【真题】2014年河南省三门峡市义马二中九年级数学竞赛试卷及参考答案PDF
- 格式:pdf
- 大小:583.66 KB
- 文档页数:16
2014年河南省普通高中招生考试试卷数学注意事项:.本试卷共 页,三个大题,满分 分,考试时间 分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上. .答卷前请将密封线内的项目填写清楚.一、选择题(每小题 分,共 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内..下列各数中,最小的数是()...﹣.﹣.据统计, 年河南省旅游业总收入达到约亿元.若将 亿用科学记数法表示为 ,则 等于().....如图,直线 , 相交于点 ,射线 平分, ,若 ,则 的度数为().....下列各式计算正确的是()..(﹣ )..().下列说法中,正确的是().打开电视,正在播放河南新闻节目 是必然事件某种彩票中奖概率为 是指买十张一定有一张中奖..神舟飞船反射前需要对零部件进行抽样调查.了解某种节能灯的使用寿命适合抽样调查.( 分)( 河南)将两个长方体如图放置,则所构成的几何体的左视图可能是().....如图, 的对角线 与 相交于点 ,,若 , ,则 的长是().....( 分)如图,在 中, ,, ,点 从点 出发,以的速度沿折线 运动,最终回到点 ,设点的运动时间为 ( ),线段 的长度为 ( ),则能够反映 与 之间函数关系的图象大致是()二、填空题(每小题 分,共 分)题号一二三总分~~分数.....计算:﹣ ﹣ . .不等式组的所有整数解的和为..如图,在 中,按以下步骤作图:分别以 , 为圆心,以大于 的长为半径作弧,两弧相交于 , 两点;作直线 交 于点 ,连接 ,若 , ,则 的度数为 ..已知抛物线 ( )与 轴交于 , 两点,若点 的坐标为(﹣ , ),抛物线的对称轴为直线 ,则线段 的长为..一个不透明的袋子中装有仅颜色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是..如图,在菱形 中, ,,把菱形 绕点 顺时针旋转 得到菱形 ,其中点 的运动路径为弧'cc,则图中阴影部分的面积为 ..如图矩形 中, , ,点为 上一个动点,把 沿 折叠,当点 的对应点落在 的角平分线上时, 的长为.三、解答题(本大题共 小题,满分 分).( 分)先化简,再求值:),12(1222xxxxx+++--其中 ﹣..( 分)如图, 是 的直径,且 ,点 为 的延长线上一点,过点 作 的切线 , ,切点分别为点 , .( )连接 ,若 ,试证明是等腰三角形;( )填空:当 时,四边形是菱形;当 时,四边形是正方形..( 分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:( )课外体育锻炼情况扇形统计图中, 经常参加 所对应的圆心角的度数为 ;( )请补全条形统计图;( )该校共有 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;( )小明认为 全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ,请你判断这种说法是否正确,并说明理由..( 分)在中俄 海上联合﹣ 反潜演习中,我军舰 测得潜艇 的俯角为 ,位于军舰 正上方米的反潜直升机 测得潜艇 的俯角为 ,试根据以上数据求出潜艇 离开海平面的下潜深度.(结果保留整数,参考数据: ,, ,).( 分)如图,在直角梯形 中, , ,点 , 的坐标分别为( , ),( , ),点 为 上一点,且 ,双曲线 ( > )经过点 ,交 于点 .( )求双曲线的解析式;( )求四边形 的面积..( 分)某商店销售 台 型和 台 型电脑的利润为 元,销售 台 型和 台 型电脑的利润为 元.( )求每台 型电脑和 型电脑的销售利润;( )该商店计划一次购进两种型号的电脑共 台,其中 型电脑的进货量不超过 型电脑的 倍,设购进 型电脑 台,这 台电脑的销售总利润为 元.求 关于 的函数关系式;该商店购进 型、 型电脑各多少台,才能使销售总利润最大?( )实际进货时,厂家对 型电脑出厂价下调 ( << )元,且限定商店最多购进 型电脑 台,若商店保持同种电脑的售价不变,请你根据以上信息及( )中条件,设计出使这 台电脑销售总利润最大的进货方案..( 分)( )问题发现如图 , 和 均为等边三角形,点 , ,在同一直线上,连接 .填空:的度数为 ;线段 , 之间的数量关系为.( )拓展探究如图 , 和 均为等腰直角三角形,,点 , , 在同一直线上,为 中 边上的高,连接 ,请判断的度数及线段 , , 之间的数量关系,并说明理由.( )解决问题如图 ,在正方形 中, ,若点 满足,且 ,请直接写出点 到 的距离..( 分)( 河南)如图,抛物线 ﹣与 轴交于点 (﹣ , ), ( , )两点,直线 ﹣ 与 轴交于点 ,与 轴交于点 .点是 轴上方的抛物线上一动点,过点 作 轴于点,交直线 于点 .设点 的横坐标为 .( )求抛物线的解析式;( )若 ,求 的值;( )若点 是点 关于直线 的对称点,是否存在点 ,使点 落在 轴上?若存在,请直接写出相应的点 的坐标;若不存在,请说明理由.年河南省中考数学试卷参考答案与试题解析一、选择题(每小题 分,共 分).( 分)( 河南)下列各数中,最小的数是( ) . . . ﹣ . ﹣考点: 有理数大小比较.分析: 根据正数大于 , 大于负数,可得答案.解答: 解:﹣,故选: . 点评: 本题考查了有理数比较大小,正数大于 , 大于负数是解题关键..( 分)( 河南)据统计, 年河南省旅游业总收入达到约 亿元.若将 亿用科学记数法表示为 ,则 等于( ) . ...考点:科学记数法 表示较大的数.分析: 科学记数法的表示形式为 的形式,其中< , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值> 时, 是正数;当原数的绝对值< 时, 是负数. 解答:解: 亿,故选: . 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值..( 分)( 河南)如图,直线 , 相交于点 ,射线 平分 , ,若 ,则 的度数为( ). ...考点: 垂线;对顶角、邻补角.分析: 由射线 平分 , ,得出,由 ,得出﹣ 得出答案.解答: 解: 射线 平分 , ,,, ,﹣ ﹣ . 故选: . 点评: 本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系..( 分)( 河南)下列各式计算正确的是( ).. (﹣ )..( )考点: 完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析: 根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可. 解答: 解: 、 ,故本选项错误;、(﹣ ) ,故本选项正确;、 ,故本选项错误;、( ) ,故本选项错误,故选 .点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力..( 分)( 河南)下列说法中,正确的是(). 打开电视,正在播放河南新闻节目 是必然事件 .某种彩票中奖概率为 是指买十张一定有一张中奖 .神舟飞船反射前需要对零部件进行抽样调查.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解: . 打开电视,正在播放河南新闻节目 是随机事件,本项错误;.某种彩票中奖概率为 是指买十张可能中奖,也可能不中奖,本项错误;.神舟飞船反射前需要对零部件进行全面调查,本项错误;.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选: .点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件..( 分)( 河南)将两个长方体如图放置,则所构成的几何体的左视图可能是(). . . .考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选: .点本题考查了简单组合体的三视图,注意能看到的棱用评:实线画出..( 分)( 河南)如图, 的对角线 与 相交于点 , ,若 ,,则 的长是(). . . .考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求 的长,进而可求出 的长.解答:解: 的对角线 与 相交于点 ,, ,, , ,,,故选 .点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单..( 分)( 河南)如图,在 中,, , ,点 从点 出发,以 的速度沿折线 运动,最终回到点 ,设点 的运动时间为 ( ),线段 的长度为 ( ),则能够反映 与 之间函数关系的图象大致是()....考点:动点问题的函数图象.分析:这是分段函数: 点 在 边上时, ,它的图象是一次函数图象的一部分;点 在边 上时,利用勾股定理求得 与 的函数关系式,根据关系式选择图象;点 在边 上时,利用线段间的和差关系求得 与 的函数关系式,由关系式选择图象.解答:解: 当点 在 边上,即 时, ,它的图象是一次函数图象的一部分.故 错误;点 在边 上,即 < 时,根据勾股定理得 ,即 ,则其函数图象是 随 的增大而增大,且不是线段.故 、 错误;点 在边 上,即 < 时,﹣ ﹣ ,其函数图象是直线的一部分.综上所述, 选项符合题意.故选: .点评:本题考查了动点问题的函数图象.此题涉及到了函数的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题 分,共 分).( 分)( 河南)计算:﹣ ﹣.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式 ﹣ ,故答案为: .点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算..( 分)( 河南)不等式组的所有整数解的和为﹣ .考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的 的所有整数解相加即可求解.解答:解:,由 得: ﹣ ,由 得: < ,﹣ < ,不等式组的整数解为:﹣ ,﹣ , , .所有整数解的和为﹣ ﹣ ﹣ .故答案为:﹣ .点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..( 分)( 河南)如图,在 中,按以下步骤作图:分别以 , 为圆心,以大于 的长为半径作弧,两弧相交于 , 两点;作直线 交 于点 ,连接 ,若 ,,则 的度数为 .考点: 作图 基本作图;线段垂直平分线的性质.分析: 首先根据题目中的作图方法确定 是线段 的垂直平分线,然后利用垂直平分线的性质解题即可. 解答: 解:由题中作图方法知道 为线段 的垂直平分线, ,,, , ,, ,,故答案为: . 点评: 本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法..( 分)( 河南)已知抛物线( )与 轴交于 , 两点,若点 的坐标为(﹣ , ),抛物线的对称轴为直线 ,则线段 的长为 .考点: 抛物线与 轴的交点.分析: 由抛物线 的对称轴为直线,交 轴于 、 两点,其中 点的坐标为(﹣ ,),根据二次函数的对称性,求得 点的坐标,再求出 的长度. 解答: 解: 对称轴为直线 的抛物线( )与 轴相交于 、 两点,、 两点关于直线 对称, 点 的坐标为(﹣ , ), 点 的坐标为( , ), ﹣(﹣ ) . 故答案为: .点评: 此题考查了抛物线与 轴的交点.此题难度不大,解题的关键是求出 点的坐标..( 分)( 河南)一个不透明的袋子中装有仅颜色不同的 个红球和 个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考列表法与树状图法.点: 专题:计算题.分析: 列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率. 解答:解:列表得:红 红白白红 ﹣﹣﹣(红,红) (白,红) (白,红)红 (红,红) ﹣﹣﹣(白,红) (白,红)白 (红,白) (红,白) ﹣﹣﹣(白,白)白(红,白) (红,白) (白,白) ﹣﹣﹣ 所有等可能的情况有 种,其中第一个人摸到红球且第二个人摸到白球的情况有 种, 则.故答案为:.点评: 此题考查了列表法与树状图法,用到的知识点为:概率 所求情况数与总情况数之比..( 分)( 河南)如图,在菱形 中, , ,把菱形 绕点 顺时针旋转 得到菱形 ,其中点 的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接 ,过 作 ,则阴影部分的面积可分为 部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接 ,过 作 ,在菱形 中, , ,把菱形 绕点 顺时针旋转 得到菱形,,,图中阴影部分的面积为 ﹣,故答案为: ﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键..( 分)( 河南)如图矩形 中,, ,点 为 上一个动点,把 沿折叠,当点 的对应点 落在 的角平分线上时,的长为或.考点:翻折变换(折叠问题).分析:连接 ,过 作 ,交 于点 ,于点 ,作 交 于点 ,先利用勾股定理求出 ,再分两种情况利用勾股定理求出 .解答:解:如图,连接 ,过 作 ,交于点 , 于点 ,作 交 于点 ,点 的对应点 落在 的角平分线上,,设 ,则 ,﹣ ﹣ ,又折叠图形可得 ,( ﹣ ) ,解得 或 ,即 或 .