甘肃狮西市通渭县2016_2017学年高二数学下学期期中试题文答案不全(精品文档)
- 格式:doc
- 大小:148.00 KB
- 文档页数:4
甘肃省定西市通渭县2016-2017学年高二数学下学期期中试题 理一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.函数()31f x x x =--的零点所在的区间是( )A .(01),B .(12),C .(23),D .(34), 3.已知函数y =f (x )的导函数y =f ′(x )的图象如图1所示,则( )A .函数f (x )有1个极大值点,1个极小值点B .函数f (x )有2个极大值点,2个极小值点C 函数f(x)有3个极大值点,1个极小值点D .函数f (x )有1个极大值点,3个极小值点4.关于函数()3log 1y x =-的单调性,下列说法正确的是( )A .在()0+∞,上是减函数 B .在()0+∞,上是增函数 C .在()1+∞,上是减函数 D .在()1+∞,上是增函数 5. sin cos 44ππ的值为( ).A.12 B. 2 C. 4 6.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③②①C .①②③D .③①②7.若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有( )A .180种B .360种C .15种D .30种8.函数f (x )=ax 3-x 在R 上为减函数,则( )A .a ≤0B .a <1C .a <2D .a ≤139.抛物线26y x =的准线方程是( )A .32x =- B .32x = C .32y =- D .32y = 10.在数学归纳法的递推性证明中,由假设n =k 时成立推导n =k +1时成立时,f (n )=1+12+13+…+12n -1增加的项数是( )A .1B .2k +1C .2k -1D .2k11.设(1+x )n =a 0+a 1x +…+a n x n,若a 1+a 2+…+a n =63,则展开式中系数最大的项是() A .15x 2 B .20x 3 C .21x 3 D .35x 312.若532m m A A =,则m 的值为 ( )A. 5B. 3C.6D.7二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.(1+2x )5的展开式中,x 2的系数等于 .14.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n = .15. 已知函数2(0)()1(0)x x x f x x x ⎧-≥=⎨+<⎩,则(2)f = .16.不等式223x x -++≥0的解集为 .三.解答题(本大题共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤)17. (10分)已知ABC △1,且sin sin A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数18.(12分)已知函数g (x )=(-x 2+ax -3)e x(a 为实数).当a =5时,求函数y =g (x )在x =1处的切线方程;19.(12分)复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值.20.(12分)已知数列{n a }的前n 项和为a S n n +=2(a 为常数,∈n N *). (1)求1a ,2a ,3a ;(2)若数列{n a }为等比数列,求常数a 的值及n a ;21 .(12分)设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;22.(12分)设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.高二期中数学答案(理科)一选择题 1-5 CBADA 6-10 DBAAD 11-12 BA二填空题. 13. 40, 14. 11, 15.2, 16.[]13-,三解答题17.解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =,II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-=22()2122AC BC AC BC AB AC BC +--==,所以60C =. 18.解:当a =5时,g (x )=(-x 2+5x -3)e x ,g (1)=e.又g ′(x )=(-x 2+3x +2)e x ,故切线的斜率为g ′(1)=4e.所以切线方程为:y -e =4e(x -1),即y =4e x -3e.19.解:z 1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i =⎝ ⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13a +5a -1+(a 2+2a -15)i. 因为z 1+z 2是实数,所以a 2+2a -15=0,解得a =-5或a =3.因为a +5≠0,所以a ≠-5,故a =3.20.解:(1)211+==a S a ,由212a a S +=,得22=a ,由3213a a a S ++=,得43=a ;(2)因为21+=a a ,当2≥n 时,112--=-=n n n n S S a ,又{n a }为等比数列,所以11=a ,即12=+a ,得1-=a ,故12-=n n a ;21.解:(1)函数的定义域为(-∞,+∞),f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 01,f 00,即⎩⎪⎨⎪⎧ c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).22.解 (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2, 所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1. (2)依题意,所求面积S =ʃ10(x 2-2x +1)d x =⎝ ⎛⎭⎪⎫13x 3-x 2+x |10=13.。
2016-2017学年高二下学期期中试卷(理)数学一、选择题1、命题“若q则p”的否命题是()A、若q则¬pB、若¬q则pC、若¬q则¬pD、若¬p则¬q2、已知命题p:存在x0>0,使2 <1,则¬p是()A、对任意x>0,都有2x≥1B、对任意x≤0,都有2x<1C、存在x0>0,使2 ≥1D、存在x0≤0,使2 <13、已知向量→m=(λ+1,1,2),=(λ+2,2,1),若(→m+ )⊥(→m﹣),则λ=()A、B、﹣C、﹣2D、﹣14、设f(x)=ax3+3x2+2,若f′(﹣1)=4,则a的值等于()A、B、C、D、5、如果函数y=f(x)的图象如图,那么导函数y=f′(x)的图象可能是()A、B、C、D、6、已知椭圆+ =1(m>0 )的左焦点为F1(﹣4,0),则m=()A、2B、3C、4D、97、函数f(x)= x2﹣lnx的递减区间为()A、(﹣∞,1)B、(0,1)C、(1,+∞)D、(0,+∞)8、若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A、f(0)+f(2)<2f(1)B、f(0)+f(2)>2f(1)C、f(0)+f(2)≤2f(1)D、f(0)+f(2)≥2f(1)9、直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A、2B、4C、2D、410、三棱锥O﹣ABC中,M,N分别是AB,OC的中点,且= ,= ,= ,用,,表示,则等于()A、(﹣+ + )B、(+ ﹣)C、(﹣+ )D、(﹣﹣+ )11、在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,则异面直线AB1和BC1所成角的余弦值为()A、0B、C、﹣D、12、若函数f(x)= +bx+c有极值点x1, x2(x1<x2),且f(x1)=x1,则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数为()A、1B、2C、3D、4二、填空题13、如图,函数F(x)=f(x)+ x2的图象在点P处的切线方程是y=﹣x+8,则f(5)+f′(5)=________.14、若直线l的方向向量,平面α的一个法向量,则直线l与平面α所成角的正弦值等于________.15、若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是________.16、若函数f(x)在其定义域的一个子集[a,b]上存在实数(a<m<b),使f(x)在m处的导数f′(m)满足f(b)﹣f(a)=f′(m)(b﹣a),则称m是函数f(x)在[a,b]上的一个“中值点”,函数f(x)= x3﹣x2在[0,b]上恰有两个“中值点”,则实数b的取值范围是________.三、解答题17、设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.(1)若a=3,求A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.18、已知命题p:方程表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.19、已知函数f(x)=ax2+blnx在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.20、如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.(1)求CE的长;(2)求证:A1C⊥平面BED;(3)求A1B与平面BDE夹角的正弦值.21、已知椭圆=1(a>b>0)的离心率为,右焦点与抛物线y2=4x的焦点F重合.(1)求椭圆的方程;(2)过F的直线l交椭圆于A、B两点,椭圆的左焦点力F',求△AF'B的面积的最大值.22、已知函数f(x)=alnx+x2(a为实常数).(1)当a=﹣4时,求函数f(x)在[1,e]上的最大值及相应的x值;(2)当x∈[1,e]时,讨论方程f(x)=0根的个数.(3)若a>0,且对任意的x1, x2∈[1,e],都有,求实数a的取值范围.2016-2017学年高二下学期期中试卷(理)数学答案解析部分一、<b >选择题</b>1、【答案】C【考点】四种命题间的逆否关系【解析】【解答】解:根据否命题的定义,同时否定原命题的条件和结论即可得到命题的否命题.∴命题“若q则p”的否命题是的否命题是:若¬q则¬p.故选:C.【分析】根据否命题的定义进行判断即可.2、【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:∵命题p:存在x0>0,使2 <1为特称命题,∴¬p为全称命题,即对任意x>0,都有2x≥1.故选:A【分析】由全称命题和特称命题的关系和否定规律可得.3、【答案】B【考点】向量的数量积判断向量的共线与垂直【解析】【解答】解:∵向量→m=(λ+1,1,2),=(λ+2,2,1),(→m+ )⊥(→m﹣),则∴(→m+ )•(→m﹣)=(2λ+3,3,3)•(﹣1,﹣1,1)=﹣2λ﹣3=0,解得.故选:B.【分析】利用向量垂直的性质直接求解.4、【答案】D【考点】导数的运算【解析】【解答】解:f′(x)=3ax2+6x,∴f′(﹣1)=3a﹣6=4,∴a=故选D.【分析】先求出导函数,再代值算出a.5、【答案】A【考点】函数的单调性与导数的关系【解析】【解答】解:由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,故选A.【分析】由y=f(x)的图象得函数的单调性,从而得导函数的正负.6、【答案】B【考点】椭圆的简单性质【解析】【解答】解:∵椭圆+ =1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【分析】利用椭圆+ =1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.7、【答案】B【考点】利用导数研究函数的单调性【解析】【解答】解:f(x)的定义域是(0,+∞), f′(x)=x﹣= ,令f′(x)<0,解得:0<x<1,故函数f(x)在(0,1)递减,故选:B.