<3.275C.3.265≤a≤3.274 D.3.265<a≤3.275【解答】解:近似数3.27的准确值a的取值范围是3.265≤a<3.275.故选:A.7.(3分)下列多项式中,是四次三项式的是()A.x4+4x4y﹣2x3 B.﹣πx4﹣3x2+x C.﹣x4+5y3+xy﹣2 D.【解答】解:(A)是五次三项式,故A错误;(C)是四次四项式,故C错误;(D)是四次二项式,故D错误;故选:B.8.(3分)如图1,将一个长为a、宽为b的长方形(a>b)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A. B.a﹣b C.D.【解答】解:设去掉的小正方形的边长是x,∵把一个长为m、宽为n的长方形(a>b)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,∴x+b=a﹣x,∴x=.故选:A.9.(3分)下列说法正确的有()①﹣(﹣3)的相反数是﹣3②近似数1.900×105精确到百位③代数式|x+2|﹣3的最小值是0④两个六次多项式的和一定是六次多项式.A.1个 B.2个 C.3个 D.4个【解答】解:①﹣(﹣3)的相反数是﹣3,正确;②近似数1.900×105精确到百位,正确;③代数式|x+2|﹣3的最小值是﹣3,故本小题错误;④两个六次多项式的和一定是六次多项式,错误;综上所述,说法正确的有①②共2个.故选:B.10.(3分)一个多项式A减去多项式2x2+5x﹣3,某同学将减号抄成了加号,运算结果为﹣x2+3x﹣5,那么正确的运算结果是()A.﹣3x2﹣2x﹣4 B.﹣x2+3x﹣7 C.﹣5x2﹣7x+1 D.无法确定【解答】解:根据题意知A=﹣x2+3x﹣5﹣(2x2+5x﹣3)=﹣x2+3x﹣5﹣2x2﹣5x+3=﹣3x2﹣2x﹣2,则﹣3x2﹣2x﹣2﹣(2x2+5x﹣3)=﹣3x2﹣2x﹣2﹣2x2﹣5x+3=﹣5x2﹣7x+1,故选:C.二、填空题:每小题3分,共30分.11.(3分)比较大小:﹣|﹣3.6| <﹣(﹣).【解答】解:∵﹣|﹣3.6|=﹣3.6,﹣(﹣)=,∴﹣|﹣3.6|<﹣(﹣).故答案为:<.12.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为 1.08×105.【解答】解:10.8万=1.08×105.故答案为:1.08×105.13.(3分)﹣7的绝对值的相反数的倒数为﹣.【解答】解:﹣7的绝对值是7,7的相反数是﹣7,﹣7的倒数是﹣.故答案是:﹣.14.(3分)多项式3(x2+2xy﹣4y2)﹣(2x2﹣2mxy﹣2y2)中不含xy项,则m=﹣3.【解答】解:∵3(x2+2xy﹣4y2)﹣(2x2﹣2mxy﹣2y2)=3x2+6xy﹣12y2﹣2x2+2mxy+2y2=x2+(6+2m )xy﹣10y2,又∵多项式3(x2+2xy﹣4y2)﹣(2x2﹣2mxy﹣2y2)中不含xy项,∴6+2m=0,解得m=﹣3.故答案为﹣3.15.(3分)满足下列三个条件的单项式个数是﹣2xyz3.①只含有字母x、y、z;②系数为﹣2;③次数为5.【解答】解:满足条件的单项式为:﹣2xyz3.故答案为:﹣2xyz3.(答案不唯一).16.(3分)若a2﹣3b﹣3=2,则6b﹣2a2+2016=2006.【解答】解:∵a2﹣3b﹣3=2,∴a2﹣3b=5,原式=﹣2(a2﹣3b)+2016=﹣10+2016=2006,故答案为:200617.(3分)甲、乙两地相距a千米,小李计划3小时由甲地到乙地,如果想提前1小时到达,那么每小时应多走千米.【解答】解:由题意可得,每小时应多走:=千米,故答案为:.18.(3分)规定一种新运算:a△b=a•b﹣a+b+1,如3△4=3•4﹣3+4+1,请比较大小:(﹣3)△4>4△(﹣3)(填“>”、“=”或“<”)【解答】解:∵(﹣3)△4=(﹣3)×4﹣(﹣3)+4+1=﹣4,4△(﹣3)=4×(﹣3)﹣4+(﹣3)+1=﹣18,∴(﹣3)△4>4△(﹣3),故答案为:>.19.(3分)如图是一个运算程序的示意图,若开始输入x的值为9,则第2016次输出的结果为1.【解答】解:把x=9代入得:×9=3;把x=3代入得:×3=1;把x=1代入得:1+2=3;把x=3代入得:×3=1,依此类推,以3,1循环,则第2016次输出的结果为1,故答案为:120.(3分)已知|x|=3,|x+y|=4,则x+|y|=﹣2或4或10.【解答】解:∵|x|=3,|x+y|=4,∴x=﹣3,y=﹣1或7,当x=3时,y=1或﹣7,∴x+|y|=﹣3+1=﹣2或x+|y|=﹣3+7=4或x+|y|=3+1=4或x+|y|=3+7=10.故答案为:﹣2或4或10.三、解答题:共60分.21.(16分)计算:(1)9+(﹣)﹣5﹣(﹣0.25);(2)﹣45×(+1﹣0.6);(3)(﹣81)÷2+÷(﹣16);(4)﹣32﹣[(﹣5)3+(1﹣0.2×)÷(﹣0.2)].【解答】解:(1)原式=9﹣5﹣0.25+0.25=4;(2)原式=﹣5﹣60+27=﹣65+27=﹣38;(3)原式=﹣81×﹣×=﹣36;(4)原式=﹣9﹣(﹣125﹣)=﹣9+125+=120.22.(5分)若a、b互为倒数,b、c互为相反数,m的绝对值为,求代数式﹣m2的值.【解答】解:根据题意得:ab=1,c+d=0,m=或﹣,当m=时,原式=﹣=1;当m=﹣时,原式==﹣2.综上所述,代数式﹣m2的值为1或.23.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.24.(7分)某电动车厂计划一周生产电动车1200辆,计划平均每天生产200辆,但由于种种原因,实际每天生产量与计划生产量相比有出入.下表是某周(6天)的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,该厂星期四生产电动车213辆;(2)根据记录的数据可知该厂本周实际生产自行车1218辆;(3)该厂实行每日计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?【解答】解:(1)星期四的产量是200+13=213(辆),故答案是:213;(2)这一周超过计划的辆数是5﹣2﹣4+13﹣10+16=18(辆),实际生产的辆数是:6×200+18=1218(辆),故答案是:1218;(3)工资总额是:1218×50+(5+13+16)×15+(﹣2﹣4﹣10)×20=61090(元),答:该厂工人这一周的工资总额是61090元.25.(8分)已知4|x+2|+(y﹣5)2=0,A=3x2﹣2xy+y2,B=x2+xy﹣5y2,求A﹣3B 的值.【解答】解:由题意可知:x=﹣2,y=5,∴A﹣3B=(3x2﹣2xy+y2)﹣3(x2+xy﹣5y2)=3x2﹣2xy+y2﹣3x2﹣3xy+15y2,=﹣5xy+16y2=﹣5×(﹣2)×5+16×25=50+400=45026.