在 中,设 ,当 时, ﹣ ,﹣ ﹣ ﹣ ﹣ ﹣ ,( ﹣ ) ,解得 ,即 ,当 时, ﹣ ,﹣ ﹣ ﹣ ﹣ ﹣ ,( ﹣ ) ,解得 ,即 .故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共 小题,满分 分).( 分)( 河南)先化简,再求值:( ),其中 ﹣ .考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式 ,再把 的值代入计算.解答:解:原式,当 ﹣ 时,原式 .点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值..( 分)( 河南)如图, 是 的直径,且 ,点 为 的延长线上一点,过点 作 的切线 , ,切点分别为点 , .( )连接 ,若 ,试证明 是等腰三角形;( )填空:当 时,四边形 是菱形;当 ﹣ 时,四边形 是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:( )利用切线的性质可得 .利用同弧所对的圆周角等于圆心角的一半,求得 ,从而求得.( ) 要使四边形 是菱形,则,所以 ,所以, .要使四边形 是正方形,则必须, ,则 ,所以﹣ .解答:解:( )连接 ,是 的切线,,在 中, ﹣﹣ ,,,,是等腰三角形.( ) ,.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键..( 分)( 河南)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:( )课外体育锻炼情况扇形统计图中, 经常参加 所对应的圆心角的度数为 ;( )请补全条形统计图;( )该校共有 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;( )小明认为 全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为 ,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:( )用 经常参加 所占的百分比乘以 计算即可得解;( )先求出 经常参加 的人数,然后求出喜欢篮球的人数,再补全统计图即可;( )用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;( )根据喜欢乒乓球的 人都是 经常参加 的学生, 偶尔参加 的学生中也会有喜欢乒乓球的考虑解答.解答:解:( ) ( ﹣ ﹣ );故答案为: ;( ) 经常参加 的人数为:人,喜欢篮球的学生人数为: ﹣ ﹣ ﹣﹣ 人;补全统计图如图所示;( )全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为: 人;( )这个说法不正确.理由如下:小明得到的 人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小..( 分)( 河南)在中俄 海上联合﹣反潜演习中,我军舰 测得潜艇 的俯角为,位于军舰 正上方 米的反潜直升机 测得潜艇 的俯角为 ,试根据以上数据求出潜艇 离开海平面的下潜深度.(结果保留整数,参考数据:, ,, )考点:解直角三角形的应用 仰角俯角问题.分析:过点 作 ,交 的延长线于点 ,则即为潜艇 的下潜深度,分别在 三角形 中表示出 和在 三角形 中表示出 ,从而利用二者之间的关系列出方程求解.解答:解:过点 作 ,交 的延长线于点 ,则 即为潜艇 的下潜深度,根据题意得: , ,设 ,则 ,在 三角形 中,,在 三角形 中, ,解得: 米, 潜艇 离开海平面的下潜深度为 米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解..( 分)( 河南)如图,在直角梯形中, , ,点 , 的坐标分别为( , ),( , ),点 为 上一点,且,双曲线 ( > )经过点 ,交 于点 .( )求双曲线的解析式;( )求四边形 的面积.考点:反比例函数综合题.专题:综合题.分析:( )作 轴于 ,作 轴于 ,利用点 , 的坐标得到 , ,,再证明 ,利用相似比可计算出 , ,则 ﹣ ,得到 点坐标为( , ),然后把 点坐标代入 中求出 的值即可得到反比例函数解析式;( )根据反比例函数 的几何意义和 四边形梯形 ﹣ ﹣ 进行计算.解答:解:( )作 轴于 ,作 轴于 ,如图,点 , 的坐标分别为( , ),( , ),, , ,,,,即 ,, ,﹣ ,点坐标为( , ),把 ( , )代入 得 ,反比例函数解析式为 ;( ) 四边形 梯形 ﹣ ﹣( ) ﹣ ﹣.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度..( 分)( 河南)某商店销售 台型和 台 型电脑的利润为 元,销售 台 型和台 型电脑的利润为 元.( )求每台 型电脑和 型电脑的销售利润;( )该商店计划一次购进两种型号的电脑共 台,其中 型电脑的进货量不超过 型电脑的 倍,设购进 型电脑 台,这 台电脑的销售总利润为 元.求 关于 的函数关系式;该商店购进 型、 型电脑各多少台,才能使销售总利润最大?( )实际进货时,厂家对 型电脑出厂价下调 ( << )元,且限定商店最多购进 型电脑 台,若商店保持同种电脑的售价不变,请你根据以上信息及( )中条件,设计出使这 台电脑销售总利润最大的进货方案.考一次函数的应用;二元一次方程组的应用;一元一次点:不等式组的应用.分析:( )设每台 型电脑销售利润为 元,每台 型电脑的销售利润为 元;根据题意列出方程组求解,( ) 据题意得, ﹣ , 利用不等式求出 的范围,又因为 ﹣是减函数,所以 取 , 取最大值,( )据题意得, ( ) ﹣ ( ﹣ ),即 ( ﹣ ) ,分三种情况讨论, 当 < < 时, 随 的增大而减小, 时, ﹣ , , 当 < < 时, ﹣ > , 随 的增大而增大,分别进行求解.解答:解:( )设每台 型电脑销售利润为 元,每台型电脑的销售利润为 元;根据题意得解得答:每台 型电脑销售利润为 元,每台 型电脑的销售利润为 元.( ) 据题意得, (﹣ ),即 ﹣ ,据题意得, ﹣ ,解得 ,﹣ ,随 的增大而减小,为正整数,当 时, 取最大值,则 ﹣ ,即商店购进 台 型电脑和 台 型电脑的销售利润最大.( )据题意得, ( )( ﹣ ),即 ( ﹣ ) ,当 < < 时, 随 的增大而减小,当 时, 取最大值,即商店购进 台 型电脑和 台 型电脑的销售利润最大.时, ﹣ , ,即商店购进 型电脑数量满足 的整数时,均获得最大利润;当 < < 时, ﹣ > , 随 的增大而增大,当 时, 取得最大值.即商店购进 台 型电脑和 台 型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数 值的增大而确定 值的增减情况..( 分)( 河南)( )问题发现如图 , 和 均为等边三角形,点 , ,在同一直线上,连接 .填空:的度数为 ;线段 , 之间的数量关系为 .( )拓展探究如图 , 和 均为等腰直角三角形,,点 , , 在同一直线上,为 中 边上的高,连接 ,请判断的度数及线段 , , 之间的数量关系,并说明理由.( )解决问题如图 ,在正方形 中, ,若点 满足,且 ,请直接写出点 到 的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:( )由条件易证 ,从而得到: , .由点 , , 在同一直线上可求出 ,从而可以求出 的度数.( )仿照( )中的解法可求出 的度数,证出 ;由 为等腰直角三角形及 为 中 边上的高可得 ,从而证到 .( )由 可得:点 在以点 为圆心, 为半径的圆上;由 可得:点 在以 为直径的圆上.显然,点 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于( )中的结论即可解决问题.解答:解:( ) 如图 ,和 均为等边三角形,, ,..在 和 中,..为等边三角形,.点 , , 在同一直线上,..﹣ .故答案为: .,.故答案为: .( ) , .理由:如图 ,和 均为等腰直角三角形,, ,..在 和 中,., .为等腰直角三角形,.点 , , 在同一直线上,..﹣ ., ,.,..( ) ,点 在以点 为圆心, 为半径的圆上.,点 在以 为直径的圆上.点 是这两圆的交点.当点 在如图 所示位置时,连接 、 、 ,作 ,垂足为 ,过点 作 ,交 于点 ,如图 .四边形 是正方形,., ..,.、 、 、 四点共圆,.是等腰直角三角形.又 是等腰直角三角形,点 、 、 共线,,由( )中的结论可得: . ..当点 在如图 所示位置时,连接 、 、 ,作 ,垂足为 ,过点 作 ,交 的延长线于点 ,如图 .同理可得: ﹣ .﹣ ..综上所述:点 到 的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用( )中的结论解决问题是解决第( )的关键..( 分)( 河南)如图,抛物线 ﹣与 轴交于点 (﹣ , ), ( , )两点,直线 ﹣ 与 轴交于点 ,与 轴交于点 .点是 轴上方的抛物线上一动点,过点 作 轴于点,交直线 于点 .设点 的横坐标为 .( )求抛物线的解析式;( )若 ,求 的值;( )若点 是点 关于直线 的对称点,是否存在点 ,使点 落在 轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:( )利用待定系数法求出抛物线的解析式;( )用含 的代数式分别表示出 、 ,然后列方程求解;( )解题关键是识别出四边形 是菱形,然后根据 的条件,列出方程求解.解答:解:( )将点 、 坐标代入抛物线解析式,得:,解得,抛物线的解析式为: ﹣ .( ) 点 的横坐标为 ,( ,﹣ ), ( ,﹣ ),( , ).﹣ (﹣ )﹣(﹣) ﹣ ,。
2014年河南省三门峡市义马二中九年级数学竞赛试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)设x,y为实数,5x2+4y2﹣8xy+2x+4地最小值为()A.1 B.2 C.3 D.52.(4分)如果方程(x﹣1)(x2﹣2x+m)=0地三根可作为一个三角形地三边之长,则实数m地取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤13.(4分)已知关于x地一元二次方程x2+cx+a=0地两个整数根恰好比方程x2+ax+b=0地两个根都大1,求a+b+c地值.()A.29 B.﹣3或29 C.﹣3 D.264.(4分)下列运算中,正确地是()A.4﹣1=﹣4 B.40=1 C. D.|﹣4|=﹣45.(4分)如图,把一个长方形地纸片对折两次,然后剪下一个角,为了得到一个钝角为120°地菱形,剪口与第二次折痕所成角地度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°6.(4分)已知△ABC是等腰三角形,过△ABC地一个顶点地一条直线,把△ABC 分成地两个小三角形也是等腰三角形,则原△ABC地顶角地度数有几种情况?()A.2 B.3 C.4 D.57.(4分)若最简二次根式是同类二次根式,则a地值为()A.1或﹣B.1 C.﹣ D.8.(4分)若a+b=﹣4,且a≥3b,则()A.有最小值B.有最大值7C.有最大值3 D.有最小值9.(4分)若b<0,化简地结果是()A.B.C. D.10.(4分)一个盒子里有完全相同地三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x地方程x2+px+q=0有实数根地概率是()A.B.C.D.二、填空题(每题4分)11.(4分)设x1,x2是方程x2+x﹣4=0地两个实数根,则x13﹣5x22+10=.12.(4分)一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共人.13.(4分)定义〔a,b,c〕为函数y=ax2+bx+c地特征数,下面给出特征数为〔2m,1﹣4m,2m﹣1〕地一个函数地一些结论:①当m=时,函数图象地顶点坐标是(,);②当m=﹣1时,函数在x>1时,y随x地增大而减小;③无论m取何值,函数图象都经过同一点.其中正确地结论有(填写序号)14.(4分)如图,四边形ABCD与四边形CEFG都是正方形,点E在CD上,正方形ABCD地边长为2,则△BDF地面积是.15.(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C 逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′地长度为.三、解答题(40分)16.(10分)已知a+b=﹣5,ab=3,求地值.17.(15分)如图,AB是⊙O地直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD地长;②求出图中阴影部分地面积.18.(15分)今年地北京奥运会期间,有8人乘坐速度相同地两辆小汽车同时赶往奥运场馆观看篮球比赛,每辆车乘4人(不包括司机).其中一辆小汽车在距离场馆15km地地方出现故障,此时距比赛开始地时间还有42分钟.这时唯一可以利用地交通工具是另一辆小汽车,且这辆车地平均速度是60km/h,人步行地平均速度是5km/h(上、下车时间忽略不计).试设计两种方案,通过计算说明这8个人能够在比赛前赶到场馆.2014年河南省三门峡市义马二中九年级数学竞赛试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)设x,y为实数,5x2+4y2﹣8xy+2x+4地最小值为()A.1 B.2 C.3 D.5【解答】解:∵5x2+4y2﹣8xy+2x+4=(x2+2x+1)+(4x2﹣8xy+4y2)+3=4(x﹣y)2+(x+1)2+3,又∵4(x﹣y)2和(x+1)2地最小值是0,∴5x2+4y2﹣8xy+2x+4地最小值为3.