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.8、【答案】D【考点】利用导数研究函数的单调性【解析】【解答】解:∵(x﹣1)f'(x)≥0 ∴x>1时,f′(x)≥0;x<1时,f′(x)≤0∴f(x)在(1,+∞)为增函数;在(﹣∞,1)上为减函数∴f(2)≥f(1)f(0)≥f(1)∴f(0)+f(2)≥2f(1)故选D.【分析】对x分段讨论,解不等式求出f′(x)的符号,判断出f(x)的单调性,利用函数的单调性比较出函数值f(0),f(2)与f(1)的大小关系,利用不等式的性质得到选项.9、【答案】D【考点】定积分【解析】【解答】解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x 在第一象限所围成的图形的面积是∫(4x﹣x3)dx,而∫(4x﹣x3)dx=(2x2﹣x4)| =8﹣4=4,∴曲边梯形的面积是4,故选:D.【分析】先根据题意画出区域,然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.10、【答案】B【考点】空间向量的基本定理及其意义【解析】【解答】解:∵= ,= ,= ,=,= ,∴= == ﹣+ ,∴= + ,故选:B.【分析】利用向量的平行四边形法则、三角形法则可得:= ,= ,= ,= ,= ,代入化简即可得出.11、【答案】D【考点】异面直线及其所成的角【解析】【解答】解:∵在正三棱柱ABC﹣A1B1C1中,AB=CC1=2,∴以A为原点,在平面ABC中过A作AC 的垂直为x轴,以AC为y轴,AA1为z轴,建立空间直角坐标系,则A(0,0,0),B1(,1,2),B(,1,0),C1(0,2,2),=(),=(﹣,1,2),设异面直线AB1和BC1所成角为θ,则cosθ= = = .∴异面直线AB1和BC1所成角的余弦值为.故选:D.【分析】以A为原点,在平面ABC中过A作AC的垂直为x轴,以AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB1和BC1所成角的余弦值.12、【答案】C【考点】利用导数研究函数的极值【解析】【解答】解:函数f(x)=x3+ ax2+bx+c有两个极值点x1, x2,∴f′(x)=3x2+ax+b=0有两个不相等的实数根,∴△=a2﹣12b>0.而方程3(f(x))2+af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2,不妨取0<x1<x2, f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+af(x)+b=0的只有3不同实根.故选:C.【分析】函数f(x)=x3+ ax2+bx+c有两个极值点x1, x2,可得f′(x)=3x2+ax+b=0有两个不相等的实数根,必有△=a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.二、<b >填空题</b><b></b>13、【答案】-5【考点】函数的值,利用导数研究曲线上某点切线方程【解析】【解答】解:F(5)=f(5)+5=﹣5+8=3,所以f(5)=﹣2.又F′(x)=f′(x)+ x,所以F′(5)=f′(5)+ ×5=﹣1,解得f′(5)=﹣3,f(5)+f′(5)=﹣5.故答案为:﹣5【分析】根据切点在函数F(x)的图象上,求出切点坐标,然后求出函数F(x)的导函数F'(x),根据F'(5)=﹣1求出f′(5),从而求出所求.14、【答案】【考点】直线与平面所成的角【解析】【解答】解:∵直线l的方向向量,平面α的一个法向量,∴直线l与平面α所成的角的正弦值=| |= .故答案为.【分析】利用向量的夹角公式,即可求出直线l与平面α所成角的正弦值.15、【答案】[1,2)【考点】元素与集合关系的判断,四种命题的真假关系【解析】【解答】解:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题则它的否命题为真命题即{x|x <2或x>5}且{x|1≤x≤4}是真命题所以的取值范围是[1,2),故答案为[1,2).【分析】原命题是假命题可转化成它的否命题是真命题进行求解,求出满足条件的x即可.16、【答案】【考点】利用导数研究函数的单调性【解析】【解答】解:f′(x)=x2﹣2x,设= b2﹣b,由已知可得x1, x2为方程x2﹣2x﹣b2+b=0在(0,b)上有两个不同根,令g(x)=x2﹣2x﹣b2+b,则,解得:<b<3,故答案为:.【分析】根据新定义得到x1, x2为方程x2﹣2x﹣b2+b=0在(0,b)上有两个不同根,构造函数g(x)=x2﹣2x﹣b2+b,列出不等式组,解得即可三、<b >解答题</b>17、【答案】(1)解:解不等式x2+2x﹣3<0,得﹣3<x<1,即A=(﹣3,1),当a=3时,由|x+3|<1,解得﹣4<x<﹣2,即集合B=(﹣4,﹣2),所以A∪B=(﹣4,1)(2)解:因为p是q成立的必要不充分条件,所以集合B是集合A的真子集又集合A=(﹣3,1),B=(﹣a﹣1,﹣a+1),所以或,解得0≤a≤2,即实数a的取值范围是0≤a≤2【考点】并集及其运算,必要条件、充分条件与充要条件的判断【解析】【分析】(1)通过解不等式,求出集合A、B,从而求出其并集即可;(2)问题转化为集合B是集合A的真子集,得到关于a的不等式组,解出即可.18、【答案】解:∵方程表示焦点在y轴上的椭圆,∴0<m+1<3﹣m,解得:﹣1<m<1,∴若命题p为真命题,求实数m的取值范围是(﹣1,1);若关于x的方程x2+2mx+2m+3=0无实根,则判别式△=4m2﹣4(2m+3)<0,即m2﹣2m﹣3<0,得﹣1<m<3.若“p∧q”为假命题,“p∨q”为真命题,则p,q为一个真命题,一个假命题,若p真q假,则,此时无解,柔p假q真,则,得1≤m<3.综上,实数m的取值范围是[1,3)【考点】命题的真假判断与应用【解析】【分析】若“p∧q”为假命题,“p∨q”为真命题,则p,q为一个真命题,一个假命题,进而可得实数m的取值范围.19、【答案】(1)解:因为函数f(x)=ax2+blnx,所以.又函数f(x)在x=1处有极值,所以即可得,b=﹣1(2)解:由(1)可知,其定义域是(0,+∞),且当x变化时,f′(x),f(x)的变化情况如下表:所以函数y=f(x)的单调减区间是(0,1),单调增区间是(1,+∞)【考点】利用导数研究函数的单调性,利用导数研究函数的极值【解析】【分析】(1)函数f(x)=ax2+blnx在x=1处有极值得到f(1)= ,f′(1)=0得到a、b 即可;(2)找到函数的定义域,在定义域中找到符合条件的驻点来讨论函数的增减性求出单调区间即可.20、【答案】(1)解:如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D﹣xyz.∴D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4).设E点坐标为(0,2,t),则=(﹣2,0,t),=(﹣2,0,﹣4).∵BE⊥B1C,∴•=4+0﹣4t=0.∴t=1,故CE=1.(2)证明:由(1)得,E(0,2,1),=(﹣2,0,1),又=(﹣2,2,﹣4),=(2,2,0)∴•=4+0﹣4=0,且•=﹣4+4+0=0.∴⊥且⊥,即A1C⊥DB,A1C⊥BE,又∵DB∩BE=B,∴A1C⊥平面BDE,即A1C⊥平面BED(3)解:由(2)知=(﹣2,2,﹣4)是平面BDE的一个法向量.又=(0,2,﹣4),∴cos<,>= = .∴A1B与平面BDE夹角的正弦值为【考点】直线与平面垂直的判定,直线与平面所成的角【解析】【分析】(1)建立空间直角坐标系,求出、,利用•=0,即可求得结论;(2)证明⊥且⊥,可得A1C⊥DB,A1C⊥BE,从而可得A1C⊥平面BED;(3)由(2)知=(﹣2,2,﹣4)是平面BDE的一个法向量,利用向量的夹角公式,即可求A1B与平面BDE夹角的正弦值.21、【答案】(1)解:根据题意,得F(1,0),∴c=1,又,∴a=2,∴b2=a2﹣c2=3,∴椭圆的方程为:(2)解:显然l的斜率不为0,设l:x=my+1,联立直线l与椭圆方程,化简,得(3m2+4)y2+6my﹣9=0,设A(x1, y1),B(x2, y2),则△>0恒成立,由韦达定理,得y1+y2= ,y1y2= ,∴==|y1﹣y2|=== ,令t= ,t≥1,则m2=t2﹣1,∴= = ,令(t≥1),则= >0,∴u(t)在[1,+∞)上单调递增,∴当t=1即m=0时,u min(t)=u(1)=4,()max=3,故当m=0时,△AF'B的面积的最大值为3【考点】椭圆的简单性质【解析】【分析】(1)根据题意得F(1,0),即c=1,再通过及c2=a2﹣b2计算可得椭圆的方程;(2)由题设l:x=my+1,A(x1, y1),B(x2, y2),联立直线l与椭圆方程,结合韦达定理,得=,利用换元法计算即可.22、【答案】(1)解:当a=﹣4时,f(x)=﹣4lnx+x2,函数的定义域为(0,+∞)..当x∈时,f′(x)0,所以函数f(x)在上为减函数,在上为增函数,由f(1)=﹣4ln1+12=1,f(e)=﹣4lne+e2=e2﹣4,所以函数f(x)在[1,e]上的最大值为e2﹣4,相应的x值为e(2)解:由f(x)=alnx+x2,得.若a≥0,则在[1,e]上f′(x)>0,函数f(x)=alnx+x2在[1,e]上为增函数,由f(1)=1>0知,方程f(x)=0的根的个数是0;若a<0,由f′(x)=0,得x= (舍),或x= .若,即﹣2≤a<0,f(x)=alnx+x2在[1,e]上为增函数,由f(1)=1>0知,方程f(x)=0的根的个数是0;若,即a≤﹣2e2, f(x)=alnx+x2在[1,e]上为减函数,由f(1)=1,f(e)=alne+e2=e2+a≤﹣e2<0,所以方程f(x)=0在[1,e]上有1个实数根;若,即﹣2e2<a<﹣2,f(x)在上为减函数,在上为增函数,由f(1)=1>0,f(e)=e2+a.= .当,即﹣2e<a<﹣2时,,方程f(x)=0在[1,e]上的根的个数是0.当a=﹣2e时,方程f(x)=0在[1,e]上的根的个数是1.当﹣e2≤a<﹣2e时,,f(e)=a+e2≥0,方程f(x)=0在[1,e]上的根的个数是2.当﹣2e2<a<﹣e2时,,f(e)=a+e2<0,方程f(x)=0在[1,e]上的根的个数是1;(3)解:若a>0,由(2)知函数f(x)=alnx+x2在[1,e]上为增函数,不妨设x1<x2,则变为f(x2)+ <f(x1)+ ,由此说明函数G(x)=f(x)+ 在[1,e]单调递减,所以G′(x)= ≤0对x∈[1,e]恒成立,即a 对x∈[1,e]恒成立,而在[1,e]单调递减,所以a .所以,满足a>0,且对任意的x1, x2∈[1,e],都有成立的实数a的取值范围不存在【考点】利用导数求闭区间上函数的最值,不等式的证明,根的存在性及根的个数判断【解析】【分析】(1)把a=﹣4代入函数解析式,求出函数的导函数,由导函数的零点把给出的定义[1,e]分段,判出在各段内的单调性,从而求出函数在[1,e]上的最大值及相应的x值;(2)把原函数f(x)=alnx+x2求导,分a≥0和a<0讨论打哦函数的单调性,特别是当a<0时,求出函数f(x)在[1,e]上的最小值及端点处的函数值,然后根据最小值和F(e)的值的符号讨论在x∈[1,e]时,方程f(x)=0根的个数;(3)a>0判出函数f(x)=alnx+x2在[1,e]上为增函数,在规定x1<x2后把转化为f(x2)+ <f(x1)+ ,构造辅助函数G(x)=f(x)+ ,由该辅助函数是减函数得其导函数小于等于0恒成立,分离a后利用函数单调性求a的范围.。