(9分)已知a、b、c在数轴上的位置如图所示:(1)求+﹣;(2)比较a+b,b﹣c,a+c的大小,并用“<”将它们连接起来.【解答】解:(1)由数轴,得a<c<0<b,且|a|>|c|>|b|,+﹣=﹣++=2;(2)a<a+b<0,b﹣c>0,a+c<a,a+c<a+b<b﹣c.27.(9分)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款200x+16000元;(用含x的式子表示)若该客户按方案二购买,需付款180x+18000元;(用含x的式子表示)(2)若x=35,通过计算说明此时按哪种方案购买较为合算?(3)当x=35时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案.【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:20×1000+(x﹣20)×200=200x+16000方案二费用:(20×1000+200x)×0.9=180x+18000故答案为:200x+16000;180x+18000;(2)当x=35时,方案一:200×35+16000=23000(元)方案二:180×35+18000=24300(元)所以,按方案一购买较合算;(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买15条领带.则20000+200×15×90%=22700(元).赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
黑龙江省牡丹江市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -2的绝对值是()A .B .C . -2D . 22. (2分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.A . AB . BC . CD . D3. (2分)(2017·莱芜) 对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a <b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A .B . 1C .D .4. (2分)在下列所给出的4个图形中,对角线一定互相垂直的是()A . 长方形B . 平行四边形C . 菱形D . 直角梯形5. (2分)(2020·阜阳模拟) 如图是北京2017年3月1日﹣7日的浓度(单位:)和空气质量指数(简称)的统计图,当不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的浓度最高②这七天的浓度的平均数是③这七天中有5天的空气质量为“优”④空气质量指数与浓度有关其中说法正确的是()A . ②④B . ①③④C . ①③D . ①④6. (2分) (2016七下·玉州期末) 不等式组的解是()A . ﹣3<x≤5B . x≥﹣3C . ﹣3≤x<57. (2分)圆柱的底面半径为1,高为2,则该圆柱体的表面积为()A . πB . 2πC . 4πD . 6π8. (2分)下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为。
2016年黑龙江省牡丹江市中考数学二模试卷一、选择题1.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤2.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A.B.C.D.4.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.5.若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y2>y1>y3D.y3>y2>y16.某中学女子足球队15名队员的年龄情况如下表:这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,147.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.38.如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A.3 B.2 C. D.39.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A.2个B.3个C.4个D.5个10.如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E 重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题11.2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造了世博会历史上新的纪录.用科学记数法表示为人次.(结果保留两个有效数字)12.函数y=中自变量x的取值范围是.13.如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:,使得AC=DF.14.因式分解:﹣3x2+6xy﹣3y2= .15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率.16.将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.17.一元二次方程a2﹣4a﹣7=0的解为.18.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.19.已知三角形相邻两边长分别为20cm和30cm,第三边上的高为10cm,则此三角形的面积为cm2.20.如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011= .三、解答题(满分60分)21.先化简,再求值:(1﹣)÷,其中a=sin60°.22.如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.23.已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,﹣);(1)求此二次函数的解析式;(2)设该图象与x轴交于B,C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC得面积最大,并求出最大面积.24.