故选C.2.(4分)如果方程(x﹣1)(x2﹣2x+m)=0地三根可作为一个三角形地三边之长,则实数m地取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤1【解答】解:∵方程(x﹣1)(x2﹣2x+m)=0有三根,∴x1=1,x2﹣2x+m=0有根,方程x2﹣2x+m=0地△=4﹣4m≥0,得m≤1.又∵原方程有三根,且为三角形地三边和长.∴有x2+x3>x1=1,|x2﹣x3|<x1=1,而x2+x3=2>1已成立;当|x2﹣x3|<1时,两边平方得:(x2+x3)2﹣4x2x3<1.即:4﹣4m<1.解得m>.∴<m≤1.故选D.3.(4分)已知关于x地一元二次方程x2+cx+a=0地两个整数根恰好比方程x2+ax+b=0地两个根都大1,求a+b+c地值.()A.29 B.﹣3或29 C.﹣3 D.26【解答】解:设方程x2+ax+b=0地两个根为α,β,∵方程有整数根,设其中α,β为整数,且α≤β,则方程x2+cx+a=0地两根为α+1,β+1,∴α+β=﹣a,(α+1)(β+1)=a,两式相加,得αβ+2α+2β+1=0,即(α+2)(β+2)=3,∴或,解得或,又∵a=﹣(α+β)=﹣[(﹣1)+1]=0,b=αβ=﹣1×1=﹣1,c=﹣[(α+1)+(β+1)]=﹣[(﹣1+1)+(1+1)]=﹣2,或a=﹣(α+β)=﹣[(﹣5)+(﹣3)]=8,b=αβ=(﹣5)×(﹣3)=15,c=﹣[(α+1)+(β+1)]=﹣[(﹣5+1)+(﹣3+1)]=6,∴a=0,b=﹣1,c=﹣2或者a=8,b=15,c=6,∴a+b+c=0+(﹣1)+(﹣2)=﹣3或a+b+c=8+15+6=29,故a+b+c=﹣3或29,故选:B..4.(4分)下列运算中,正确地是()A.4﹣1=﹣4 B.40=1 C. D.|﹣4|=﹣4【解答】解:A、4﹣1=,故本选项错误;B、40=1,故本选项正确;C、=2,故本选项错误;D、|﹣4|=4,故本选项错误.故选B.5.(4分)如图,把一个长方形地纸片对折两次,然后剪下一个角,为了得到一个钝角为120°地菱形,剪口与第二次折痕所成角地度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°【解答】解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成地角a地度数应为30°或60°.故选D.6.(4分)已知△ABC是等腰三角形,过△ABC地一个顶点地一条直线,把△ABC 分成地两个小三角形也是等腰三角形,则原△ABC地顶角地度数有几种情况?()A.2 B.3 C.4 D.5【解答】解:设该等腰三角形地底角是x;①如图1,当过顶角地顶点地直线把它分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∠A=x°,则∠ACD=∠A=x°,∠B=∠A=x°,∴∠BCD=∠B=x°,∵∠A+∠ACB+∠B=180°,∴x+x+x+x=180,解得x=45,则顶角是90°;②如图2,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,x=36°,则顶角是108°.③如图3,当过底角地角平分线把它分成了两个等腰三角形,则有AC=BC,AB=AD=CD,设∠C=x°,∵AD=CD,∴∠CAD=∠C=x°,∴∠ADB=∠CAD+∠C=2x°,∵AD=AB,∴∠B=∠ADB=2x°,∵AC=BC,∴∠CAB=∠B=2x°,∵∠CAB+∠B+∠C=180°,∴x+2x+2x=180,x=36°,则顶角是36°.④如图4,当∠A=x°,∠ABC=∠ACB=3x°时,也符合,AD=BD,BC=DC,∠A=∠ABD=x,∠DBC=∠BDC=2x,则x+3x+3x=180°,x=,因此等腰三角形顶角地度数为36°或90°或108°或,故选C.7.(4分)若最简二次根式是同类二次根式,则a地值为()A.1或﹣B.1 C.﹣ D.【解答】解:∵最简二次根式是同类二次根式,∴1+a=4a2﹣2,4a2﹣a﹣3=0,(4a+3)(a﹣1)=0,a=﹣,a=1,当a=﹣时,不是最简二次根式,舍去,故选B.8.(4分)若a+b=﹣4,且a≥3b,则()A.有最小值B.有最大值7C.有最大值3 D.有最小值【解答】解:a、b均为负数时,≤3;最大值为3;a、b异号,负数地绝对值较大时,a=﹣4﹣b,则a≥3b可化为,﹣4﹣b≥3b,﹣4b≥4,b≤﹣1;b=﹣4﹣a,a≥3(﹣4﹣a),a≥﹣3,则最大为=3.故选C.9.(4分)若b<0,化简地结果是()A.B.C. D.【解答】解:∵b<0,∴﹣b>0∴原式=﹣b.故选C.10.(4分)一个盒子里有完全相同地三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x地方程x2+px+q=0有实数根地概率是()A.B.C.D.【解答】解:画树状图得:∵x2+px+q=0有实数根,∴△=b2﹣4ac=p2﹣4q≥0,∵共有6种等可能地结果,满足关于x地方程x2+px+q=0有实数根地有(1,﹣1),(2,﹣1),(2,1)共3种情况,∴满足关于x地方程x2+px+q=0有实数根地概率是:=.故选A.二、填空题(每题4分)11.(4分)设x1,x2是方程x2+x﹣4=0地两个实数根,则x13﹣5x22+10=﹣19.【解答】解:∵x1,x2是方程x2+x﹣4=0地两个实数根,∴x12=4﹣x1,x22=4﹣x2.且x1+x2=﹣1.则x13﹣5x22+10=x1•(4﹣x1)﹣5(4﹣x2)+10=4x1﹣(4﹣x1)﹣20+5x2+10=5(x1+x2)﹣14=﹣5﹣14=﹣19.故答案是:﹣19.12.(4分)一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共9人.【解答】解:设这小组有x人.由题意得:x(x﹣1)=72,解得x1=9,x2=﹣8(不合题意,舍去).即这个小组有9人.故答案为:9.13.(4分)定义〔a,b,c〕为函数y=ax2+bx+c地特征数,下面给出特征数为〔2m,1﹣4m,2m﹣1〕地一个函数地一些结论:①当m=时,函数图象地顶点坐标是(,);②当m=﹣1时,函数在x>1时,y随x地增大而减小;③无论m取何值,函数图象都经过同一点.其中正确地结论有③(填写序号)【解答】解:根据题意得y=2mx2+(1﹣4m)x+2m﹣1,当m=时,y=x2﹣x=(x﹣)2﹣,此抛物线顶点坐标为(,﹣),所以①错误;当m=﹣1时,y=﹣2x2+5x﹣3,对称轴为直线x=﹣=,则当x>时,y 随x地增大而减小,所以②错误;把y=2mx2+(1﹣4m)x+2m﹣1化为关于m地方程得(2x2﹣4x+2)m=﹣x+y+1,当m有无数个值时,方程成立,则2x2﹣4x+2=0,﹣x+y+1=0,解得x=1,y=0,即当x=1,y=0时,m可取任意数,所以无论m取何值,函数图象都经过同一点(1,0),所以③正确.故答案为③.14.(4分)如图,四边形ABCD与四边形CEFG都是正方形,点E在CD上,正方形ABCD地边长为2,则△BDF地面积是2.【解答】解:设正方形EFGC边长为a,可得2﹣a=a,即a=1,根据题意得:△BDF地面积S=22+a2+(2﹣a)2﹣×22﹣a(a+2)=4+a2+2﹣2a+a2﹣2﹣a2﹣a=a2﹣3a+4=1﹣3+4=2.故答案为:215.(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′地长度为.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,∴A′C=AC=1,AB=2,BC=,∵∠A=60°,∴△AA′C是等边三角形,∴AA′=AB=1,∴A′C=A′B,∴∠A′CB=∠A′BC=30°,∵△A′B′C是△ABC旋转而成,∴∠A′CB′=90°,BC=B′C,∴∠B′CB=90°﹣30°=60°,∴△BCB′是等边三角形,∴BB′=BC=.故答案为:.三、解答题(40分)16.(10分)已知a+b=﹣5,ab=3,求地值.【解答】解:∵a+b=﹣5<0,ab=3>0,∴a<0,b<0,∴原式=+=+=﹣•=﹣•=.17.(15分)如图,AB是⊙O地直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD地长;②求出图中阴影部分地面积.【解答】解:(1)连接OE.∵CD是⊙O地切线,∴OE⊥CD,∵AD⊥CD,∴AD∥OE,∴∠DAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠DAE=∠EAO,∴AE平分∠DAC;(2)①∵AB是⊙O地直径,∴∠AEB=90°,∵∠ABE=60°,∴∠EAO=30°,∴∠DAE=∠EAO=30°,∵AB=3,∴AE=AB•cos30°=3×=,BE=AB=,在Rt△ADE中,∵∠DAE=30°,AE=,∴AD=AE•cos30°=×=;②∵∠EAO=∠AEO=30°,∴∠AOE=180°﹣∠EAO ﹣∠AEO=180°﹣30°﹣30°=120°, ∵OA=OB ,∴S △AOE =S △BOE =S △ABE ,∴S 阴影=S 扇形OAE ﹣S △AOE =S 扇形OAE ﹣S △ABE ═﹣×××=﹣=.18.(15分)今年地北京奥运会期间,有8人乘坐速度相同地两辆小汽车同时赶往奥运场馆观看篮球比赛,每辆车乘4人(不包括司机).其中一辆小汽车在距离场馆15km 地地方出现故障,此时距比赛开始地时间还有42分钟.这时唯一可以利用地交通工具是另一辆小汽车,且这辆车地平均速度是60km/h ,人步行地平均速度是5km/h (上、下车时间忽略不计).试设计两种方案,通过计算说明这8个人能够在比赛前赶到场馆.【解答】解:能同时赶往奥运场馆观看篮球比赛,有两种可行方案: ①如图,小汽车在送前4人地同时,剩下地人也同时步行不停地往前走,小汽车送到奥运场馆后再返回接剩下地人.设小汽车返回时用了x 小时与步行地人相遇用了x 小时,则有: 60x +5x=15×2, 解得x=,所以共用时间:+=小时;②如图,先用小汽车把第一批人送到离奥运场馆较近地某一处,让第一批人步行,与此同时第二批人也在步行中;接着小汽车再返回接第二批人,使第二批人与第一批同时到奥运场馆,在这一方案中,每个人不是乘车就是在步行,没有人浪费时间原地不动,所以两组先后步行相同地路程,设这个路程为x千米,那么每组坐车路程为15﹣x千米,共用时间+小时;当小汽车把第一组送到离奥运场馆x千米处、回头遇到第二组时,第二组已经行走了x千米,这时小汽车所行路程为15﹣x+15﹣2x=30﹣3x(千米);由于小汽车行30﹣3x千米地时间与第二组行走x千米地时间相等,所以有:=,解得:x=2.所用时间为:+=小时=37分钟.37分钟<40分钟,故第二个方案更省时.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:PABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
河南九年级数学竞赛试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪一个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 在直角坐标系中,点(2, -3)关于原点的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的平均数为10,中位数为12,则这组数据中至少有一个数()。
A. 大于10B. 小于10C. 等于10D. 等于125. 若a, b为实数,且a≠b,则下列哪个不等式一定成立?()A. (a+b)^2 > a^2 + b^2B. (a-b)^2 < a^2 + b^2C. a^2 + b^2 = (a+b)^2D. a^2 + b^2 = (a-b)^2二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 在直角坐标系中,所有第一象限的点都满足x>0且y>0。
()3. 任何数的平方都是非负数。
()4. 若a>b,则1/a<1/b。
()5. 一元二次方程ax^2 + bx + c = 0的判别式Δ = b^2 4ac。
()三、填空题(每题1分,共5分)1. 若一个三角形的两边长分别为3和4,且这两边的夹角为90度,则第三边的长度为______。
2. 在直角坐标系中,点(1, 2)到原点的距离为______。
3. 若一个等差数列的首项为2,公差为3,则第5项为______。
4. 若函数y = 2x + 3的图像与x轴相交于点A,则点A的坐标为______。
5. 若一元二次方程x^2 5x + 6 = 0的解为x1和x2,则x1x2的值为______。
四、简答题(每题2分,共10分)1. 简述等差数列和等比数列的定义。