甘肃省定西市通渭县第二中学2017-2018学年高二数学下学期期中试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{|2}M x x =≥-,{|12}N x x =<<,则MN =( )A .{|22}x x -≤<B .{|2}x x ≥-C .{|2}x x <D .{|12}x x << 2.设复数11iz i+=-(i 为虚数单位),z 的共轭复数为z ,则z =( ) A .1 B .0 C .2 D .123.函数1()2xf x x=-零点的个数为( ) A .0 B .1 C .2 D .3 4.设向量a 和b 满足:23a b +=,2a b -=,则a b ⋅=( )A B .2 D .3 5.圆22(1)(1)2x y -+-=关于直线3y kx =+对称,则k 的值是( ) A .2 B .2- C .1 D .1-6.双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线10x y -+=平行,则它的离心率为( )A .2B .3CD 7.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为( )A .642π-B .644π-C .643π-D .64π-8.在正方形中随机投一点,则该点落在该正方形内切圆内的概率为( ) A .2π B .3π C .4π D .8π 9.执行如图所示的程序框图,输出的n 值为( )A .6B .8C .2D .410.已知实数x ,y 满足30200x y x y x y +-≥⎧⎪-≤⎨⎪-≥⎩,若22z x y =+,则z 的最小值为( )A .1 B.2 C .52 D .9211.已知3(,2P 是函数sin()(0)y A x ωϕω=+>图象上的一个最低点,M ,N 是与P 相邻的两个最高点,若60MPN ∠=,则该函数最小正周期是( ) A .3 B .4 C .5 D .612.已知定义在R 上的函数()f x 的导函数为'()f x ,且()'()1f x f x +>,设(2)1a f =-,[(3)1]b e f =-,则a ,b 的大小关系为( )A .a b <B .a b >C .a b =D .无法确定第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡的相应位置. 13.平面直角坐标系中,角α的顶点在原点,始边与x 轴非负半轴重合,始边过点(5,12)P --,则cos α= .14.下表是某工厂14月份用水量(单位:百吨):由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程0.4y x b =-+,则b = .15.已知函数22log (3),2()2,2x x x f x x --<⎧=⎨≥⎩,则2(log 12)(1)f f += .16.,则它的外接球的表面积为 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,且*21()n n S a n N =-∈.(1)求1a ,2a ,3a ; (2)求数列{}n a 的通项公式.18.如图,在四棱锥P ABCD -中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,M 是PC 上一点.(1)若BM PC ⊥,求证:PC ⊥平面MBD ;(2)若M 为PC 的中点,且2AB =,求三棱锥M BCD -的体积.19.针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:(1)在所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从持“不支持”态度的人中抽取了30人,求n 的值;(2)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有一人年龄在50岁以下的概率.(3)在接受调查的人中,有10人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,8.3,9.7,把这10个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6概率.20.已知(2,0)A -,(2,0)B ,点C 是动点,且直线AC 和直线BC 的斜率之积为34-. (1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线4x =相交于点Q ,且(1,0)F ,求证:90PFQ ∠=.21.已知函数2()2ln (,0)x f x x a R a a=-∈≠. (1)讨论函数()f x 的单调性;(2) 若函数()f x 有最小值,记为()g a ,关于a 的方程2()19g a a m a+--=有三个不同的实数根,求实数m 的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的方程是:22(5)10x y -+=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)设过原点的直线l 与曲线C 交于A ,B 两点,且2AB =,求直线l 的斜率. 23.选修4-5:不等式选讲已知函数()3()f x x x x R =--∈. (1)求()f x 的最大值m ;(2)设,,a b c R +∈,且234a b c m ++=,求证:1113234a b c++≥.参考答案一、选择题1-5: DABCB 6-10: CACBD 11、12:DA 二、填空题 13. 513-14. 5 15. 4 16. 3π 三、解答题17.解:(1)当1n =时,1121S a =-,得11a =;当2n =时,2221S a =-,即12221a a a +=-,得22a =; 当3n =时,3321S a =-,即123321a a a a ++=-,得34a =. 综上11a =,22a =,34a =. (2)当1n =时,11a =,当2n ≥时,21n n S a =-,1121n n S a --=-, 两式相减得1122n n n n n a S S a a --=-=-, 整理得12(2)n n a a n -=≥,即数列{}n a 是首项为1公比为2的等比数列,12n n a -=.18.(1)证明:连接AC ,由PA ⊥平面ABCD ,BD Ø平面ABCD 得BD PA ⊥, 又BD AC ⊥,PAAC A =,∴BD ⊥平面PAC ,得PC BD ⊥, 又PC BM ⊥,BD BC B =,∴PC ⊥平面MBD .(2)解:由M 为PC 的中点得111223M BCD P BCD BCD V V S PA --∆==⨯⋅11122222323=⨯⨯⨯⨯⨯=.19.解:(1)参与调查的总人数为80004000200010002000300020000+++++=,其中从持“不支持”态度的人数200030005000+=中抽取了30人,所以30200001205000n =⨯=. (2)易得,抽取的5人中,50岁以下与50岁以上人数分别为2人(记为1A ,2A ),3人(记为1B ,2B ,3B ),从这5人中任意选取2人,基本事件为:其中,至少有1人年龄在50岁以下的事件有7个,所求概率为710. (3)总体的平均数为1(9.48.69.29.68.710x =++++9.39.08.28.39.7)9+++++=, 那么与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,所以任取1个数与总体平均数之差的绝对值超过0.6的概率为310. 20.解:(1)设(,)C x y ,则依题意得34AC BC k k ⋅=-,又(2,0)A -,(2,0)B ,所以有 3(0)224y y y x x ⋅=-≠+-, 整理得221(0)43x y y +=≠,即为所求轨迹方程. (2)法1:设直线l :y kx m =+,与223412x y +=联立得2234()12x kx m ++=,即222(34)84120k x kmx m +++-=,依题意222(8)4(34)(412)0km k m ∆=-+-=,即2234k m +=,∴122834km x x k -+=+,得122434kmx x k -==+, ∴2243(,)3434km m P k k -++,而2234k m +=,得43(,)k P m m-,又(4,4)Q k m +,又(1,0)F ,则43(1,)(3,4)0k FP FQ k m m m⋅=--⋅+=.知FP FQ ⊥, 即90PFQ ∠=.法2:设00(,)P x y ,则曲线C 在点P 处切线PQ :00143x x y y+=,令4x =,得 033(4,)x Q y -,又(1,0)F , ∴000033(1,)(3,)0x FP FQ x y y -⋅=-⋅=.知FP FQ ⊥, 即90PFQ ∠=. 21.解:(1)22'()x f x a x=-,(0)x >, 当0a <时,'()0f x <,知()f x 在(0,)+∞上是递减的;当0a >时,'()f x =()f x在上是递减的,在)+∞上递增的.(2)由(1)知,0a >,min ()1ln f x f a ==-,即()1ln g a a =-,方程2()19g a a m a +--=,即2ln (0)9m a a a a=-->, 令2()ln (0)9F a a a a a =-->,则2212(31)(32)'()199a a F a a a a --=-+=, 知()F a 在1(0,)3和2(,)3+∞是递增的,12(,)33是递减的,11()()ln 333F a F ==-+极大,21()()ln 2ln 333F a F ==-+极小,依题意得11ln 2ln 3ln 333m -+<<-+.22.解:(1)曲线C :22(5)10x y -+=,即2210150x y x +-+=, 将222x y ρ+=,cos x ρθ=代入得曲线C 的极坐标方程为210cos 150ρρθ-+=.(2)法1:由圆的弦长公式2=及210r =,得圆心(5,0)C 到直线l 距离3d =, 如图,在Rt OCD ∆中,易得3tan 4DOC ∠=,可知直线l 的斜率为34±.法2:设直线l :cos sin x t y t αα=⎧⎨=⎩(t 为参数),代入22(5)10x y -+=中得22(cos 5)(sin )10t t αα-+=,整理得210cos 150t t α-+=,由2AB =得122t t -=2=, 解得4cos 5α=±,从而得直线l 的斜率为3tan 4α=±. 法3:设直线l :y kx =,代入22(5)10x y -+=中得22(5)()10x kx -+=,即22(1)10150k x x +-+=,由2AB =122x -=2=, 解得直线l 的斜率为34k =±. 法4:设直线l :y kx =,则圆心(5,0)C 到直线l的距离为d =,由圆的弦长公式2=及210r =,得圆心(5,0)C 到直线l 距离3d =,3=,解得直线l 的斜率为34k =±.23.解:(1)法1:由3,0()23,033,3x f x x x x -≤⎧⎪=-<<⎨⎪≥⎩知()[3,3]f x ∈-,即3m =.法2:由三角不等式()333f x x x x x =--≤-+=得,即3m =.法3:由绝对值不等式的几何意义知()3[3,3]()f x x x x R =--∈-∈,即3m =.(2)法1:∵2343(,,0)a b c a b c ++=>,∴111234a b c ++1111(234)()3234a b c a b c =++++ 12324[3()()33242a b a c b a c a =++++34()]343b cc b++≥. 当且仅当234a b c ==,即12a =,13b =,14c =时取等号,即1113234a b c++≥. 法2:∵2343(,,0)a b c a b c ++=>, ∴由柯西不等式得3=≤整理得1113234a b c++≥, 当且仅当234a b c ==,即12a =,13b =,14c =时取等号.。