为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:(1)求a、b的值.(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?25.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.26.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.27.建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?28.已知直线y=x+4与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.2016年黑龙江省牡丹江市管理局北斗星协会中考数学二模试卷参考答案与试题解析一、选择题下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤【考点】6F:负整数指数幂;1G:有理数的混合运算;35:合并同类项;46:同底数幂的乘法;6E:零指数幂.【专题】11 :计算题.【分析】分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.【解答】解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.【点评】本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.2.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A.B.C.D.【考点】E6:函数的图象.【专题】11 :计算题.【分析】注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,按自变量分为0﹣2﹣3﹣7三段,画出图象.【解答】解:按照注水的过程分为,注水2分钟,停1分钟,再注水4分钟.故选D.【点评】本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.4.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选A.【点评】此题主要考查了三视图的概念.根据俯视图得出每一组小正方体的个数是解决问题的关键.5.若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y2>y1>y3D.y3>y2>y1【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的特征,xy=3,所以得到x1•y1=3,x2•y2=3,x3•y3=3,再根据x1<x2<0<x3,即可判断y1、y2、y3的大小关系.【解答】解:∵A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,∴x1•y1=3,x2•y2=3,x3•y3=3,∵x3>0,∴y3>0,∵x1<x2<0,∴0>y1>y2,∴y3>y1>y2.故选A.【点评】此题主要考查了反比例函数图象上点的特征,凡是在反比例函数图象上的点,横纵坐标的乘积是一个定值=k.6.某中学女子足球队15名队员的年龄情况如下表:这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,14【考点】W5:众数;W4:中位数.【分析】根据众数与中位数的意义分别进行解答即可.【解答】解:15出现了6次,出现的次数最多,则众数是15,把这组数据从小到大排列,最中间的数是15;故选C.【点评】本题考查了众数与中位数的意义,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.3【考点】B5:分式方程的增根;86:解一元一次方程.【专题】11 :计算题.【分析】根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.【解答】解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3,当x=﹣2时,m=﹣2+2=0,当m=0时,方程为﹣1=0,此时1=0,即方程无解,故选:D.【点评】本题主要考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解此题的关键.8.如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A.3 B.2 C. D.3【考点】M5:圆周角定理;S9:相似三角形的判定与性质.【专题】16 :压轴题.【分析】根据圆周角定理可得∠ACB=∠ABC=∠D,再利用三角形相似△ABD∽△AEB,即可得出答案.【解答】解:∵AB=AC,∴∠ACB=∠ABC=∠D,∵∠BAD=∠BAD,∴△ABD∽△AEB,∴,∴AB2=3×7=21,∴AB=.故选C.【点评】此题主要考查了圆周角定理以及相似三角形的判定与性质,根据题意得出△ABD∽△AEB是解决问题的关键.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【专题】11 :计算题;16 :压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:①根据图示知,二次函数与x轴有两个交点,所以△=b2﹣4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;③又对称轴x=﹣=1,∴<0,∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选B.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.10.如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E 重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个【考点】PB:翻折变换(折叠问题);KD:全等三角形的判定与性质;T1:锐角三角函数的定义.【专题】152:几何综合题;16 :压轴题.【分析】根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.【解答】解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°﹣45°﹣67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确.⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;正确的有3个,故选:C.【点评】综合考查了有折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等.二、填空题11.2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造了世博会历史上新的纪录.用科学记数法表示为7.3×107人次.(结果保留两个有效数字)【考点】1L:科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.【解答】解:7308万=7.308×107≈7.3×107.故答案为:7.3×107.【点评】本题考查了科学记数法和有效数字,用科学记数法表示的数的有效数字的方法:有效数字只和a有关,和n无关.12.函数y=中自变量x的取值范围是x≥﹣2且x≠3 .【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:y=中自变量x的取值范围是x≥﹣2且x≠3;故答案为:x≥﹣2且x≠3.【点评】本题考查了函数自变量的范围,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:AB=DE ,使得AC=DF.【考点】KD:全等三角形的判定与性质.【专题】26 :开放型.【分析】要使AC=DF,则必须满足△ABC≌△DEF,已知AB∥DE,BF=CE,则可得到∠B=∠E,BC=EF,从而添加AB=DE即可利用SAS判定△ABC≌△DEF.【解答】解:添加:AB=DE.∵AB∥DE,BF=CE,∴∠B=∠E,BC=EF,在△ABC与△DEF中,∵,∴△ABC≌△DEF(SAS),∴AC=DF.故答案为:AB=DE.【点评】此题主要考查学生对全等三角形的判定与性质的综合运用能力.14.因式分解:﹣3x2+6xy﹣3y2= ﹣3(x﹣y)2.【考点】55:提公因式法与公式法的综合运用.【分析】根据分解因式的方法,首负先提负,放进括号里的各项要变号,再提取公因式3,括号里的剩下3项,考虑完全平方公式分解.【解答】解:﹣3x2+6xy﹣3y2=﹣(3x2﹣6xy+3y2)=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2,故答案为:﹣3(x﹣y)2.【点评】此题主要考查了提公因式法与公式法分解因式的综合运用,注意符号问题,分解时一定要分解彻底.15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率.【考点】X4:概率公式.【专题】11 :计算题.【分析】计算出所有棋子数,再找出不是士、象、帅的棋子个数,根据概率公式解答即可.【解答】解:∵共有1个帅,5个兵,“士、象、马、车、炮”各两个,∴棋子总个数为16个,又∵不是士、象、帅的棋子共有11个,∴P=.故答案为:.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144 度.【考点】MP:圆锥的计算.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.【解答】解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144.【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.17.一元二次方程a2﹣4a﹣7=0的解为a1=2+,a2=2﹣.【考点】A7:解一元二次方程﹣公式法.【分析】用公式法直接求解即可.【解答】解:a===2±,∴a1=2+,a2=2﹣,故答案为:a1=2+,a2=2﹣.【点评】本题考查了用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.18.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.【考点】95:二元一次方程的应用.【分析】设甲种运动服买了x套,乙种买了y套,根据准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.【解答】解:设甲种运动服买了x套,乙种买了y套,20x+35y=365,得x=,∵x,y必须为正整数,∴>0,即0<y <,∴当y=3时,x=13 当y=7时,x=6. 所以有两种方案. 故答案为:2.【点评】本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.19.已知三角形相邻两边长分别为20cm 和30cm ,第三边上的高为10cm ,则此三角形的面积为(100+50)或(100) cm 2.【考点】KQ :勾股定理. 【专题】16 :压轴题.【分析】本题考虑两种情况,一种为相邻两边在高的两侧,一种为相邻两边在高的同侧,然后根据勾股定理求得第三边,从而求得三角形面积. 【解答】解:设AB=30cm ,AC=20cm ,AD=10cm , 由题意作图,有两种情况: 第一种:如图①,在Rt △ABD 中,利用勾股定理BD==cm ,同理求出CD=10cm ,则三角形面积=BC•AD=(10+20)×10=(100)cm 2第二种:如图②,在Rt △ABD 中,BD===20cm在Rt △ACD 中,CD===10cm则BC=cm所以三角形面积=BC•AD=(20﹣10)×10=cm 2故答案为:【点评】本题考查了勾股定理,两次运用勾股定理求出第三边,从两种情况来求第三边长,则再求三角形面积.20.如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011= •(表示为•亦可).【考点】S6:相似多边形的性质;KK:等边三角形的性质;KX:三角形中位线定理.【专题】16 :压轴题;2A :规律型.【分析】先根据△ABC是等边三角形可求出△ABC的高,再根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2011的值.【解答】解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•sin∠A=1×=,∵DE、EF是△ABC的中位线,∴AF=,∴S1=××=;同理可得,S2=×;…∴S n=()n﹣1;∴S2011=•(表示为•亦可).故答案为:S2011=•(表示为•亦可).【点评】本题考查的是相似多边形的性质,涉及到等边三角形的性质、锐角三角函数的定义、特殊角的三角函数值及三角形中位线定理,熟知以上知识是解答此题的关键.三、解答题(满分60分)21.