2014年河南省中考数学试卷一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣32.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.133.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b25.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=.10.(3分)不等式组的所有整数解的和为.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.2014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.0 B.C.﹣ D.﹣3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°【分析】由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.【解答】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.【点评】本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6 D.(a+b)2=a2+b2【分析】根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.【解答】解:A、a+2a=3a,故A选项错误;B、(﹣a3)2=a6,故B选项正确;C、a3•a2=a5,故C选项错误;D、(a+b)2=a2+b2+2ab,故D选项错误,故选:B.【点评】本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查【分析】必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.【解答】解:A.“打开电视,正在播放河南新闻节目”是随机事件,故A选项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船发射前需要对零部件进行全面调查,故C选项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查,故D选项正确.故选:D.【点评】本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.【点评】本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【分析】这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.【解答】解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.【点评】本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)计算:﹣|﹣2|=1.【分析】首先计算开方和绝对值,然后再计算有理数的减法即可.【解答】解:原式=3﹣2=1,故答案为:1.【点评】此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)不等式组的所有整数解的和为﹣2.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.【解答】解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.【分析】首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.【解答】解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.【点评】本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.【分析】由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A 点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB 的长度.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.【点评】此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B 点的坐标.13.(3分)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.【分析】列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.【解答】解:列表得:红1红2白1白2红1﹣﹣﹣(红2,红1)(白1,红1)(白2,红1)红2(红1,红2)﹣﹣﹣(白1,红2)(白2,红2)白1(红1,白1)(红2,白1)﹣﹣﹣(白2,白1)白2(红1,白2)(红2,白2)(白1,白2)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.【分析】根据菱形的性质以及旋转角为30°,连接CD′和BC′,可得A、D′、C及A、B、C′分别共线,求出扇形面积,再根据AAS证得两个小三角形全等,求得其面积,最后根据扇形ACC′的面积﹣两个小的三角形面积即可.【解答】解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△OC′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:+﹣.【点评】本题考查了旋转的性质,菱形的性质,扇形的面积公式,勾股定理,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:÷(2+),其中x=﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBP是正方形.【分析】(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBP是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.【解答】解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在Rt△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①DP=1,理由如下:∵四边形AOBD是菱形,∴OA=AD=OD,∴∠AOP=60°,∴OP=2OA,DP=OD.∴DP=1,②DP=,理由如下:∵四边形AOBP是正方形,∴∠AOP=45°,∵OA=PA=1,OP=,∴DP=OP﹣1∴DP=.【点评】本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.【分析】(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)【分析】过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,从而利用二者之间的关系列出方程求解.【解答】解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD===,在Rt△BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x=≈≈308米,∴潜艇C离开海平面的下潜深度为308米.【点评】本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k 的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE =S梯形OABC﹣S△OCE﹣S△OAD进行计算.【解答】解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE =S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b 元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y 取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点评】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.【点评】本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.。
2024年河南省一般中学招生考试试卷数学留意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔干脆答在试卷上.2.答卷前请将密封线内的项目填写清晰.一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各数中,最小的数是()A.0B.C.﹣D.﹣32.据统计,2024年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.133.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(a+b)2=a2+b2 5.下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必定事务B.某种彩票中奖概率为10%是指买十张肯定有一张中奖C.神舟飞船反射前须要对零部件进行抽样调查D.了解某种节能灯的运用寿命适合抽样调查6.(3分)(2024•河南)将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10 D.118.(3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A动身,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()二、填空题(每小题3分,共21分)9.计算:﹣|﹣2|=_________.10.不等式组的全部整数解的和为_________.11.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为_________.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为_________.13.一个不透亮的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且其次个人摸到白球的概率是_________.14.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为弧'cc,则图中阴影部分的面积为_________.15.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:),12(1222xxxxx+++--其中x=﹣1.17.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=_________cm时,四边形AOBD是菱形;②当DP=_________cm时,四边形AOBD是正方形.18.(9分)某爱好小组为了了解本校男生参与课外体育熬炼状况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请依据以上信息解答下列问题:(1)课外体育熬炼状况扇形统计图中,“常常参与”所对应的圆心角的度数为_________;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中常常参与课外体育熬炼并且最喜爱的项目是篮球的人数;题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23分数A.B.C.D.(4)小明认为“全校全部男生中,课外最喜爱参与的运动项目是乒乓球的人数约为1200×=108”,请你推断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合﹣2024”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试依据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)20.(9分)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店安排一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你依据以上信息及(2)中条件,设计出访这100台电脑销售总利润最大的进货方案.22.(10分)(1)问题发觉如图1,△ACB和△DCE均为等边三角形,点A,D,E在同始终线上,连接BE.填空:①∠AEB的度数为_________;②线段AD,BE之间的数量关系为_________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同始终线上,CM为△DCE中DE边上的高,连接BE,请推断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满意PD=1,且∠BPD=90°,请干脆写出点A到BP的距离.23.(11分)(2024•河南)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请干脆写出相应的点P的坐标;若不存在,请说明理由.2024年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分) 1.(3分)(2024•河南)下列各数中,最小的数是( ) A . 0 B . C . ﹣ D . ﹣3考点:有理数大小比较. 分析: 依据正数大于0,0大于负数,可得答案. 解答:解:﹣3, 故选:D .点评: 本题考查了有理数比较大小,正数大于0,0大于负数是解题关键. 2.