2016-2017 学年度第二学期高二数学期中考试卷试卷总分: 150 分;考试时间: 120 分钟;注意事项:1.答题前填写好自己的姓名、班级等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)一、选择题(每题 5 分,共 60 分)1.已知命题: x R,sin x1,则()A . p : x R, sin x 1B . p : x R,sin x 1C .p : x R, sin x 1D.p : x R,sin x 12.已知 aR ,则“ a 2 ”是“ a 22a ”的()A .充足不用要条件B .必需不充足条件C .充要条件D.既非充足也非必需条件3.椭圆 x 2y 2 1 的离心率为()25 16A .3B.3C .4D.9545254.以下命题中错误的选项是()A .若命题为真命题,命题为假命题,则命题“ pq ”为真命题B .命题“若 a b 7 ,则 a 2 或 b 5 ”为真命题C .命题 p :x0,sin x 2x 1 ,则为x 0,sin x 2x1D .命题“若 x 2 x0 ,则 x0 或 x 1”的否命题为“若 x 2x 0 ,则 x0 且 x 1”5.抛物线 y =ax 2 的准线方程为 y =2,则实数 a 的值为A .-1B.1C . 8D .- 88 81的两个交点,过的直线与椭圆交于M ,N 两点,则MNF2的周6.已知F1, F2是椭圆916长为()A.16B. 8C.25D. 327.已知椭圆的长轴长是短轴长的 2 倍,则椭圆的焦距与短轴长之比为()A.1B.3C. 3D.338.设 F (- 4,0), F(4, 0)为定点,动点M知足 |MF | + |MF | =8,则动点 M的轨迹是1212A.椭圆B.直线C.圆D.线段9.经过双曲线x2y 21右焦点的直线与双曲线交于A, B 两点,若AB4,则这样的直线的4条数为()A.4 条B. 3 条C. 2 条D. 1 条10.已知双曲线 C的离心率为2,焦点为、,点 A在 C上,若F1A 2 F2 A ,则 cos AF2 F1()A.1B.1C.2D.2 434311.直线y kx 1 k R与椭圆 x2y21恒有两个公共点,则的取值范围为()5mA.1,B. 1,C. 1,55,D. 1,55,第 II卷(非选择题)二、填空题(每题 5 分,共 20 分)12.已知双曲线x2y 21y3x,则实数的值为______.的一条渐近线方程为2m m413.抛物线y 212x 上与焦点的距离等于 6 的点的坐标是.14.设、分别是椭圆2(6,4) ,则251 的左,右焦点,为椭圆上任一点,点的坐标为16| PM || PF 1 || 的最小值为 ________.15.有以下四个命题 ①“若 x y0,则互为相反数”的抗命题;②“全等三角形的面积相等”的否命题;③“若,则 x 2 2 x q0 有实根”的逆否命题;④“不等边三角形的三个内角相等”的抗命题.此中真命题为 _______________.三、解答题(共 70 分)16.(此题满分 10 分)斜率为1的直线经过抛物线x 2 4 y 的焦点,且与抛物线订交于A ,B 两点,2求线段的长 .17.(此题满分 12 分)已知 P : x 28x 20 0 ; q :1 m 2 x 1 m 2.( 1)若 p 是 q 的必需条件,求 m 的取值范围;( 2)假如的必需不充足条件,求m 的取值范围 .18.(此题满分 12 分)分别求合适以下条件的双曲线的标准方程.4(Ⅰ)焦点在轴上,焦距是,离心率e;3(Ⅱ)一个焦点为 F 6,0 的等轴双曲线.19.(此题满分12 分)已知双曲线x2y2,若双曲线上一点使得91的左、右焦点分别为、16F1PF2 90,求△ F1PF2的面积.20.(此题满分 12 分)已知椭圆C: x2y 21(a b0),22,a2b2经过点 M (1) ,其离心率为22设直线 l: y kx m 与椭圆订交于A、B 两点.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与圆x 2y22相切,求证: OA OB (为坐标原点);321.(此题满分 12 分)双曲线 x2y2 1(b 0) 的左、右焦点分别为F1、 F2,直线过 F2且与双曲b2线交于 A、 B两点.( 1)若的倾斜角为,△ F1 AB 是等边三角形,求双曲线的渐近线方程;2( 2)设b 3 ,若的斜率存在,且|AB|=4 ,求的斜率.参照答案1.C2.A 3 .A 4 .D 5 .A6.A7.D 8 .D9.B 10.A11.C12. 413. (3,6) 或 (3, 6)14. 15.①③ 16. 55【分析】由已知可知,抛物线 x 2 4 y 的焦点为 F (0,1) ,(2 分)因此直线的方程为1 1. (5 分)yx2由y1x 1,2)2 4y ,即 y 22 得 (2 y 3y 1 0.(7分)x 24 y,设 A( x 1 , y 1 ), B( x 2 , y 2 ) ,则 y 1 y 2 3 ,因此 | AB | y 1y 2 p 3 2 5. (10分)17.( 1) [3, 3] ;(2) ( , 3] [3, )【分析】由 x 2 8x 20 0 得2 x 10 ,即 P : 2 x10,(3 分)又 q :1m 2 x 1 m 2 .( 1)若 p 是 q 的必需条件,1 m2 2 m 23 3 ,解得3m3 ,( 5 分)则m 210,即m 2,即 m 21 9即 m 的取值范围是[3,3]。
2016-2017学年高二下学期期中考试数学(理)试题时间:120分 满分150分本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后,只交答题纸和答题卡,试题自己保留。
注意事项1.答题前,考生在答题纸和答题卡上务必用直径0.5毫米黑色签字笔将自己的班级、姓名、考号填写清楚。
请认真核准考号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3. 填空题和解答题的答案必须写在答题纸上,写在试卷上无效.第Ⅰ卷一. 选择题(每小题5分,满分60分)1.已知某条曲线的参数方程是12()(12()x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩是参数),则该曲线是( )A.直线B.圆C.椭圆D.双曲线2.已知变量x 与y 负相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( )A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.5y x =-+3.若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是第( )项A.4B.3C.2D.1 4. 下列说法不正确的是( )A.随机变量,ξη满足23ηξ=+,则其方差的关系为()4()D D ηξ=B.回归分析中,2R 的值越大,说明残差平方和越小 C.画残差图时,纵坐标一定为残差,横坐标一定为编号 D.回归直线一定过样本点中心5. 设随机变量X ~N (2,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为( ) A .6 B .8 C .10 D .12 6. 根据如下样本数据得到的回归方程为 ˆˆ,y bxa =+则 A.ˆˆ0a>>,b 0 B. ˆˆ0a ><,b 0 C. ˆˆ0a <>,b 0 D. ˆˆ0a <<,b 0 7. 掷两枚均匀的大小不同的骰子,记“两颗骰子的点数和为8”为事件A ,“小骰子出现的点数小于大骰子出现的点数”为事件B,则P(A|B), P(B|A)分别为( ) A.22,155 B. 33,145 C. 11,35D. 44,515 8. 某班主任对班级90名学生进行了作业量多少的调查,结合数据建立了下列列联表:利用独立性检验估计,你认为推断喜欢电脑游戏与认为作业多少有关系错误的概率介于A.0.15~0.25B.0.4~0.5C.0.5~0.6D.0.75~0.85 (观测值表如下)9.某商场利用下列盈利表中的数据进行决策,应选择的方案是 A. 4A B. 3A C. 2A D. 1A10.在二项式n的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A.16 B. 712 C. 13 D. 51211.在回归分析与独立性检验中:① 相关关系是一种确定关系 ② 在回归模型中,x 称为解释变量,y 称为预报变量 ③ 2R 越接近于1,表示回归的效果越好 ④ 在独立性检验中,||ad bc -越大,两个分类变量关系越弱;||ad bc -越小,两个分类变量关系越强 ⑤残差点比较均匀地落在水平的带状区域中,带状区域宽度越窄,回归方程的预报精度越高,正确命题的个数为( )A.5B.4C.3D.212. 设计院拟从4个国家级课题和6个省级课题中各选2个课题作为本年度的研究项目,若国家级课题A 和省级课题B 至少有一个被选中的不同选法种数是m,那么二项式28(1)mx +的展开式中4x 的系数为( ) A.54000 B.100400 C. 100600 D.100800第Ⅱ卷二.填空题(每小题5分,满分20分)13. 在40件产品中有12件次品,从中任取2件,则恰有1件次品的概率为 . 14.64(1)(1)x x -+的展开式2x 的系数是 .15. 已知服从正态分布2(,)N μσ的随机变量,在区间(,),(2,2)μσμσμσμσ-+-+和(3,3)μσμσ-+内取值的概率分别为68.27%,95.45%和99.73%,某中学为10000名员工定制校服,设学生的身高(单位:cm )服从正态分布N (173,25),则适合身高在158~188cm 范围内学生穿的校服大约要定制 套.16. 设集合U={1,2,3,4,5},从集合U 中选4个数,组成没有重复数字的四位数,并且此四位数大于2345,同时小于4351,则满足条件的四位数共有 .三.解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.在直角坐标系x0y 中,直线l 的参数方程为1(4x t t y t =+⎧⎨=+⎩为参数),在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=.(1) 写出直线l 一般式方程与曲线C 的直角坐标的标准方程; (2) 设曲线C 上的点到直线l 的距离为d ,求d 的取值范围.18.已知在n 的展开式中,只有第5项二项式系数最大.(1) 判断展开式中是否存在常数项,若存在,求出常数项;若不存在,说明理由; (2)求展开式的所有有理项.19. 在直角坐标系x0y 中,以原点O 为极点,x 轴的正半轴为极轴,曲线C 的极坐标方程为2sin 1sin θρθ=-. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)过点P (0,2)作斜率为1的直线l 与曲线C 交于A,B 两点, ① 求线段AB 的长; ②11||||PA PB +的值. 20. 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(1)确定x,y 的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...3 钟的概率. (注:将频率视为概率)21. 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.(1) 填写下面列联表;(2)参加班级工作且学习积极性一般的学生的概率是多少?(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.(观测值表如下)22.在《我是歌手》的比赛中,有6位歌手(1~6号)进入决赛,在决赛中由现场的百家媒体投票选出最受欢迎的歌手,各家媒体独立地在投票器上选出3位候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他一定不选2号,;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(1) 求媒体甲选中5号且媒体乙未选中5号歌手的概率;(2) ξ表示5号歌手得到媒体甲,乙,丙的票数之和,求ξ的分布列及数学期望.2016-2017学年高二下学期期中考试数学(理)试题参考答案1~12 DCBCA BABBD CD 13.286514. -3 15. 9973 16. 54 17. (1) 223013y x y x -+=+=minmax 2sin()3(2)2222d d d d πα-+====⎢⎣⎦的取值范围为,18.(1)n=8116388((1)814216-3014316,,kC kk k k k T C xk k k T k k k N --==-+=+=∈若为常数项,则即又这不可能,所以没有常数项(2)解:若1T k +为有理项,当且仅当16304k-=为整数 因为08,,0,4,8k k N k ≤≤∈=所以即展开式中的有理项检有3项,它们是59421351,,8256T x x xT T -===19.22(1)2(2),22y x x y x y =⎧=⎪⎪=⎨⎪=+⎪⎩代入得2121240,4,11||||||4t t t t t AB PA PB --==-+==+=①②20. (1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X ========= 201101( 2.5),(3).100510010p X p X ======X 的分布为X 的数学期望为33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过3钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则由于顾客的结算相互独立得121212121212()(1)1)(1)( 1.5)( 1.5)(1)(1)2)(2)(1)( 1.5)( 1.5)P A P X P X P X P X P X P X P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=+=⨯=+=⨯=+=⨯=((3333331331331112020201010204202041010400=⨯+⨯+⨯+⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过3 钟的概率为111400.21. (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型概率的计算公式可得抽到积极参加班级工作的学生的概率是P 1=2450=1225,又因为不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=1950.