【精编】2016-2017年云南省临沧市凤庆县腰街中学九年级(上)数学期中试卷和参考答案
- 格式:doc
- 大小:298.00 KB
- 文档页数:19
云南省临沧市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程(x-1)(x+2)=0的两根分别为()A . x1=-1,x2=2B . x1=1,x2=2C . x1=-1,x2=-2D . x1=1,x2=-22. (2分)下列图形中,不是轴对称图形的是()A . 线段B . 角C . 等腰三角形D . 直角三角形3. (2分)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A . k>2B . k<2C . k<2且k≠1D . k>2且k≠14. (2分)(2018·益阳模拟) 关于抛物线y=x 2 -2x+1,下列说法错误的是()A . 开口向上B . 与x轴有一个交点C . 对称轴是直线x=1D . 当x>1时,y随x的增大而减小5. (2分)在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是()A . (﹣1,2)B . (1,﹣2)C . (1,2)D . (2,1)6. (2分) (2016九上·瑞安期中) 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为()A . 1 cmB . 2 cmC . 3cmD . 4cm7. (2分)(2020·上海模拟) 关于抛物线的判断,下列说法正确的是()A . 抛物线的开口方向向上B . 抛物线的对称轴是直线C . 抛物线对称轴左侧部分是下降的D . 抛物线顶点到轴的距离是28. (2分)(2020·牡丹江) 如图,四边形内接于,连接.若,,则的度数是()A . 125°B . 130°C . 135°D . 140°9. (2分) (2019九上·玉田期中) 某电动自行车厂三月份的产量为辆,由于市场需求量不断增大,五月份的产量提高到辆,该厂四、五、六月份的月平均增长率相同,那么月平均增长率和六月份的产量分别为()A .B .C .D .10. (2分)下列函数中,当x>0时,y随x的增大而增大的是()A . y=-x+1B . y=x2-1C .D . y=-x2+1二、填空题 (共7题;共9分)11. (1分)方程x2-2x-3=0的解为________.12. (1分)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是________.13. (1分)在△ABC中,AB=6,BC=7,BD是AC边上的中线,则BD的取值范围为________.14. (1分) (2019九上·合肥月考) 抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=________.15. (2分)(2018·奉贤模拟) 如果抛物线y=2x2与抛物线y=ax2关于x轴对称,那么a的值是________.16. (2分)(2019·广西模拟) 正方形绕其中心旋转一定的角度与原图形重合,则这个角至少为________度.17. (1分)对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是________.(填写图形的相应编号)三、解答题 (共8题;共63分)18. (5分) (2017九上·宜昌期中) 解方程(1) x2+x-12=0(2) 2x2-3x+2=019. (6分)由垂径定理可知:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.请利用这一结论解决问题:如图,点P在以MN为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,PQ=4 .(1)连结OP,证明△OPH为等腰直角三角形;(2)若点C,D在⊙O上,且 = ,连结CD,求证:OP∥CD.20. (10分) (2020七下·三水期末) 如图,在△ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).21. (5分) (2019九上·获嘉月考) 水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现要保证每天盈利6 000元,同时又要让顾客尽可能多得到实惠,那么每千克应涨价多少元?22. (10分)(2020·昌吉模拟) 如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E、F.(1)求证:四边形AECF是菱形;(2)当BE=3,AF=5时,求AC的长.23. (10分) (2019九上·洛阳月考) 下表给出了代数式x2+bx+c与x的一些对应值:(1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y<0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?24. (15分) (2012八下·建平竞赛) 如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请说明:AH=DH.25. (2分)如图,在四边形ABCD中,AB=8,AC=4 ,∠ABC=90°,AB=AD,BC=CD,过点D作DE∥BC,交AB于点E,连接AC,BD,AC与BD交于点F.求:(1)四边形ABCD的周长;(2) AF的长度;(3)△ADE的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共63分)18-1、18-2、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、第11 页共11 页。
云南省临沧市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)代数式3x2-4x+6的值为9,则x2-x+6的值为()A . 7B . 18C . 12D . 92. (2分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A .B .C .D .3. (2分) (2019九上·钦州港期末) 将1,2,3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是()(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)A . 0.3B . 0.5C .D .4. (2分)如图,正方形ABCD的边AB=1,BD和AC都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是()A .B .C .D .5. (2分) (2017八上·台州期末) 如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第(n+1)个三角形以为顶点的内角的度数是()A .B .C .D .6. (2分)(2018·潮州模拟) 如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A .B .C .D .7. (2分) (2018七上·南山期末) 若x2+3x一5的值为7,则3x2+9x一2的值为()A . 