(3分)(2024•河南)据统计,2024年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( ) A . 10 B . 11 C . 12 D . 13考点:科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的肯定值与小数点移动的位数相同.当原数肯定值>1时,n 是正数;当原数的肯定值<1时,n 是负数.解答: 解:3875.5亿=3875 5000 0000=3.8755×1011, 故选:B .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.(3分)(2024•河南)如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,若∠AOM=35°,则∠CON 的度数为( )A . 35°B .45° C . 55° D . 65°考点:垂线;对顶角、邻补角. 分析: 由射线OM 平分∠AOC ,∠AOM=35°,得出∠MOC=35°,由ON ⊥OM ,得出∠CON=∠MON ﹣∠MOC 得出答案. 解答: 解:∵射线OM 平分∠AOC ,∠AOM=35°, ∴∠MOC=35°,∵ON ⊥OM , ∴∠MON=90°,∴∠CON=∠MON ﹣∠MOC=90°﹣35°=55°. 故选:C .点评: 本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系. 4.(3分)(2024•河南)下列各式计算正确的是( ) A . a +2a=3a 2 B . (﹣a 3)2=a 6 C . a 3•a 2=a 6 D .(a+b )2=a 2+b 2考点: 完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析: 依据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再推断即可. 解答: 解:A 、a+2a=3a ,故本选项错误; B 、(﹣a 3)2=a 6,故本选项正确;C 、a 3•a 2=a 5,故本选项错误;D 、(a+b )2=a 2+b 2+2ab ,故本选项错误,故选B . 点评: 本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算实力. 5.(3分)(2024•河南)下列说法中,正确的是( ) A . “打开电视,正在播放河南新闻节目”是必定事务 B . 某种彩票中奖概率为10%是指买十张肯定有一张中奖 C . 神舟飞船反射前须要对零部件进行抽样调查 D . 了解某种节能灯的运用寿命适合抽样调查考随机事务;全面调查与抽样调查;概率的意义.点:分析:必定事务指在肯定条件下肯定发生的事务.不行能事务是指在肯定条件下,肯定不发生的事务.不确定事务即随机事务是指在肯定条件下,可能发生也可能不发生的事务.不易采集到数据的调查要采纳抽样调查的方式,据此推断即可.解答: 解:A .“打开电视,正在播放河南新闻节目”是随机事务,本项错误;B .某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C .神舟飞船反射前须要对零部件进行全面调查,本项错误;D .解某种节能灯的运用寿命,具有破坏性适合抽样调查. 故选:D .点评: 本题考查了调查的方式和事务的分类.不易采集到数据的调查要采纳抽样调查的方式;必定事务指在肯定条件下肯定发生的事务.不行能事务是指在肯定条件下,肯定不发生的事务.不确定事务即随机事务是指在肯定条件下,可能发生也可能不发生的事务. 6.(3分)(2024•河南)将两个长方体如图放置,则所构成的几何体的左视图可能是( )A .B .C .D .考点:简洁组合体的三视图. 分析: 依据从左边看得到的图形是左视图,可得答案. 解答: 解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C .点评: 本题考查了简洁组合体的三视图,留意能看到的棱用实线画出.7.(3分)(2024•河南)如图,▱ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC ,若AB=4,AC=6,则BD 的长是( )A . 8B . 9C . 10D . 11考点:平行四边形的性质;勾股定理. 分析: 利用平行四边形的性质和勾股定理易求BO 的长,进而可求出BD 的长.解答: 解:∵▱ABCD 的对角线AC 与BD 相交于点O , ∴BO=DO ,AO=CO ,∵AB ⊥AC ,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选C .点评: 本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简洁. 8.(3分)(2024•河南)如图,在Rt △ABC 中,∠C=90°,AC=1cm ,BC=2cm ,点P 从点A 动身,以1cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .考点:动点问题的函数图象. 分析: 这是分段函数:①点P 在AC 边上时,y=x ,它的图象是一次函数图象的一部分;②点P 在边BC 上时,利用勾股定理求得y 与x 的函数关系式,依据关系式选择图象; ③点P 在边AB 上时,利用线段间的和差关系求得y 与x 的函数关系式,由关系式选择图象.解答: 解:①当点P 在AC 边上,即0≤x ≤1时,y=x ,它的图象是一次函数图象的一部分.故C 错误;②点P 在边BC 上,即1<x ≤3时,依据勾股定理得AP=,即y=,则其函数图象是y 随x 的增大而增大,且不是线段.故B 、D 错误; ③点P 在边AB 上,即3<x ≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分. 综上所述,A 选项符合题意. 故选:A .点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要实行解除法进行解题.二、填空题(每小题3分,共21分) 9.(3分)(2024•河南)计算:﹣|﹣2|= 1 .考点:实数的运算. 分析:首先计算开方和肯定值,然后再计算有理数的减法即可. 解答: 解:原式=3﹣2=1, 故答案为:1.点评: 此题主要考查了实数的运算,关键是驾驭立方根和肯定值得性质运算.10.(3分)(2024•河南)不等式组的全部整数解的和为 ﹣2 .考点:一元一次不等式组的整数解. 分析: 先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的全部整数解相加即可求解.解答:解:,由①得:x ≥﹣2,由②得:x <2, ∴﹣2≤x <2,∴不等式组的整数解为:﹣2,﹣1,0,1. 全部整数解的和为﹣2﹣1+0+1=﹣2. 故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 11.(3分)(2024•河南)如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD=AC ,∠B=25°,则∠ACB 的度数为 105° .考点:作图—基本作图;线段垂直平分线的性质. 分析: 首先依据题目中的作图方法确定MN 是线段BC 的垂直平分线,然后利用垂直平分线的性质解题即可.解答: 解:由题中作图方法知道MN 为线段BC 的垂直平分线, ∴CD=BD ,∵∠B=25°,∴∠DCB=∠B=25°, ∴∠ADC=50°, ∵CD=AC ,∴∠A=∠ADC=50°, ∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°, 故答案为:105°.点评: 本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.(3分)(2024•河南)已知抛物线y=ax 2+bx+c (a ≠0)与x 轴交于A ,B 两点,若点A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB 的长为 8 .考点:抛物线与x 轴的交点. 分析: 由抛物线y=ax 2+bx+c 的对称轴为直线x=2,交x 轴于A 、B 两点,其中A 点的坐标为(﹣2,0),依据二次函数的对称性,求得B 点的坐标,再求出AB 的长度.解答: 解:∵对称轴为直线x=2的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,∴A 、B 两点关于直线x=2对称, ∵点A 的坐标为(﹣2,0), ∴点B 的坐标为(6,0), AB=6﹣(﹣2)=8. 故答案为:8.点评: 此题考查了抛物线与x 轴的交点.此题难度不大,解题的关键是求出B 点的坐标. 13.(3分)(2024•河南)一个不透亮的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且其次个人摸到白球的概率是.考点:列表法与树状图法. 专题:计算题. 分析: 列表得出全部等可能的状况数,找出第一个人摸到红球且其次个人摸到白球的状况数,即可求出所求的概率. 解答:解:列表得: 红 红 白 白红 ﹣﹣﹣ (红,红) (白,红) (白,红) 红 (红,红) ﹣﹣﹣ (白,红) (白,红) 白 (红,白) (红,白) ﹣﹣﹣ (白,白) 白 (红,白) (红,白) (白,白) ﹣﹣﹣ 全部等可能的状况有12种,其中第一个人摸到红球且其次个人摸到白球的状况有4种,则P==.故答案为:.点评: 此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比. 14.(3分)(2024•河南)如图,在菱形ABCD 中,AB=1,∠DAB=60°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB ′C ′D ′,其中点C 的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质. 分析:连接BD ′,过D ′作D ′H ⊥AB ,则阴影部分的面积可分为3部分,再依据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答: 解:连接BD ′,过D ′作D ′H ⊥AB , ∵在菱形ABCD 中,AB=1,∠DAB=60°,把菱形ABCD绕点A 顺时针旋转30°得到菱形AB ′C ′D ′,∴D ′H=, ∴S △ABD ′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点本题考查了旋转的性质,菱形的性质,扇形的面积公式,评: 娴熟驾驭旋转变换只变更图形的位置不变更图形的形态与大小是解题的关键. 15.(3分)(2024•河南)如图矩形ABCD 中,AD=5,AB=7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为或 .考点:翻折变换(折叠问题). 分析: 连接BD ′,过D ′作MN ⊥AB ,交AB 于点M ,CD 于点N ,作D ′P ⊥BC 交BC 于点P ,先利用勾股定理求出MD ′,再分两种状况利用勾股定理求出DE .解答: 解:如图,连接BD ′,过D ′作MN ⊥AB ,交AB 于点M ,CD 于点N ,作D ′P ⊥BC 交BC 于点P ,∵点D 的对应点D ′落在∠ABC 的角平分线上, ∴MD ′=PD ′,设MD ′=x ,则PD ′=BM=x , ∴AM=AB ﹣BM=7﹣x ,又折叠图形可得AD=AD ′=5,∴x 2+(7﹣x )2=25,解得x=3或4, 即MD ′=3或4.在RT △END ′中,设ED ′=a ,①当MD ′=3时,D ′E=5﹣3=2,EN=7﹣CN ﹣DE=7﹣3﹣a=4﹣a ,∴a 2=22+(4﹣a )2, 解得a=,即DE=,②当MD ′=4时,D ′E=5﹣4=1,EN=7﹣CN ﹣DE=7﹣4﹣a=3﹣a ,∴a 2=12+(3﹣a )2, 解得a=,即DE=. 故答案为:或.点评: 本题主要考查了折叠问题,解题的关键是明确驾驭折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分) 16.(8分)(2024•河南)先化简,再求值:+(2+),其中x=﹣1.考点:分式的化简求值. 专题:计算题. 分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x 的值代入计算. 解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满意条件的字母的值代入计算得到对应的分式的值. 17.(9分)(2024•河南)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA ,PB ,切点分别为点A ,B .(1)连接AC ,若∠APO=30°,试证明△ACP 是等腰三角形;(2)填空:①当DP= 1 cm 时,四边形AOBD 是菱形; ②当DP= ﹣1 cm 时,四边形AOBD 是正方形.考点: 切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析: (1)利用切线的性质可得OC ⊥PC .利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD 是菱形,则OA=AD=OD ,所以∠AOP=60°,所以OP=2OA ,DP=OD .②要使四边形AOBD 是正方形,则必需∠AOP=45°,OA=PA=1,则OP=,所以DP=OP ﹣1. 