(2)由K 2统计量的计算公式得k =50× 18×19-6×7 224×26×25×25≈11.538,由于11.538>10.828,所以能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.22. 设A 表示事件上:“媒体甲选中5号歌手”,事件B 表示“媒体乙选中5号歌手”, (1)1244235523()()55P A P B CC CC====所以__234()()()15525P A B P A P B ⎛⎫==⨯-= ⎪⎝⎭ (2) 事件C 表示“媒体乙选中5号歌手”25361()2P C C C== 因为X 可能的取值为0,1,2,3,所以3)25__231(0)()(1(1)(1)552P X P A B C ===-⨯-⨯-= ______(1)()()()23123132119(1)(1)(1)(1)55255255250P X P A B C P A B C P A B C ==++=⨯-⨯-+-⨯⨯-+⨯⨯= ___(2)()()()2312123311955252555250P X P AB C P A B C P A BC ==++=⨯⨯+⨯⨯+⨯⨯=2313(3)()55225P X P ABC ===⨯⨯=所以X 的分布列为所为X 的期望为3191933()0123255050252E X =⨯+⨯+⨯+⨯=。
2016-2017学年下期半期考试高二年级数学试题(文)一、选择题(每小题5分,共60分。
)1. 已知,则()A. B. C. D.【答案】C【解析】解答:∵U={x∈N|x<6}={0,1,2,3,4,5},P={2,4},Q={1,3,4,6},∴C U P={0,1,3,5},∴(∁U P)∩Q={1,3}.故选:C.2. 函数,则的值为()A. B. C. D.【答案】B【解析】解答:f( x)=sin x+e x,∴f′(x)=cos x+e x,∴f′(0)=cos0+e0=1+1=2,故选:B3. 已知表示两条不同直线,表示平面.下列说法正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】..............................如图, ,但相交,错;,但,错;,但 ,错;故本题选4. 已知向量.若与垂直,则实数的值为 ( )A. B. C. D.【答案】A【解析】解答:根据题意,向量,则=(,3),又由与垂直,则有()⋅=0即()⋅=(−)×+3t=0,解可得t=1;故选:A.5. 已知为函数的极小值点,则()A. B. C. D.【答案】D【解析】解答:f′(x)=3x2−3,令f′(x)>0,解得:x>1或x<−1,令f′(x)<0,解得:−1<x<1,故f(x)在(−∞,−1)递增,在(−1,1)递减,在(1,+∞)递增,故1是极小值点,故a=1,故选:D.6. 函数单调递减区间是()A. B. C. D.【答案】D【解析】f′(x)=,令f′(x)<0,解得:1<x<e,故f(x)在(1,e)递减,故选:D.点睛:求函数的单调区间的“两个”方法方法一(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.方法二(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性7. 函数的最大值是()A. B. C. D.【答案】C【解析】解:因为函数可知在给定区间上x=取得最大值是,选C8. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的的值是()A. B. C. D.【答案】A【解析】试题分析:该几何体是四棱锥,,.考点:三视图,棱锥的体积.9. 若对任意的,恒有成立,则的取值范围是()A. B. C. D.【答案】D【解析】解答:因为对任意的x>0,恒有ln x⩽px−1⇒p⩾恒成立,设f(x)=只须求其最大值,因为f′(x)=,令f′(x)=0⇒x=1,当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,故f(x)在x=1处取最大值且f(1)=1.故p的取值范围是[1,+∞).故选D.10. 甲、乙两人约定在下午间在某地相见,且他们在之间到达的时刻是等可能的,约好当其中一人先到后一定要等另一人分钟,若另一人仍不到则可以离去,则这两人能相见的概率是()A. B. C. D.【答案】B【解析】因为两人谁也没有讲好确切的时间,故样本点由两个数(甲乙两人各自到达的时刻)组成。
2016-2017学年高二下学期期中数学试卷(文科数学)一、选择题1.已知f(x)=,则的值是()A.B.﹣C.2 D.ln22.下列说法正确的是()A.若f′(x0)不存在,则曲线y=f(x)在点(x,y)处就没有切线B.若曲线y=f(x)在点(x0,y)处有切线,则f′(x)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x,y)处的切线斜率不存在D.若曲线y=f(x)在点(x0,y)处没有切线,则f′(x)有可能存在3.过抛物线y2=16x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=()A.8 B.10 C.14 D.164.下列求导运算正确的是()A.(x+)′=1+B.(log2x)′=C.(3x)′=3x log3e D.(x2cosx)′=﹣2xsinx5.如图所示,函数y=f(x)的图象在点P处的切线方程是y=﹣x+5,则f(3)+f'(3)=()A.B.1 C.2 D.06.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣167.过双曲线左焦点F1的弦AB长为6,则△ABF2(F2为右焦点)的周长是()A.12 B.14 C.22 D.288.设双曲线C:﹣=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为()A.[,+∞)B.(1,] C.[,+∞)D.(1,]9.已知直线y=﹣x+1与椭圆+=1(a>b>0)相交于A、B两点,若椭圆的离心率为,焦距为2,则线段AB的长是()A.B.C.D.210.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为()A.8 B.9 C.10 D.1211.已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.(,﹣1)B.(,1)C.(,﹣1)D.(,1)12.已知f'(x)是函数f(x)(x∈R且x≠0)的导函数,当x>0时,xf'(x)﹣f(x)<0,记a=,则()A.a<b<c B.b<a<c C.c<a<b D.c<b<a二、填空题13.若方程表示焦点在y轴上的椭圆,则实数m的取值范围为.14.已知曲线y=asinx+cosx在x=0处的切线方程是x﹣y+1=0,则实数a的值为.15.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= .16.已知函数f(x)=mx2﹣mx﹣1,对于任意的x∈[1,3],f(x)<﹣m+5恒成立,则m的取值范围是.三、解答题17.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(0,5),(0,﹣5),椭圆上一点P到两焦点的距离之和为26;(2)焦点在坐标轴上,且经过A(,﹣2)和B(﹣2,1)两点.18.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?19.已知曲线C:y=经过点P(2,﹣1).(1)求曲线C在点P处的切线方程;(2)求过点O(0,0),且与曲线C相切的切线方程.20.已知椭圆=1(a>b>0)上任意一点到两焦点F1,F2距离之和为4,离心率为.(1)求椭圆的标准方程;(2)若直线l的斜率为,直线l与椭圆C交于A,B两点.点P(2,1)为椭圆上一点,求△PAB的面积的最大值.21.已知函数f(x)=1n(ax+1)+(x≥0,a为正实数).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)的最小值为1,求a的取值范围.22.设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.(1)求抛物线的标准方程;(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点,连结QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.2016-2017学年高二下学期期中数学试卷(文)参考答案与试题解析一、选择题1.已知f(x)=,则的值是()A.B.﹣C.2 D.ln2【考点】6F:极限及其运算.【分析】由f(x)=,求导,f′(x)=﹣,由导数的定义可知=f′(2)=﹣,即可求得答案.【解答】解:f(x)=,求导,f′(x)=﹣,=f′(2)=﹣,故选:B.2.下列说法正确的是()A.若f′(x0)不存在,则曲线y=f(x)在点(x,y)处就没有切线B.若曲线y=f(x)在点(x0,y)处有切线,则f′(x)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x,y)处的切线斜率不存在D.若曲线y=f(x)在点(x0,y)处没有切线,则f′(x)有可能存在【考点】6H:利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义,可得若f′(x0)不存在,则曲线y=f(x)在点(x,y)处的切线斜率不存在.【解答】解:根据导数的几何意义,可得若f′(x0)不存在,则曲线y=f(x)在点(x,y)处的切线斜率不存在.故选:C.3.过抛物线y2=16x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=()A.8 B.10 C.14 D.16【考点】K8:抛物线的简单性质.【分析】抛物线 y2=16x的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,故|AB|=x1+x2+8,由此易得弦长值.【解答】解:由题意,p=8,故抛物线的准线方程是x=﹣4,∵抛物线 y2=16x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=x1+x2+8,又x1+x2=6∴∴|AB|=x1+x2+8=14故选C.4.下列求导运算正确的是()A.(x+)′=1+B.(log2x)′=C.(3x)′=3x log3e D.(x2cosx)′=﹣2xsinx【考点】63:导数的运算.【分析】由导数的运算法则逐个选项验证可得.【解答】解:选项A,(x+)′=1﹣,故错误;选项B,(log2x)′=,故正确;选项C,(3x)′=3x ln3,故错误;选项D,(x2cosx)′=2xcosx﹣x2sinx,故错误.故选:B5.如图所示,函数y=f(x)的图象在点P处的切线方程是y=﹣x+5,则f(3)+f'(3)=()A.B.1 C.2 D.0【考点】6H:利用导数研究曲线上某点切线方程.【分析】在点P处的斜率就是在该点处的导数,f′(3)就是切线y=﹣x+5的斜率,问题得解.【解答】解:在点P处的斜率就是在该点处的导数,f′(3)就是切线y=﹣x+5的斜率,即f′(3)=﹣1,∵f(3)=﹣3+5=2,∴f(3)+f'(3)=2﹣1=1,故选:B.6.