先化简,再求值:(1﹣)÷,其中a=sin60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】先通分,然后进行四则运算,最后将a=sin60°=代入即可求得答案.【解答】解:原式=(﹣)•=•=a+1把a=sin60°=代入原式==.【点评】本题主要考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.22.如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)分别将对应点A,B,C向右平移3个单位长度,即可得出图形;(2)分别将对应点A,B,C绕点O旋转180°,即可得出图形;(3)经过点O连接OC 1,即可平分△AC1A2的面积.【解答】解:(1)如图所示(2)如图所示;(3)如图所示.【点评】此题主要考查了图形的平移以及旋转和等分三角形的面积,根据已知正确平移和旋转对应点是平移或旋转图形的关键.23.已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,﹣);(1)求此二次函数的解析式;(2)设该图象与x轴交于B,C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC得面积最大,并求出最大面积.【考点】H8:待定系数法求二次函数解析式;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法将直线x=1,且经过点(2,﹣)代入二次函数解析式,求二次函数解析式即可;(2)利用二次函数与x轴相交即y=0,求出即可,再利用E点在x轴下方,且E为顶点坐标时△EBC 面积最大,求出即可.【解答】解:(1)由已知条件得,解得b=﹣,c=﹣,故此二次函数的解析式为y=x2﹣x﹣.(2)令y=x2﹣x﹣=0,∴x1=﹣1,x2=3,∴B(﹣1,0),C(3,0),∴BC=4,∵E点在x轴下方,且△EBC面积最大,∴E点是抛物线的顶点,其坐标为(1,﹣3),∴△EBC的面积=×4×3=6.【点评】此题主要考查了待定系数法求二次函数解析式以及求二次函数顶点坐标进而得出三角形面积等知识,根据题意得出E为顶点坐标时△EBC面积最大是解决问题的关键.24.为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:(1)求a、b的值.(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【专题】27 :图表型.【分析】(1)根据时间为1.5小时的人数及所占的比例可求出总人数,从而可求出a和b的值.(2)根据0.5小时的人数,360°×即可得出答案.(3)先计算出达标率,然后根据频数=总人数×频率即可得出答案.【解答】解:(1)总人数=40÷20%=200人,0.5小时所占的比例为=30%,∴a=200×40%=80,b=1﹣20%﹣40%﹣30%=10%;(2)×100%×360°=108°;(3)80+40+200×10%=140,达标率=×100%,总人数=×100%×8000=5600(人).答:该区0.8万名学生参加户外体育活动时间达标的约有5600人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60 千米/时,t= 3 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点】FH:一次函数的应用.【分析】(1)根据速度=路程÷时间可求出乙车的速度,利用时间=路程÷速度可求出乙车到达A地的时间,结合图形以及甲车的速度不变,即可得出关于t的一元一次方程,解之即可得出结论;(2)分0≤x≤3、3≤x≤4、4≤x≤7三段,根据函数图象上点的坐标,利用待定系数法即可求出函数关系式;(3)找出乙车距它出发地的路程y与甲车出发的时间x的函数关系式,由两地间的距离﹣甲、乙行驶的路程和=±120,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)乙车的速度为60÷1=60(千米/时),乙车到达A地的时间为480÷60=8(小时),根据题意得:2t+1=8﹣1,解得:t=3.故答案为:60;3.(2)设甲车距它出发地的路程y与它出发的时间x的函数关系式为y=kx+b(k≠0),当0≤x≤3时,将(0,0)、(3,360)代入y=kx+b,得:,解得:,∴y=120x;当3≤x≤4时,y=360;当4≤x≤7时,将(4,360)、(7,0)代入y=kx+b,得:,解得:,∴y=﹣120x+840.综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为y=.(3)乙车距它出发地的路程y与甲车出发的时间x的函数关系式为y=60(x+1)=60x+60.当0≤x≤3时,有|480﹣(120x+60x+60)|=120,解得:x1=,x2=3;当3≤x≤4时,有|480﹣(360+60x+60)|=120,解得:x3=﹣1(舍去),x4=3;当4≤x≤7时,有|480﹣(﹣120x+840+60x+60)|=120,。
黑龙江省牡丹江市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·鄂州) ﹣的相反数是()A . ﹣B . ﹣C .D .2. (2分)若一个几何体的三视图都是正方形,则这个几何体是()A . 长方体B . 正方体C . 圆柱D . 圆锥3. (2分)下列运算正确的是()A .B .C .D .4. (2分)如图,将一副三角板按如图方式叠放,则∠等于()A . 30°B . 45°C . 60°D . 75°5. (2分)(2014·柳州) 如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A . 240°B . 120°C . 60°D . 30°6. (2分) (2017九上·鸡西月考) 点M(5,-4)关于原点对称的点的坐标是()A . (-5,-4)B . (5,4)C . (-5,4)D . (4,5)7. (2分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A .B .C .D .8. (2分) (2017八下·宁波月考) 一组数据:1,3,2,5,x的平均数是3,则这组数据的标准差为()A . 2B . 