解答: 解:(1)连接OA ,AC ∵PA 是⊙O 的切线,∴OA ⊥PA ,在RT △AOP 中,∠AOP=90°﹣∠APO=90°﹣30°=60°, ∴∠ACP=30°, ∵∠APO=30°∴∠ACP=∠APO , ∴AC=AP ,∴△ACP 是等腰三角形.(2)①1,②.点评: 本题考查了切线的性质,圆周角的性质,娴熟驾驭圆的切线的性质和直角三角形的边角关系是解题的关键.18.(9分)(2024•河南)某爱好小组为了了解本校男生参与课外体育熬炼状况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请依据以上信息解答下列问题:(1)课外体育熬炼状况扇形统计图中,“常常参与”所对应的圆心角的度数为 144° ; (2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中常常参与课外体育熬炼并且最喜爱的项目是篮球的人数;(4)小明认为“全校全部男生中,课外最喜爱参与的运动项目是乒乓球的人数约为1200×=108”,请你推断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图. 专题:图表型. 分析: (1)用“常常参与”所占的百分比乘以360°计算即可得解; (2)先求出“常常参与”的人数,然后求出喜爱篮球的人数,再补全统计图即可;(3)用总人数乘以喜爱篮球的学生所占的百分比计算即可得解; (4)依据喜爱乒乓球的27人都是“常常参与”的学生,“间或参与”的学生中也会有喜爱乒乓球的考虑解答. 解答: 解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°; 故答案为:144°;(2)“常常参与”的人数为:300×40%=120人,喜爱篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中常常参与课外体育熬炼并且最喜爱的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确. 理由如下:小明得到的108人是常常参与课外体育熬炼的男生中最喜爱的项目是乒乓球的人数,而全校间或参与课外体育熬炼的男生中也会有最喜爱乒乓球的,因此应多于108人.点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个项目的数据;扇形统计图干脆反映部分占总体的百分比大小. 19.(9分)(2024•河南)在中俄“海上联合﹣2024”反潜演习中,我军舰A 测得潜艇C 的俯角为30°,位于军舰A 正上方1000米的反潜直升机B 测得潜艇C 的俯角为68°,试依据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)考点:解直角三角形的应用-仰角俯角问题. 分过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为析: 潜艇C 的下潜深度,分别在Rt 三角形ACD 中表示出CD和在Rt 三角形BCD 中表示出BD ,从而利用二者之间的关系列出方程求解.解答: 解:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,依据题意得:∠ACD=30°,∠BCD=68°, 设AD=x ,则BD=BA+AD=1000+x ,在Rt 三角形ACD 中,CD===,在Rt 三角形BCD 中,BD=CD •tan68°,∴1000+x=x •tan68° 解得:x==≈308米,∴潜艇C 离开海平面的下潜深度为308米.点评: 本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解. 20.(9分)(2024•河南)如图,在直角梯形OABC 中,BC ∥AO ,∠AOC=90°,点A ,B 的坐标分别为(5,0),(2,6),点D 为AB 上一点,且BD=2AD ,双曲线y=(k >0)经过点D ,交BC 于点E .(1)求双曲线的解析式;(2)求四边形ODBE 的面积.考点:反比例函数综合题. 专题:综合题. 分析: (1)作BM ⊥x 轴于M ,作BN ⊥x 轴于N ,利用点A ,B 的坐标得到BC=OM=5,BM=OC=6,AM=3,再证明△ADN ∽△ABM ,利用相像比可计算出DN=2,AN=1,则ON=OA ﹣AN=4,得到D 点坐标为(4,2),然后把D点坐标代入y=中求出k 的值即可得到反比例函数解析式;(2)依据反比例函数k 的几何意义和S 四边形ODBE =S 梯形OABC ﹣S △OCE ﹣S △OAD 进行计算.解答: 解:(1)作BM ⊥x 轴于M ,作BN ⊥x 轴于N ,如图, ∵点A ,B 的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3, ∵DN ∥BM ,∴△ADN ∽△ABM ,∴==,即==,∴DN=2,AN=1, ∴ON=OA ﹣AN=4, ∴D 点坐标为(4,2),把D (4,2)代入y=得k=2×4=8, ∴反比例函数解析式为y=;(2)S 四边形ODBE =S 梯形OABC ﹣S △OCE ﹣S △OAD =×(2+5)×6﹣×|8|﹣×5×2 =12.点评: 本题考查了反比例函数综合题:娴熟驾驭反比例函数图象上点的坐标特征、反比例函数k 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相像比计算线段的长度. 21.(10分)(2024•河南)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店安排一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大? (3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你依据以上信息及(2)中条件,设计出访这100台电脑销售总利润最大的进货方案.考点: 一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析: (1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元;依据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x 的范围,又因为y=﹣50x+15000是减函数,所以x 取34,y 取最大值,(3)据题意得,y=(100+m )x ﹣150(100﹣x ),即y=(m ﹣50)x+15000,分三种状况探讨,①当0<m <50时,y 随x 的增大而减小,②m=50时,m ﹣50=0,y=15000,③当50<m <100时,m ﹣50>0,y 随x 的增大而增大,分别进行求解. 解答: 解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元;依据题意得解得答:每台A 型电脑销售利润为100元,每台B 型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x ),即y=﹣50x+15000,②据题意得,100﹣x ≤2x ,解得x ≥33,∵y=﹣50x+15000,∴y 随x 的增大而减小, ∵x 为正整数,∴当x=34时,y 取最大值,则100﹣x=66,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.(3)据题意得,y=(100+m )x+150(100﹣x ),即y=(m ﹣50)x+15000, 33≤x ≤70①当0<m <50时,y 随x 的增大而减小, ∴当x=34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.②m=50时,m ﹣50=0,y=15000,即商店购进A 型电脑数量满意33≤x ≤70的整数时,均获得最大利润;③当50<m <100时,m ﹣50>0,y 随x 的增大而增大, ∴当x=70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑的销售利润最大.点评: 本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是依据一次函数x 值的增大而确定y 值的增减状况. 22.(10分)(2024•河南)(1)问题发觉如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同始终线上,连接BE . 填空:①∠AEB 的度数为 60° ;②线段AD ,BE 之间的数量关系为 AD=BE . (2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A ,D ,E 在同始终线上,CM 为△DCE 中DE 边上的高,连接BE ,请推断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由. (3)解决问题如图3,在正方形ABCD 中,CD=,若点P 满意PD=1,且∠BPD=90°,请干脆写出点A 到BP 的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理. 专题:综合题;探究型. 分析: (1)由条件易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同始终线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD=BE ;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM=DM=ME ,从而证到AE=2CH+BE . (3)由PD=1可得:点P 在以点D 为圆心,1为半径的圆上;由∠BPD=90°可得:点P 在以BD 为直径的圆上.明显,点P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行探讨.然后,添加适当的协助线,借助于(2)中的结论即可解决问题. 解答: 解:(1)①如图1, ∵△ACB 和△DCE 均为等边三角形,∴CA=CB ,CD=CE ,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE . 在△ACD 和△BCE 中,∴△ACD ≌△BCE . ∴∠ADC=∠BEC .∵△DCE 为等边三角形, ∴∠CDE=∠CED=60°.∵点A ,D ,E 在同始终线上, ∴∠ADC=120°. ∴∠BEC=120°.∴∠AEB=∠BEC ﹣∠CED=60°. 故答案为:60°.②∵△ACD ≌△BCE , ∴AD=BE .故答案为:AD=BE .(2)∠AEB=90°,AE=BE+2CM . 理由:如图2,∵△ACB 和△DCE 均为等腰直角三角形, ∴CA=CB ,CD=CE ,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE .在△ACD和△BCE中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同始终线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP 的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等学问,考查了运用已有的学问和阅历解决问题的实力,是体现新课程理念的一道好题.而通过添加适当的协助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.(11分)(2024•河南)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请干脆写出相应的点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出四边形PECE′是菱形,然后依据PE=CE的条件,列出方程求解.解答:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m ,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣。
河南省三门峡市义马市第二初级中学2014-2015学年七年级数学4月月考试题(满分100分, 考试时间100分钟)一、选择题:(每题3分,共30分)1.下列各图中,∠1与∠2是对顶角的是:( )2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D3.在 -1.732,2,π, 3.41 ,2+3,3.212212221… 这些数中,无理数的个数为( ).A.2B.3C.4D.5 4. 下列各式中,正确的是( ). A.3355-=- B.6.06.3-=-C.13)13(2-=- D.636±=5.下列说法错误的是( )A .3-是9的平方根B .5的平方等于5C .1-的平方根是1±D .9的算术平方根是3 6、在平面直角坐标系中,点(-3,4)在( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限7、若4,5==b a ,且点M (a ,b )在第四象限,则点M 的坐标是( ) A 、(5,4) B 、(-5,4) C 、(-5,-4) D 、(5,-4) 8、将A (1,1)先向左平移2个单位,再向下平移2个单位得 点B ,则点B 的坐标是( )A .(-1,-1)B .(3,3)C .(0,0)D .(-1,3) 9、经过两点A (2,3)、B (-4,3)作直线AB ,则直线AB ( ) A.平行于x 轴 B.平行于y 轴 C.经过原点 D.无法确定 10、下列命题是真命题的是( ) A .有且只有一条直线垂直于已知直线。