44B . 34C . 24D . 148. (2分) (2016九上·岑溪期中) 二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分) (2016八上·南宁期中) 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若点D为BC边的中点,点M为线段EF上一动点,则三角形CDM周长的最小值为()A . 6B . 8C . 10D . 1210. (2分)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ 的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A . AE=12cmB . sin∠EBC=C . 当0<t≤8时,y=t2D . 当t=9s时,△PBQ是等腰三角形二、填空题 (共6题;共8分)11. (1分)“买一张彩票,中一等奖”是________(填“必然”、“不可能”或“随机”)事件.12. (2分)二次函数y=x2+2x的顶点坐标为________ ,对称轴是直线________ .13. (1分)如图,已知矩形ABCD∽矩形BCFE,AD=AE=1,则AB的长为________14. (1分)如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠OCD=________.15. (2分)正多边形的概念:各边________ 且各角也________ 的多边形是正多边形.16. (1分)已知抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,其顶点为M,将此抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象.如图,当直线y=﹣x+n与此图象有且只有两个公共点时,则n的取值范围为________.三、解答题 (共7题;共80分)17. (5分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.18. (15分) (2020九上·景县期末) 如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为点B(0,3),其顶点为C对称轴为x=1,(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.19. (10分)(2019·江海模拟) 如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+ EG最小值.20. (15分)(2019·温州模拟) 如图,AB是半圈O的直径,率径OC⊥AB,OB=4,D是OB的中点,点E是BC 上一动点,连结AE,DE.(1)当点E是BC的中点时,求△ADE的面积(2)若tan∠AED= ,求AE的长,(3)点F是半径OC上一动点,设点E到直线OC的距离为m。
2016-2017学年云南省临沧市凤庆县腰街中学九年级(上)期中数学试卷一、选择题(每题4分,共32分)1.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)点(﹣2,﹣3)关于原点的对称点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(4分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=04.(4分)一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根5.(4分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点6.(4分)若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离7.(4分)到三角形三个顶点距离相等的点是三角形的()A.内心B.外心C.重心D.垂心8.(4分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5% B.9% C.9.5% D.10%二、填空题(每题3分,共21分)9.(3分)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为.10.(3分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为.11.(3分)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.12.(3分)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为cm.13.(3分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为.14.(3分)用总长为60米的篱笆围成矩形场地,设矩形的一边长为x米,当x=米时,场地的面积最大.15.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.三、解答题(共8小题,满分67分)16.(8分)解下列方程:(1)4(x﹣1)2=36(2)x2+x﹣1=0.17.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.18.(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB 上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.19.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?20.(8分)在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).(1)画出△ABC,并求出AC所在直线的解析式.(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.21.(9分)商场某种商品平均每天可销售40件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利最大,最大利润是多少元?22.(8分)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.23.(10分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.2016-2017学年云南省临沧市凤庆县腰街中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共32分)1.