4C .D . -29. (2分) (2018九上·深圳期中) 新华商场销售某种冰箱,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,设每台冰箱的定价为x元,则x满足的关系式为()A . (x−2500)(8+4× )=5000B . (2900−x−2500)(8+4× )=5000C . (x−2500)(8+4× )=5000D . (2900−x)(8+4× )=500010. (2分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A 运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2019九上·阳东期末) 如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.12. (1分)不等式组的解集是________.13. (1分) (2019九上·惠州期末) 抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是________.14. (1分) (2018九上·天河期末) 如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30º,则圆锥的侧面积为________15. (1分)如图,Rt△A BC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为________ .三、解答题 (共9题;共92分)16. (20分)计算和解分式方程:(1);(2)(﹣1)2016﹣|﹣2|+(﹣π)0× +()﹣1;(3) = ;(4) + = .17. (5分) (2019七下·茂名期中) 先化简,再求值:[(x﹣y)(x+y)﹣(x﹣y)2]÷2y,其中x=2020,y=1.18. (15分)(2019·广西模拟) 如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于0点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2 ,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.19. (5分)(2018·赣州模拟) 某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.求第一批每只文具盒的进价是多少元?20. (15分)(2017·崇左) “校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.21. (5分)(2018·安徽) 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)22. (10分)(2017·罗山模拟) 顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h 后乙开始出发,结果比甲早1(h)到达B地,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.23. (7分) (2016九下·长兴开学考) 综合题(1)如图①,在△ABC中,点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,若AD=2,AE=1,DF=4,则EG=________,=________.(2)如图②,在△ABC中点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,以AD,DF,FB为边构造△ADM (即AM=BF,MD=DF),以AE,EG,GC为边构造△AEN(即AN=GC,NE=EG),求证:∠M=∠N.24. (10分) (2016九上·杭锦后旗期中) 如图,已知二次函数y=﹣ +bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共92分)16-1、16-2、16-3、16-4、17-1、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、。
二○○八年牡丹江市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数31xy x -=-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 . 7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 .8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.下列各图中, 不是正方体的展开图(填序号).① ② ③ ④第9题图D OC B A 第3题图 O B A 第4题图 5cm2 3 4 1 6 5第6题图 一共花了170元 第5题图10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是.11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n个菱形n n n AB C D 的边n AD 的长是 . 二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- ②523-= ③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数1D B 3第11题图AC 2B 2C 3D 3 B 1D 2C 1 A . B . C .D .第16题图C .5m <-时,方程的解为负数D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )第18题图 19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +,D .34562a a a +,20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值. 22.(本小题满分6分)如图,方格纸中每个小正方形的边长都是单位1.(1)平移已知直角三角形,使直角顶点与点O 重合,画出平移后的三角形. (2)将平移后的三角形绕点O 逆时针旋转90,画出旋转后的图形.第20题图t B. C . D .(3)在方格纸中任作一条直线作为对称轴,画出(1)和(2)所画图形的轴对称图形,得到一个美丽的图案.23.(本小题满分6分) 有一底角为60的直角梯形,上底长为10cm ,与底垂直的腰长为10cm ,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm ,第三个顶点落在下底上.请计算所作的三角形的面积. 24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.