B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C .互相垂直的两条线段一定相交。
EDC BA4321D .直线c 外一点A 与直线c 上各点连接而成的所有线段中,最短线段的长是3cm ,则点A 到直线c 的距离是3cm 。
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
河南九年级数学竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若一个等腰三角形的底边长为8,腰长为5,则这个三角形的周长为()。
A. 18B. 20C. 22D. 244. 下列函数中,哪个函数是增函数?()A. y = -x²B. y = x²C. y = -2xD. y = 2x5. 若一个圆的半径为r,则它的面积是()。
A. πrB. πr²C. 2πrD. 2πr²二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 0是正数也是负数。
()3. 任何一个整数都可以分解为几个质数的乘积。
()4. 两条平行线的斜率相等。
()5. 任何一个三角形都有外接圆。
()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为1,公差为2,则第10项为______。
2. 若一个等比数列的首项为2,公比为3,则第5项为______。
3. 若一个圆的直径为10,则它的半径为______。
4. 若一个三角形的两个内角分别为30°和60°,则第三个内角为______。
5. 若一个二次函数的顶点为(2,-3),则它的对称轴为______。
四、简答题(每题2分,共10分)1. 简述勾股定理。
2. 简述等差数列的通项公式。
3. 简述等比数列的通项公式。
4. 简述二次函数的顶点公式。
5. 简述圆的面积公式。
五、应用题(每题2分,共10分)1. 一个正方形的边长为6,求它的对角线长。
2. 一个等腰三角形的底边长为10,腰长为8,求这个三角形的周长。
3. 一个等差数列的首项为3,公差为2,求第10项。
4. 一个等比数列的首项为2,公比为3,求第5项。
2014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2014•河南)下列各数中,最小的数是()A.0B.C.D.﹣3﹣考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•河南)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10 B.11 C.12 D.13考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的对值<1时,n是负数.解答:解:3875.5亿=3875 5000 0000=3.8755×1011,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表时关键要正确确定a的值以及n的值.3.(3分)(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°考点:垂线;对顶角、邻补角.分析:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得答案.解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.(3分)(2014•河南)下列各式计算正确的是()A.a+2a=3a2B.(﹣a3)2=a6C.a3•a2=a6D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、a+2a=3a,故本选项错误;B、(﹣a3)2=a6,故本选项正确;C、a3•a2=a5,故本选项错误;D、(a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能5.(3分)(2014•河南)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是在一定条件下,可能发生也可能不发生的事件.6.(3分)(2014•河南)将两个长方体如图放置,则所构成的几何体的左视图可能是()考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.(3分)(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10 D.11考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.解答:解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.(3分)(2014•河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A 出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x (s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()考点:动点问题的函数图象.分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数象是y随x的增大而增大,且不是线段.故B、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学该函数图象,所以只要采取排除法进行解题.二、填空题(每小题3分,共21分)9.(3分)(2014•河南)计算:﹣|﹣2|=1.考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式=3﹣2=1,故答案为:1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.(3分)(2014•河南)不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加可求解.解答:解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(3分)(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线做法.12.(3分)(2014•河南)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.考点:抛物线与x轴的交点.分析:由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据次函数的对称性,求得B点的坐标,再求出AB的长度.解答:解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.点评:此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.13.(3分)(2014•河南)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12种,其中第一个人摸到红球且第二个人摸到白球的情况有4种,则P==.故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014•河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接BD′,过D′作D′H⊥AB,则阴影部分的面积可分为3部分,再根据菱形的性质,三角形的面积公式及扇形的面积公式计算即可.解答:解:连接BD′,过D′作D′H⊥AB,∵在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S△ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图的形状与大小是解题的关键.15.(3分)(2014•河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.考点:翻折变换(折叠问题).分析:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求MD′,再分两种情况利用勾股定理求出DE.解答:解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在RT△END′中,设ED′=a,①当MD′=3时,D′E=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,D′E=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8小题,满分75分)16.(8分)(2014•河南)先化简,再求值:+(2+),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把的值代入计算.解答:解:原式=÷=÷=•=,当x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整然后把满足条件的字母的值代入计算得到对应的分式的值.17.(9分)(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBD是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.解答:解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在RT△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关18.(9分)(2014•河南)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解解答:解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比小.19.(9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)考点:解直角三角形的应用-仰角俯角问题.分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在Rt三角形ACD中示出CD和在Rt三角形BCD中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt三角形ACD中,CD===,在Rt三角形BCD中,BD=CD•tan68°,∴1000+x=x•tan68°解得:x==≈308米,∴潜艇C离开海平面的下潜深度为308米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解20.(9分)(2014•河南)如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.考点:反比例函数综合题.专题:综合题.分析:(1)作BM⊥x轴于M,作BN⊥x轴于N,利用点A,B的坐标得到BC=OM=5,BM=OC=6,AM=3,证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD进行计算.解答:解:(1)作BM⊥x轴于M,作BN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=5,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.(10分)(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随的增大而增大,分别进行求解.解答:解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数值的增大而确定y值的增减情况.22.(10分)(2014•河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△D 中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后添加适当的辅助线,借助于(2)中的结论即可解决问题.解答:解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE.∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)关键.23.(11分)(2014•河南)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解.解答:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;①若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3+或m=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点P坐标为(﹣,),(4,5),(3﹣,2﹣3).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。