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣16【考点】6E:利用导数求闭区间上函数的最值.【分析】对函数y=2x3﹣3x2﹣12x+5求导,利用导数研究函数在区间[0,3]上的单调性,根据函数的变化规律确定函数在区间[0,3]上最大值与最小值位置,求值即可【解答】解:由题意y'=6x2﹣6x﹣12令y'>0,解得x>2或x<﹣1故函数y=2x3﹣3x2﹣12x+5在(0,2)减,在(2,3)上增又y(0)=5,y(2)=﹣15,y(3)=﹣4故函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是5,﹣15故选A7.过双曲线左焦点F1的弦AB长为6,则△ABF2(F2为右焦点)的周长是()A.12 B.14 C.22 D.28【考点】KC:双曲线的简单性质.【分析】由双曲线方程求得a=4,由双曲线的定义可得 AF2+BF2=22,△ABF2的周长是( AF1+AF2)+( BF1+BF2)=(AF2+BF2)+AB,计算可得答案.【解答】解:由双曲线的标准方程可得 a=4,由双曲线的定义可得AF2﹣AF1=2a,BF2﹣BF1=2a,∴AF2+BF2﹣AB=4a=16,即AF2+BF2﹣6=16,AF2+BF2=22.△ABF2(F2为右焦点)的周长是( AF1+AF2)+( BF1+BF2)=(AF2+BF2)+AB=22+6=28.故选 D.8.设双曲线C:﹣=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为()A.[,+∞)B.(1,] C.[,+∞)D.(1,]【考点】KC:双曲线的简单性质.【分析】由双曲线的定义可得|PF1|﹣|PF2|=3|PF2|=2a,再根据点P在双曲线的下支上,可得|PF2|≥c﹣a,从而求得此双曲线的离心率e的取值范围.【解答】解:∵|PF1|=4|PF2|,∴由双曲线的定义可得|PF1|﹣|PF2|=3|PF2|=2a,∴|PF2|=a,∵点P在双曲线的下支,∴a≥c﹣a,即a≥c,∴e≤,∵e>1,∴1<e≤,∴双曲线的离心率e的取值范围为(1,].故选:D.9.已知直线y=﹣x+1与椭圆+=1(a>b>0)相交于A、B两点,若椭圆的离心率为,焦距为2,则线段AB的长是()A.B.C.D.2【考点】KG:直线与圆锥曲线的关系.【分析】求出椭圆的方程为+y2=1,联立得出A(0,1),B(,),即可得出两点距离.【解答】解:∵e=,2c=2,c=1∴a=,c=1,则b==1,∴椭圆的方程为+y2=1,联立化简得:3x﹣4x=0,x=0,或x=,代入直线得出y=1,或y=则A(0,1),B(,)∴|AB|=,故选:B10.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为()A.8 B.9 C.10 D.12【考点】K5:椭圆的应用.【分析】先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面积.【解答】解:设|PF1|=m,|PF2|=n,由椭圆的定义可知m+n=2a,∴m2+n2+2nm=4a2,∴m2+n2=4a2﹣2nm由勾股定理可知m2+n2=4c2,求得mn=18,则△F1PF2的面积为9.故选B.11.已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.(,﹣1)B.(,1)C.(,﹣1)D.(,1)【考点】K8:抛物线的简单性质.【分析】先根据抛物线方程求出焦点坐标,再由抛物线的性质知:当P,Q和焦点三点共线且点P在中间的时候距离之和最小,进而先求出纵坐标的值,代入到抛物线中可求得横坐标的值从而得到答案.【解答】解:∵y2=4x∴p=2,焦点坐标为(1,0)过M作准线的垂线于M,由PF=PM,依题意可知当P,Q和M三点共线且点P在中间的时候,距离之和最小如图,故P的纵坐标为﹣1,然后代入抛物线方程求得x=,故选A.12.已知f'(x)是函数f(x)(x∈R且x≠0)的导函数,当x>0时,xf'(x)﹣f(x)<0,记a=,则()A.a<b<c B.b<a<c C.c<a<b D.c<b<a【考点】6A:函数的单调性与导数的关系.【分析】构造函数g(x)=,求出函数的导数,根据函数的单调性以及数的大小比较判断即可.【解答】解:令g(x)=,则g′(x)=,∵x>0时,xf'(x)﹣f(x)<0,∴g′(x)<0在(0,+∞)恒成立,g(x)在(0,+∞)递减,∵20.2>20=1,0.22═0.04,log25>log24=2,故g(log25)<g(20.2)<g(0.22),即c<a<b,故选:C.二、填空题13.若方程表示焦点在y轴上的椭圆,则实数m的取值范围为(1,2).【考点】K4:椭圆的简单性质.【分析】根据题意,方程中x2、y2的分母均大于0,且y2的分母较大,由此建立关于m的不等式组,解之即可得到实数m的取值范围.【解答】解:∵方程表示焦点在y轴上的椭圆,∴可得,解之得1<m<2即实数m的取值范围为(1,2)故答案为:(1,2)14.已知曲线y=asinx+cosx在x=0处的切线方程是x﹣y+1=0,则实数a的值为 1 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】由题意求导y′=acosx﹣sinx,从而可得acos0﹣sin0=1;从而解得.【解答】解:y′=acosx﹣sinx,∵曲线y=asinx+cosx在x=0处的切线方程是x﹣y+1=0,而x﹣y+1=0的斜率为1;故acos0﹣sin0=1;解得,a=1;故答案为:1.15.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= 2 .【考点】63:导数的运算;3T:函数的值.【分析】由题设知,可先用换元法求出f(x)的解析式,再求出它的导数,从而求出f′(1).【解答】解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.16.已知函数f(x)=mx2﹣mx﹣1,对于任意的x∈[1,3],f(x)<﹣m+5恒成立,则m的取值范围是(﹣∞,).【考点】3R:函数恒成立问题.【分析】mx2﹣mx﹣1<﹣m+5恒成立⇔m(x2﹣x+1)<6恒成立,继而可求得m<恒成立,依题意,可求得()=,从而可得m的取值范围.min【解答】解:依题意,x∈[1,3],mx2﹣mx﹣1<﹣m+5恒成立⇔m(x2﹣x+1)<6恒成立,∵x2﹣x+1=(x﹣)2+>0,∴m<恒成立,x∈[1,3],又当x=3时,x2﹣x+1取得最大值7,=,∴m<()min即m的取值范围是:m<.故答案为:(﹣∞,).三、解答题17.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(0,5),(0,﹣5),椭圆上一点P到两焦点的距离之和为26;(2)焦点在坐标轴上,且经过A(,﹣2)和B(﹣2,1)两点.【考点】K3:椭圆的标准方程.【分析】(1)利用椭圆的定义求出a,可得b,即可求出椭圆的方程;(2)设出椭圆方程,代入点的坐标,建立方程组,即可求得椭圆的标准方程.【解答】解:(1)由题意,2a=26,c=5,∴a=13,b=12,∴椭圆的标准方程: =1;(2)依题意,可设椭圆的方程为mx2+ny2=1(m>0,n>0),则点A(,﹣2)和B(﹣2,1)代入可得,∴m=,n=,∴椭圆的标准方程为=1.18.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?【考点】7G:基本不等式在最值问题中的应用.【分析】首先分析题目求长为90cm,宽为48cm的长方形铁皮做一个无盖的容器当容器的高为多少时,容器的容积最大.故可设容器的高为x,体积为V,求出v关于x的方程,然后求出导函数,分析单调性即可求得最值.【解答】解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.19.已知曲线C:y=经过点P(2,﹣1).(1)求曲线C在点P处的切线方程;(2)求过点O(0,0),且与曲线C相切的切线方程.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)代入(2,﹣1),可得t=1,求出导数,求得切线的斜率,由点斜式方程即可得到所求方程;(2)设出切点,求得切线的斜率和切线的方程,代入原点,解方程可得m,切线的斜率,进而得到切线的方程.【解答】解:(1)由题意可得=﹣1,解得t=1,即有y=,导数为y′=,曲线C在点P处的切线斜率为1,可得曲线C在点P处的切线方程为y+1=x﹣2,即为x﹣y﹣3=0;(2)设切点为(m,),可得切线的斜率为,切线的方程为y﹣=(x﹣m),代入点(0,0),可得﹣=﹣,解得m=,切线的斜率为4,即有与曲线C相切的切线方程为y=4x.20.已知椭圆=1(a>b>0)上任意一点到两焦点F1,F2距离之和为4,离心率为.(1)求椭圆的标准方程;(2)若直线l的斜率为,直线l与椭圆C交于A,B两点.点P(2,1)为椭圆上一点,求△PAB的面积的最大值.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程.【分析】(1)由椭圆定义,椭圆上任意一点到两焦点距离之和为常数2a=,得,离心率,于是,从而可得椭圆的标准方程;(2)设直线l的方程为,把其与椭圆的方程联立,求出弦长,即为△PAB的底,由点线距离公式求出△PAB的高,然后用基本不等式求最值.【解答】解:(1)由条件得:,解得,所以椭圆的方程为(2)设l的方程为,点A(x1,y1),B(x2,y2),由消去y得x2+2mx+2m2﹣4=0.令△=4m2﹣8m2+16>0,解得|m|<2,由韦达定理得.则由弦长公式得|AB|=•=•.又点P到直线l的距离,∴,当且仅当m2=2,即时取得最大值.∴△PAB面积的最大值为2.21.已知函数f(x)=1n(ax+1)+(x≥0,a为正实数).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)的最小值为1,求a的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)先对函数求导,然后根据导数的几何意义可求切线斜率k=f′(1),进而可求切线方程(Ⅱ)先对函数求导,可得.通过讨论a﹣2的正负,判断导数在[0,+∞)上的符号,以判断函数的单调区间(Ⅲ)结合(II)中函数单调区间,可求函数取得最小值的条件及最小值,从而可求a的范围【解答】解:(Ⅰ)当a=1时,f(x)=1n(x+1)+则.…所以f′(1)=0.又f(1)=ln2,因此所求的切线方程为y=ln2.…(Ⅱ).…(1)当a﹣2≥0,即a≥2时,因为x≥0,所以f′(x)>0,所以函数f(x)在[0,+∞)上单调递增.…(2)当a﹣2<0,即0<a<2时,令f′(x)=0,则ax2+a﹣2=0(x≥0),所以.因此,当x∈[0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,.所以函数f(x)的单调递增区间为(,+∞),,函数f(x)的单调递减区间为[0,)…(Ⅲ)当a≥2时,函数f(x)在[0,+∞)上单调递增,则f(x)的最小值为f(0)=1,满足题意.…当0<a<2时,由(Ⅱ)知函数f(x)的单调递增区间为(,+∞),函数f(x)的单调递减区间为[0,)则f(x)的最小值为f(),而f(0)=1,不合题意.所以a的取值范围是[2,+∞).…22.设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.(1)求抛物线的标准方程;(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点,连结QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.【考点】KN:直线与抛物线的位置关系.【分析】(1)设抛物线的方程为x2=2py(p>0),求出准线方程,运用抛物线的定义和中位线定理,可得2(3+)=8,解得p,即可得到抛物线的方程;(2)设直线PQ的方程为y=kx+6,代入抛物线的方程,运用韦达定理,结合导数求得切线的斜率,再由两点的方斜率公式,以及三点共线的条件:斜率相等,化简整理解方程可得k的值,客人得到直线m的方程.【解答】解:(1)设抛物线的方程为x2=2py(p>0),准线方程为y=﹣,由抛物线的定义可得|AF|+|BF|=|AB|=2(3+)=8,解得p=2,即有抛物线的方程为x2=4y;(2)设直线PQ的方程为y=kx+6,代入抛物线的方程,可得x2﹣4kx﹣24=0,设P (x 1,),Q (x 2,),可得x 1+x 2=4k ,x 1x 2=﹣24, 由y=x 2的导数为y′=x ,设R (t ,﹣1),可得k PR ==x 1,可得t=x 1﹣,再由Q ,F ,R 共线,可得=,消去t ,可得=,即有16x 1x 2=4(x 12+x 22)﹣16﹣(x 1x 2)2,即有16×(﹣24)=4[(4k )2+2×24]﹣16﹣242, 解方程可得k=±,即有直线m 的方程为y=±x+6.。