图二 9590 8580 7570 分数/分 图一竞选人 A B C武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBMBCNCNCNM 图1图2图3A A A D D D x (分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 28.(本小题满分10分) 如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x二○○八年黑龙江省牡丹江市初中毕业学业考试数学试卷参考答案及评分标准一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.③10.6或10或1211.1n -⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题,满分60分.21.解:224226926a a a a a --÷++++ 2(2)(2)2(3)2(3)2a a a a a +-+=++- ····································································· (1分) 242633a a a a ++=-+++ ·················································································· (2分) 23a =+ ·································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ············································ (5分) 22.平移正确,给2分;旋转正确,给2分;轴对称正确,给2分,计6分.23.解:当15BE =cm 时,ABE △的面积是250cm ; 当15CF =cm 时,BCF △的面积是275cm ;当15BE =cm 时,BCE △的面积是2cm .(每种情况,图给1分,计算结果正确1分,共6分) 24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分) 25.解:(1)24分钟 ················································································· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩·············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为B95 90 85 80 7570分数/分竞选人A B C56y x b =+ ····························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. ···································· (8分) 26.解:(1)BM DN MN +=成立. ························································· (2分)如图,把AND △绕点A 顺时针90,得到ABE △,则可证得E B M ,,三点共线(图形画正确) ···· (3分) 证明过程中,证得:EAM NAM ∠=∠ ···························· (4分)证得:AEM ANM △≌△ ························ (5分)ME MN ∴= ME BE BM DN BM =+=+DN BM MN ∴+= ·················································································· (6分) (2)DN BM MN -= ············································································· (8分) 27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ···································································· (2分) 解得240250x ≤≤ ················································································· (3分) 因为x 是整数,所以有11种生产方案. ························································ (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ····························· (6分)220-<,y 随x 的增大而减少.∴当250x =时,y 有最小值. ··································································· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.x (分)B ME A C N D此时min 222506200056500y =-⨯+=(元) ··············································· (8分) (3)有剩余木料,最多还可以解决8名同学的桌椅问题. ······························ (10分) 28.解:(1)2310OB OA --=230OB ∴-=,10OA -= ······································································· (1分) OB ∴=,1OA =点A ,点B 分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠= ············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛-⎝;31P ⎛⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.。