2014年河南省三门峡市义马二中九年级数学竞赛试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)设x,y为实数,5x2+4y2﹣8xy+2x+4的最小值为()A.1 B.2 C.3 D.52.(4分)如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤13.(4分)已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.()A.29 B.﹣3或29 C.﹣3 D.264.(4分)下列运算中,正确的是()A.4﹣1=﹣4 B.40=1 C. D.|﹣4|=﹣45.(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°6.(4分)已知△ABC是等腰三角形,过△ABC的一个顶点的一条直线,把△ABC 分成的两个小三角形也是等腰三角形,则原△ABC的顶角的度数有几种情况?()A.2 B.3 C.4 D.57.(4分)若最简二次根式是同类二次根式,则a的值为()A.1或﹣B.1 C.﹣ D.8.(4分)若a+b=﹣4,且a≥3b,则()A.有最小值B.有最大值7C.有最大值3 D.有最小值9.(4分)若b<0,化简的结果是()A.B.C. D.10.(4分)一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.二、填空题(每题4分)11.(4分)设x1,x2是方程x2+x﹣4=0的两个实数根,则x13﹣5x22+10=.12.(4分)一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共人.13.(4分)定义〔a,b,c〕为函数y=ax2+bx+c的特征数,下面给出特征数为〔2m,1﹣4m,2m﹣1〕的一个函数的一些结论:①当m=时,函数图象的顶点坐标是(,);②当m=﹣1时,函数在x>1时,y随x的增大而减小;③无论m取何值,函数图象都经过同一点.其中正确的结论有(填写序号)14.(4分)如图,四边形ABCD与四边形CEFG都是正方形,点E在CD上,正方形ABCD的边长为2,则△BDF的面积是.15.(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C 逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为.三、解答题(40分)16.(10分)已知a+b=﹣5,ab=3,求的值.17.(15分)如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.18.(15分)今年的北京奥运会期间,有8人乘坐速度相同的两辆小汽车同时赶往奥运场馆观看篮球比赛,每辆车乘4人(不包括司机).其中一辆小汽车在距离场馆15km的地方出现故障,此时距比赛开始的时间还有42分钟.这时唯一可以利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的平均速度是5km/h(上、下车时间忽略不计).试设计两种方案,通过计算说明这8个人能够在比赛前赶到场馆.2014年河南省三门峡市义马二中九年级数学竞赛试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)设x,y为实数,5x2+4y2﹣8xy+2x+4的最小值为()A.1 B.2 C.3 D.5【解答】解:∵5x2+4y2﹣8xy+2x+4=(x2+2x+1)+(4x2﹣8xy+4y2)+3=4(x﹣y)2+(x+1)2+3,又∵4(x﹣y)2和(x+1)2的最小值是0,∴5x2+4y2﹣8xy+2x+4的最小值为3.故选C.2.(4分)如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤1【解答】解:∵方程(x﹣1)(x2﹣2x+m)=0有三根,∴x1=1,x2﹣2x+m=0有根,方程x2﹣2x+m=0的△=4﹣4m≥0,得m≤1.又∵原方程有三根,且为三角形的三边和长.∴有x2+x3>x1=1,|x2﹣x3|<x1=1,而x2+x3=2>1已成立;当|x2﹣x3|<1时,两边平方得:(x2+x3)2﹣4x2x3<1.即:4﹣4m<1.解得m>.∴<m≤1.故选D.3.(4分)已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.()A.29 B.﹣3或29 C.﹣3 D.26【解答】解:设方程x2+ax+b=0的两个根为α,β,∵方程有整数根,设其中α,β为整数,且α≤β,则方程x2+cx+a=0的两根为α+1,β+1,∴α+β=﹣a,(α+1)(β+1)=a,两式相加,得αβ+2α+2β+1=0,即(α+2)(β+2)=3,∴或,解得或,又∵a=﹣(α+β)=﹣[(﹣1)+1]=0,b=αβ=﹣1×1=﹣1,c=﹣[(α+1)+(β+1)]=﹣[(﹣1+1)+(1+1)]=﹣2,或a=﹣(α+β)=﹣[(﹣5)+(﹣3)]=8,b=αβ=(﹣5)×(﹣3)=15,c=﹣[(α+1)+(β+1)]=﹣[(﹣5+1)+(﹣3+1)]=6,∴a=0,b=﹣1,c=﹣2或者a=8,b=15,c=6,∴a+b+c=0+(﹣1)+(﹣2)=﹣3或a+b+c=8+15+6=29,故a+b+c=﹣3或29,故选:B..4.(4分)下列运算中,正确的是()A.4﹣1=﹣4 B.40=1 C. D.|﹣4|=﹣4【解答】解:A、4﹣1=,故本选项错误;B、40=1,故本选项正确;C、=2,故本选项错误;D、|﹣4|=4,故本选项错误.故选B.5.(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°【解答】解:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.故选D.6.(4分)已知△ABC是等腰三角形,过△ABC的一个顶点的一条直线,把△ABC 分成的两个小三角形也是等腰三角形,则原△ABC的顶角的度数有几种情况?()A.2 B.3 C.4 D.5【解答】解:设该等腰三角形的底角是x;①如图1,当过顶角的顶点的直线把它分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∠A=x°,则∠ACD=∠A=x°,∠B=∠A=x°,∴∠BCD=∠B=x°,∵∠A+∠ACB+∠B=180°,∴x+x+x+x=180,解得x=45,则顶角是90°;②如图2,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,x=36°,则顶角是108°.③如图3,当过底角的角平分线把它分成了两个等腰三角形,则有AC=BC,AB=AD=CD,设∠C=x°,∵AD=CD,∴∠CAD=∠C=x°,∴∠ADB=∠CAD+∠C=2x°,∵AD=AB,∴∠B=∠ADB=2x°,∵AC=BC,∴∠CAB=∠B=2x°,∵∠CAB+∠B+∠C=180°,∴x+2x+2x=180,x=36°,则顶角是36°.④如图4,当∠A=x°,∠ABC=∠ACB=3x°时,也符合,AD=BD,BC=DC,∠A=∠ABD=x,∠DBC=∠BDC=2x,则x+3x+3x=180°,x=,因此等腰三角形顶角的度数为36°或90°或108°或,故选C.7.(4分)若最简二次根式是同类二次根式,则a的值为()A.1或﹣B.1 C.﹣ D.【解答】解:∵最简二次根式是同类二次根式,∴1+a=4a2﹣2,4a2﹣a﹣3=0,(4a+3)(a﹣1)=0,a=﹣,a=1,当a=﹣时,不是最简二次根式,舍去,故选B.8.(4分)若a+b=﹣4,且a≥3b,则()A.有最小值B.有最大值7C.有最大值3 D.有最小值【解答】解:a、b均为负数时,≤3;最大值为3;a、b异号,负数的绝对值较大时,a=﹣4﹣b,则a≥3b可化为,﹣4﹣b≥3b,﹣4b≥4,b≤﹣1;b=﹣4﹣a,a≥3(﹣4﹣a),a≥﹣3,则最大为=3.故选C.9.(4分)若b<0,化简的结果是()A.B.C. D.【解答】解:∵b<0,∴﹣b>0∴原式=﹣b.故选C.10.(4分)一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.【解答】解:画树状图得:∵x2+px+q=0有实数根,∴△=b2﹣4ac=p2﹣4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,﹣1),(2,﹣1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:=.故选A.二、填空题(每题4分)11.(4分)设x1,x2是方程x2+x﹣4=0的两个实数根,则x13﹣5x22+10=﹣19.【解答】解:∵x1,x2是方程x2+x﹣4=0的两个实数根,∴x12=4﹣x1,x22=4﹣x2.且x1+x2=﹣1.则x13﹣5x22+10=x1•(4﹣x1)﹣5(4﹣x2)+10=4x1﹣(4﹣x1)﹣20+5x2+10=5(x1+x2)﹣14=﹣5﹣14=﹣19.故答案是:﹣19.12.(4分)一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共9人.【解答】解:设这小组有x人.由题意得:x(x﹣1)=72,解得x1=9,x2=﹣8(不合题意,舍去).即这个小组有9人.故答案为:9.13.(4分)定义〔a,b,c〕为函数y=ax2+bx+c的特征数,下面给出特征数为〔2m,1﹣4m,2m﹣1〕的一个函数的一些结论:①当m=时,函数图象的顶点坐标是(,);②当m=﹣1时,函数在x>1时,y随x的增大而减小;③无论m取何值,函数图象都经过同一点.其中正确的结论有③(填写序号)【解答】解:根据题意得y=2mx2+(1﹣4m)x+2m﹣1,当m=时,y=x2﹣x=(x﹣)2﹣,此抛物线顶点坐标为(,﹣),所以①错误;当m=﹣1时,y=﹣2x2+5x﹣3,对称轴为直线x=﹣=,则当x>时,y 随x的增大而减小,所以②错误;把y=2mx2+(1﹣4m)x+2m﹣1化为关于m的方程得(2x2﹣4x+2)m=﹣x+y+1,当m有无数个值时,方程成立,则2x2﹣4x+2=0,﹣x+y+1=0,解得x=1,y=0,即当x=1,y=0时,m可取任意数,所以无论m取何值,函数图象都经过同一点(1,0),所以③正确.故答案为③.14.(4分)如图,四边形ABCD与四边形CEFG都是正方形,点E在CD上,正方形ABCD的边长为2,则△BDF的面积是2.【解答】解:设正方形EFGC边长为a,可得2﹣a=a,即a=1,根据题意得:△BDF的面积S=22+a2+(2﹣a)2﹣×22﹣a(a+2)=4+a2+2﹣2a+a2﹣2﹣a2﹣a=a2﹣3a+4=1﹣3+4=2.故答案为:215.(4分)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,∴A′C=AC=1,AB=2,BC=,∵∠A=60°,∴△AA′C是等边三角形,∴AA′=AB=1,∴A′C=A′B,∴∠A′CB=∠A′BC=30°,∵△A′B′C是△ABC旋转而成,∴∠A′CB′=90°,BC=B′C,∴∠B′CB=90°﹣30°=60°,∴△BCB′是等边三角形,∴BB′=BC=.故答案为:.三、解答题(40分)16.(10分)已知a+b=﹣5,ab=3,求的值.【解答】解:∵a+b=﹣5<0,ab=3>0,∴a<0,b<0,∴原式=+=+=﹣•=﹣•=.17.(15分)如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【解答】解:(1)连接OE.∵CD是⊙O的切线,∴OE⊥CD,∵AD⊥CD,∴AD∥OE,∴∠DAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠DAE=∠EAO,∴AE平分∠DAC;(2)①∵AB是⊙O的直径,∴∠AEB=90°,∵∠ABE=60°,∴∠EAO=30°,∴∠DAE=∠EAO=30°,∵AB=3,∴AE=AB•co s30°=3×=,BE=AB=,在Rt△ADE中,∵∠DAE=30°,AE=,∴AD=AE•cos30°=×=;②∵∠EAO=∠AEO=30°,∴∠AOE=180°﹣∠EAO ﹣∠AEO=180°﹣30°﹣30°=120°, ∵OA=OB ,∴S △AOE =S △BOE =S △ABE ,∴S 阴影=S 扇形OAE ﹣S △AOE =S 扇形OAE ﹣S △ABE ═﹣×××=﹣=.18.(15分)今年的北京奥运会期间,有8人乘坐速度相同的两辆小汽车同时赶往奥运场馆观看篮球比赛,每辆车乘4人(不包括司机).其中一辆小汽车在距离场馆15km 的地方出现故障,此时距比赛开始的时间还有42分钟.这时唯一可以利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的平均速度是5km/h (上、下车时间忽略不计).试设计两种方案,通过计算说明这8个人能够在比赛前赶到场馆.【解答】解:能同时赶往奥运场馆观看篮球比赛,有两种可行方案: ①如图,小汽车在送前4人的同时,剩下的人也同时步行不停的往前走,小汽车送到奥运场馆后再返回接剩下的人.设小汽车返回时用了x 小时与步行的人相遇用了x 小时,则有: 60x +5x=15×2, 解得x=,所以共用时间:+=小时;②如图,先用小汽车把第一批人送到离奥运场馆较近的某一处,让第一批人步行,与此同时第二批人也在步行中;接着小汽车再返回接第二批人,使第二批人与第一批同时到奥运场馆,在这一方案中,每个人不是乘车就是在步行,没有人浪费时间原地不动,所以两组先后步行相同的路程,设这个路程为x千米,那么每组坐车路程为15﹣x千米,共用时间+小时;当小汽车把第一组送到离奥运场馆x千米处、回头遇到第二组时,第二组已经行走了x千米,这时小汽车所行路程为15﹣x+15﹣2x=30﹣3x(千米);由于小汽车行30﹣3x千米的时间与第二组行走x千米的时间相等,所以有:=,解得:x=2.所用时间为:+=小时=37分钟.37分钟<40分钟,故第二个方案更省时.。