2015-2016学年甘肃省定西市通渭二中高二(下)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i2.(5分)若f(x)=e x,则=()A.e B.﹣e C.2e D.﹣2e3.(5分)已知数列2,5,11,20,x,47,…合情推出x的值为()A.29B.31C.32D.334.(5分)函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若m=M,则f′(x)()A.等于0B.大于0C.小于0D.以上都有可能5.(5分)已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.6.(5分)用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证不等式()A.B.C.D.7.(5分)若对∀x∈R,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0时,有f′(x)<0,g′(x)>0,则x<0时,有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<08.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.9.(5分)(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40B.﹣20C.20D.4010.(5分)在平面直角坐标系中,直线x﹣y=0与曲线y=x2﹣2x所围成的面积为()A.1B.C.D.911.(5分)用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不能被5整除D.a,b有1个不能被5整除12.(5分)某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三个中至少有一人达标的概率为()A.0.015B.0.005C.0.985D.0.995二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设随机变量ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=.14.(5分)将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=.15.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为.16.(5分)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是.三、解答题(70分)17.(10分)用反证法证明:在△ABC中,若sin A>sin B,则B必为锐角.18.(12分)已知数列a n的前n项和为S n,且a1=1,S n=n2a n(n∈N),(1)试计算S1,S2,S3,S4,并猜想S n的表达式;(2)证明你的猜想,并求出a n的表达式.19.(12分)在()8的展开式中,(1)系数的绝对值最大的项是第几项?(2)求二项式系数最大的项;(3)求系数最大的项.20.(12分)在一个暗箱中装有5个手感、材质、大小都相同的球,其中有3个黑球,2个白球.(1)如果不放回地依次抽取2个球,则在第1次抽到黑球的条件下,第2次抽到黑球的概率.(2)如果从暗箱中任取2球,求在已知其中一个球为黑球的条件下,另一个球也是黑球的概率.21.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).22.(12分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.2015-2016学年甘肃省定西市通渭二中高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i【解答】解:====﹣1+i.故选:B.2.(5分)若f(x)=e x,则=()A.e B.﹣e C.2e D.﹣2e【解答】解:由题意可得,f′(x)=e x则=﹣2=﹣2f′(1)=﹣2e故选:D.3.(5分)已知数列2,5,11,20,x,47,…合情推出x的值为()A.29B.31C.32D.33【解答】解:由已知中,2,5,11,20,x,47,…,可得5﹣2=3=1×3,11﹣5=6=2×3,20﹣11=9=3×3,…可归纳推理:x﹣20=12=4×3,即x=32,故选:C.4.(5分)函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若m=M,则f′(x)()A.等于0B.大于0C.小于0D.以上都有可能【解答】解:∵最大最小相等,∴y=f(x)是常数函数,∴f'(x)=0.故选:A.5.(5分)已知函数f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是单调函数,则实数a的取值范围是()A.B.C.D.【解答】解:由f(x)=﹣x3+ax2﹣x﹣1,得到f′(x)=﹣3x2+2ax﹣1,因为函数在(﹣∞,+∞)上是单调函数,所以f′(x)=﹣3x2+2ax﹣1≤0在(﹣∞,+∞)恒成立,则△=,所以实数a的取值范围是:[﹣,].故选:B.6.(5分)用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证不等式()A.B.C.D.【解答】解:用数学归纳法证明(n∈N+,n>1)时,第一步应验证不等式为:;故选:B.7.(5分)若对∀x∈R,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0时,有f′(x)<0,g′(x)>0,则x<0时,有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0【解答】解:对∀x∈R,有f(﹣x)=﹣f(x),g(﹣x)=g(x),则f(x)是奇函数,g(x)是偶函数,又由奇函数在定义域内单调性相同,偶函数单调性相反,由于x>0时,有f′(x)<0,即f(x)递减,g′(x)>0,即g(x)递增,则x<0时,f(x)递减即有f′(x)<0,g(x)递减,即有g′(x)<0.故选:D.8.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.9.(5分)(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40B.﹣20C.20D.40【解答】解:令x=1则有1+a=2,得a=1,故二项式为(x+)(2x﹣)5故其常数项为﹣22×C53+23C52=40.故选:D.10.(5分)在平面直角坐标系中,直线x﹣y=0与曲线y=x2﹣2x所围成的面积为()A.1B.C.D.9【解答】解:直线x﹣y=0与曲线y=x2﹣2x联立可得交点坐标为(0,0),(3,3),则直线x﹣y=0与曲线y=x2﹣2x所围成的面积为S=[x﹣(x2﹣2x)]dx=()=.故选:C.11.(5分)用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不能被5整除D.a,b有1个不能被5整除【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故选:B.12.(5分)某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三个中至少有一人达标的概率为()A.0.015B.0.005C.0.985D.0.995【解答】解:三人都不达标的概率是:(1﹣0.9)×(1﹣0.8)×(1﹣0.75)=0.005,所以三人中至少有一人达标的概率是:1﹣0.005=0.995.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设随机变量ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=.【解答】解:∵随机变量ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),∴=1,解得n=21,∴P(1.5<ξ<3.5)=P(ξ=2)+P(ξ=3)==.故答案为:.14.(5分)将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=.【解答】解:由几何概型的计算公式与题意可得P(B)=,P(AB)=,∴P(A|B)==.故答案是.15.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.【解答】解:(ax2+)6的展开式中x3项的系数为20,所以T r+1==,令12﹣3r=3,∴r=3,,∴ab=1,a2+b2≥2ab=2,当且仅当a=b=1时取等号.a2+b2的最小值为:2.故答案为:2.16.(5分)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;③从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是①②④.【解答】解:①从中任取3球,恰有一个白球的概率是==,故正确;②从中有放回的取球6次,每次任取一球,取到红球次数X~B(6,),其方差为=,故正确;③从中不放回的取球2次,每次任取1球,则在第一次取到红球后,此时袋中还有3个红球2个白球,则第二次再次取到红球的概率为;故③错误,④从中有放回的取球3次,每次任取一球,每次取到红球的概率P=,∴至少有一次取到红球的概率为1﹣=,故正确.故答案为:①②④.三、解答题(70分)17.(10分)用反证法证明:在△ABC中,若sin A>sin B,则B必为锐角.【解答】证明:假定B不是锐角,则B不是直角就是钝角.若B是直角,则sin B=1是最大值,而同一三角形不可能有两个直角或一个直角一个钝角,则sin B>sin A.这与已知条件矛盾,若B是钝角,则sin B=sin(180﹣B)=sin(A+C),∵A+C>A,∴sin(A+C)>sin A,∴sin B>sin A.这与已知条件矛盾.∴假设不成立,∴在△ABC中,若sin A>sin B,则B必为锐角.18.(12分)已知数列a n的前n项和为S n,且a1=1,S n=n2a n(n∈N),(1)试计算S1,S2,S3,S4,并猜想S n的表达式;(2)证明你的猜想,并求出a n的表达式.【解答】解:(1)由a1=1,S n=n2a n(n∈N)得猜想(2)证明:∵S n=n2a n①∴S n﹣1=(n﹣1)2a n﹣1②①﹣②得S n﹣S n﹣1=n2a n﹣(n﹣1)2a n﹣1∴a n=n2a n﹣(n﹣1)2a n﹣1化简得∴把上面各式相乘得∴19.(12分)在()8的展开式中,(1)系数的绝对值最大的项是第几项?(2)求二项式系数最大的项;(3)求系数最大的项.【解答】解:(1)设系数绝对值最大的项是第k+1项,于是解得5≤k≤6,所以k=5或k=6时系数的绝对值最大,故系数的绝对值最大的项是第6项和第7项.(2)二项式系数最大的项是第5项,于是=;(3)由(1)知,系数的绝对值最大的项是第6项和第7项.由于系数为正的项为奇数项,故第7项系数最大,.20.(12分)在一个暗箱中装有5个手感、材质、大小都相同的球,其中有3个黑球,2个白球.(1)如果不放回地依次抽取2个球,则在第1次抽到黑球的条件下,第2次抽到黑球的概率.(2)如果从暗箱中任取2球,求在已知其中一个球为黑球的条件下,另一个球也是黑球的概率.【解答】解:(1):设“第1次抽到黑球”为事件A,“第2次抽到黑球”为事件B,则n(A)==12,n(AB)==6,∴在第1次抽到黑球的条件下,第2次抽到黑球的概率P(B|A)====.(2)设事件C表示“2球中至少有一个黑球”,事件D表示“2球都是黑球”.则n(C)==9,n(CD)==3,∴在已知其中一个球为黑球的条件下,另一个球也是黑球的概率P(D|C)===.21.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解答】解:(Ⅰ)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108,(Ⅱ)X可能取的值为0,1,2,3,相应的概率为:,,,随机变量X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1﹣0.6)=0.72.22.(12分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【解答】解:(I)当k=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.。