黑龙江省牡丹江市2014年中考数学试卷一、选择题(每小题3分,满分27分)1.(3分)(2014•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是()....2.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是()3.(3分)(2014•牡丹江)下列计算正确的是()=(4.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()5.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()6.(3分)(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()﹣.∴=7.(3分)(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D 在⊙O上,则∠D的度数是()sinB=8.(3分)(2014•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()...D.在×=2×t=2=4×(﹣t+129.(3分)(2014•牡丹江)如图,矩形ABCD 中,O 为AC中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若∠COB=60°,FO=FC ,则下列结论: ①FB ⊥OC ,OM=CM ; ②△EOB ≌△CMB ; ③四边形EBFD 是菱形; ④MB :OE=3:2.其中正确结论的个数是( )MB=OM/OF=OM/∴∠MB=OM/OF=OM/二、填空题(每小题3分,满分33分)10.(3分)(2014•牡丹江)2014年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为8.79×1010.以可以确定11.(3分)(2014•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE(答案不唯一),使△ABC ≌△DEF.12.(3分)(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为160 元.13.(3分)(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是 3 .14.(3分)(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .BC=2 BD=BC=,即(15.(3分)(2014•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是.16.(3分)(2014•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为n2+2 .17.(3分)(2014•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= 28 .BE=DE=22218.(3分)(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= 0 .19.(3分)(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC 的解析式为y=﹣x+ .AB=)代入得,解得20.(3分)(2014•牡丹江)矩形ABCD 中,AB=2,BC=1,点P 是直线BD 上一点,且DP=DA ,直线AP 与直线BC 交于点E ,则CE= ﹣2或+2 . BD==BC==+BC=故答案为:或三、解答题(满分60分)21.(5分)(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°.=÷===22.(6分)(2014•牡丹江)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD 的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).y=ax坐标代入得:解得:BD===223.(6分)(2014•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线.AF==AF==没有直角符号均不给分;图此题主要考查了应用设计与作图,利用分类讨论得出是解题关24.(7分)(2014•牡丹江)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是144 度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.,不近视的人数是:°××25.(8分)(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.解得:∴解得:解得:解得:x=;x=;x=>x=<x=.两车出发小时、小时或26.(8分)(2014•牡丹江)如图,在等边△ABC中,点D在直线BC 上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(提示:过点F作FM∥BC交射线AB于点M.)(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S△ABC =4,则BE= 8 ,CD= 4或8 .∵CF∥AB,∴四边形BMFC是平行四边形,∴BC=MF,CF=BM,∴∠ABC=∠EMF,∠BDE=∠MFE,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BC=AC,∴∠EMF=∠ACB,AC=MF,∵∠ADN=60°,∴∠BDE+∠ADC=120°,∠ADC+∠DAC=120°,∴∠BDE=∠DAC,∴∠MFE=∠DAC,在△MEF与△CDA中,,∴△MEF≌△CDA(AAS),∴CD=ME=EB+BM,∴CD=BE+CF.(2)如图②,CF+CD=BE,如图3,CF﹣CD=BE;27.(10分)(2014•牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.28.(10分)(2014•牡丹江)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x+72=0的两根(OA >OC ),BE=5,tan ∠ABO=. (1)求点A ,C 的坐标;(2)若反比例函数y=的图象经过点E ,求k 的值;(3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.∴=∴AB=.∴,∴,3PH=3,3。