甘肃省定西市通渭县2016-2017学年高二数学下学期期中试题 文(答案不全)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合{}{}21,3,5,7,|40A B x x x ==-≤,则AB =( )A. ()1,3B. {}1,3C. ()5,7D.{}5,7 2.已知133iz i-=+(i 为虚数单位),则z 的共轭复数的虚部为( ) A. i - B.i C. 1- D.1 3.下列命题中,真命题是( ) A .命题“若|a|>b ,则a >b” B .命题“若a=b ,则|a|=|b|”的逆命题 C .命题“当x=2时,x 2﹣5x+6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”4.一组数据分别为12,16,20,23,20,15,23,28,则这组数据的中位数是( ) A .19 B .20 C .21.5 D .235.执行如图程序中,若输出y 的值为1,则输入x 的值为( )A .0B .1C .0或1D .﹣1,0或16.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是A .①③B .①④C .②③D .①②④7. 若运行右图的程序,则输出的结果是( )A. 4B. 13C. 9D. 228.按照下列三种化合物的结构式及分子式的规律,归纳猜想出下一种化合物的分子式是( )A .C 4H 9B .C 4H 10 C .C 4H 11D .C 6H 129.用反证法证明命题:“a,b ,c ,d ∈R ,a+b=1,c+d=1,且ac+bd >1,则a ,b ,c ,d 中至少有一个负数”时的假设为( )A .a ,b ,c ,d 全都大于等于0B .a ,b ,c ,d 全为正数C .a ,b ,c ,d 中至少有一个正数D .a ,b ,c ,d 中至多有一个负数 10.已知具有线性相关的两个变量x ,y 之间的一组数据如下: 回归方程是=bx+a ,其中b=0.95,a=﹣b .则当x=6时,y 的预测值为( ) A .8.1 B .8.2 C .8.3 D .8.411. 在同一坐标系中,将曲线x y 3sin 2=变为曲线x y '='sin 的伸缩变换是( )A.⎪⎩⎪⎨⎧'='=y y x x 213B.⎪⎩⎪⎨⎧='='y y x x 213 C. ⎩⎨⎧'='=y y x x 23 D. ⎩⎨⎧='='y y x x 23 12.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:计算得K 2的观测值k ≈7.822:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别无关”D .有99%以上的把握认为“爱好该项运动与性别有关” 二、填空题:本大题共5小题,每小题4分,共20分. 13.若函数f (x )=a 2﹣cos x ,则f′(x )等于14.设a ,b ∈R ,则“a +b >4”是“a>2且b >2”的 条件. 15.设向量a =(1,2m ),b =(m +1,1),c =(2,m ),若(a +c )⊥b ,则|a |=16.已知曲线 θθρsin cos :1-=极坐标方程是C ,将其化为直角坐标方程为( )三.解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知函数)(x f y =(]6,2[-∈x )的图象如图.根据图象写出: (1)函数)(x f y =的最大值; (2)求使1)(=x f 的x 值.18.(本小题满分12分)当实数m 为何值时,(1)为实数; (2)为纯虚数;19. (本小题满分12分)解不等式|x-1|+|x-3|>4。
2016—2017学年度第二学期期中试卷高二数学(理科)一、选择题(每小题5分,共60分)1.已知复数z = 1+2i 23-4i ,则1|z |+z 等于( )A .0B .1C .-1D .22.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<33.若A 32n =10A 3n ,则n =( ) A .1 B .8 C .9D .104.34|2|x dx -+⎰=( )A.229 B.221 C.-9 D.2275.曲线2x x )x (f 3-+=在点0P 处的切线垂直于直线1x 41y --=,则点0P 的坐标为( ) A. )0,1( B. )8,2( C. )0,1(和)4,1(-- D. )8,2(和)4,1(-- 6.设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于( )A. 13n +2B. 13n +13n +1 C. 13n +1+13n +2 D. 13n +13n +1+13n +27.若函数32()6f x x ax x =--+在(0,1)内单调递减,则实数a 的取值范围是( ) A .1a ≥ B .1a =C .1a ≤D .01a <<8. 从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为 ( ) A. 120 B. 240 C. 360 D. 729. 在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是 ( )A.-5B. 5C.10D.-10 10.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0, 2)上恰好有( )A .0个零点B .1个零点C .2个零点D .3个零点11.若C z ∈且1||=z ,则|22|i z --的最小值是 ( )A .22B .122+C .122-D .212.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( ) A .f (a )<e af (0) B .f (a )>e af (0)C.f (a )<f 0ea二、填空题(每小题5分,共20分)13. 若函数()()2f x x x c =-在2x =处有极大值,则常数c 的值为____________;14. 二项式n 1的展开式中,前三项系数的绝对值成等差数列,则n=_________,二项式系数最大的是第___________项。
甘肃省定西市通渭县2016-2017学年高二数学下学期期中试题 文(答案不
全)
一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.)
1.集合{}{}
21,3,5,7,|40A B x x x ==-≤,则A
B =( )
A. ()1,3
B. {}1,3
C. ()5,7
D.{}5,7 2.已知133i
z i
-=
+(i 为虚数单位),则z 的共轭复数的虚部为( ) A. i - B.i C. 1- D.1 3.下列命题中,真命题是( ) A .命题“若|a|>b ,则a >b” B .命题“若a=b ,则|a|=|b|”的逆命题 C .命题“当x=2时,x 2
﹣5x+6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”
4.一组数据分别为12,16,20,23,20,15,23,28,则这组数据的中位数是( ) A .19 B .20 C .21.5 D .23
5.执行如图程序中,若输出y 的值为1,则输入x 的值为( )
A .0
B .1
C .0或1
D .﹣1,0或1
6.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是
A .①③
B .①④
C .②③
D .①②④
7. 若运行右图的程序,则输出的结果是( )
. A. 4 B. 13
C. 9
D. 22
8.按照下列三种化合物的结构式及分子式的规律,归纳猜想出下一种化合物的分子式是( )
A .C 4H 9
B .
C 4H 10 C .C 4H 11
D .C 6H 12
9.用反证法证明命题:“a,b ,c ,d ∈R ,a+b=1,c+d=1,且ac+bd >1,则a ,b ,c ,d 中至少有一个负数”时的假设为( )
A .a ,b ,c ,d 全都大于等于0
B .a ,b ,c ,d 全为正数
C .a ,b ,c ,d 中至少有一个正数
D .a ,b ,c ,d 中至多有一个负数 10.已知具有线性相关的两个变量x ,y 之间的一组数据如下: x 0 1 2 3 4 y
2.2
4.3
4.5
4.8
6.7
回归方程是=bx+a ,其中b=0.95,a=﹣b .则当x=6时,y 的预测值为( ) A .8.1 B .8.2 C .8.3 D .8.4
11. 在同一坐标系中,将曲线x y 3sin 2=变为曲线x y '='sin 的伸缩变换是( )
A.⎪⎩⎪⎨⎧'='=y y x x 213
B.⎪⎩
⎪⎨⎧='='y y x x 21
3 C. ⎩⎨⎧'='=y y x x 23 D. ⎩⎨
⎧='='y y x x 23 12.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计
60
50
110
计算得K 2的观测值k ≈7.822:参照附表,得到的正确结论是( )
A=9 A= A+13
PRINT A END
P (K 2≥k )
0.050 0. 010 0.001 k
3.841
6.635
10.828
A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C .有99%以上的把握认为“爱好该项运动与性别无关”
D .有99%以上的把握认为“爱好该项运动与性别有关” 二、填空题:本大题共5小题,每小题4分,共20分. 13.若函数f (x )=a 2
﹣cos x ,则f′(x )等于
14.设a ,b ∈R ,则“a +b >4”是“a>2且b >2”的 条件. 15.设向量a =(1,2m ),b =(m +1,1),c =(2,m ),若(a +c )⊥b ,则|a |=
16.已知曲线 θθρsin cos :1-=极坐标方程是C ,将其化为直角坐标方程为( )
三.解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.) 17.(本小题满分10分)
已知函数)(x f y =(]6,2[-∈x )的图象如图.根据图象写出: (1)函数)(x f y =的最大值; (2)求使1)(=x f 的x 值.
18.(本小题满分12分)当实数m 为何值时,
(1)为实数; (2)为纯虚数;
19. (本小题满分12分)解不等式|x-1|+|x-3|>4。
20. (本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四
次试验,得到的数据如下:
x y
零件的个数x (个) 2 3 4 5
加工的时间y(小时) 2.
5
3 4 4.
5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程y=bx+a;
(3)试预测加工10个零件需要多少时间.
参考公式:回归直线a
x b
y+
=ˆ
ˆ,其中b==,x b
y
aˆ
ˆ-
=
21.(12分)已知函数32
()(,)
f x x ax bx a b R
=++∈的图象过点(1,2)
P且在
1
3
x=处取得极值;(1)求,a b的值;(2)求函数()
f x在[]
1,1
-上的最值
22.(本小题满分12分)已知,且f(2)=1.
(Ⅰ)求a的值;
(Ⅱ)若在数列{a n}中,a1=1,,计算a2,a3,a4,并由此猜想通项公式a n;
高二文科数学答案
1-5 BDDBC 6-10 BDBAC 11-12 BD。