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:既是轴对称图形,又是中心对称图形的是正方形和圆的组合图形,故选:B.2.(4分)点(﹣2,﹣3)关于原点的对称点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),故选:A.3.(4分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.4.(4分)一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【解答】解:∵a=1,b=2,c=4,∴△=b2﹣4ac=22﹣4×1×4=﹣12<0,∴方程没有实数根.故选:D.5.(4分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.6.(4分)若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离【解答】解:∵⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,又∵6﹣4=2,6+4=10,∴6﹣4<8<6+4,∴⊙O1与⊙O2的位置关系是相交.故选:B.7.(4分)到三角形三个顶点距离相等的点是三角形的()A.内心B.外心C.重心D.垂心【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,这个交点称为三角形的外心.故选:B.8.(4分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5% B.9% C.9.5% D.10%【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.二、填空题(每题3分,共21分)9.(3分)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为±.【解答】解:把x=2代入方程x2﹣x﹣a2+5=0得:4﹣2﹣a2+5=0,解得:a=±.故答案为:±.10.(3分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为1米.【解答】解:假设修建的路宽应x米,利用图形的平移法,将两条道路平移的耕地两边,即可列出方程:∴(20﹣x)(30﹣x)=551,整理得:x 2﹣50x+49=0,解得:x 1=1米,x 2=49米(不合题意舍去),故答案为:1米.11.(3分)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为2.【解答】解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.12.(3分)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为8cm.【解答】解:∵OC⊥AB,∴AC=AB=6cm.在直角△AOC中,OC===8(cm).故答案是:8.13.(3分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为72π.【解答】解:∵圆锥的底面半径为8,母线AB为9,∴圆锥的侧面积=π×8×9=72π.故答案为:72π.14.(3分)用总长为60米的篱笆围成矩形场地,设矩形的一边长为x米,当x= 15米时,场地的面积最大.【解答】解:设矩形的一边长为x米,则矩形的另一边长为(30﹣x)米,∴S=x(30﹣x)=﹣x2+30x=﹣(x﹣15)2+225,=225,即当x=15时,S最大值故答案为:15.15.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.三、解答题(共8小题,满分67分)16.(8分)解下列方程:(1)4(x﹣1)2=36(2)x2+x﹣1=0.【解答】解:(1)∵(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,解得:x=4或x=﹣2;(2)∵a=1,b=1,c=﹣1,∴△=1﹣4×1×(﹣1)=1+4=5>0,则x=.17.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.【解答】解:(1)由方程有两个实数根,可得△=b2﹣4ac=4(k﹣1)2﹣4k2=4k2﹣8k+4﹣4k2=﹣8k+4≥0,解得,k≤;(2)依据题意可得,x1+x2=2(k﹣1),x1•x2=k2,由(1)可知k≤,∴2(k﹣1)<0,x1+x2<0,∴﹣x1﹣x2=﹣(x1+x2)=x1•x2﹣1,∴﹣2(k﹣1)=k2﹣1,解得k1=1(舍去),k2=﹣3,∴k的值是﹣3.答:(1)k的取值范围是k≤;(2)k的值是﹣3.18.(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB 上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【解答】证明:(1)过点D作DF⊥AC于F;(1分)∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,(3分)∴AC为⊙D的切线.(4分)(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),(6分)∴EB=FC.(8分)∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.(10分)19.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,整理得(1+x)2=81,则x+1=9或x+1=﹣9,解得x1=8,x2=﹣10(舍去),∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.20.(8分)在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).(1)画出△ABC,并求出AC所在直线的解析式.(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.【解答】解:(1)如图所示,△ABC即为所求,设AC所在直线的解析式为y=kx+b(k≠0),∵A(﹣1,2),C(﹣2,9),∴,解得,∴y=﹣7x﹣5;(2)如图所示,△A1B1C1即为所求,由图可知,,S=S扇形+S△ABC,=+2×7﹣1×5×﹣1×7×﹣2×2×,=.21.(9分)商场某种商品平均每天可销售40件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加2x件,每件商品盈利50﹣x元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利最大,最大利润是多少元?【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50﹣x)元,故答案为:2x,50﹣x;(2)设商场日盈利为y,则y=(50﹣x)(40+2x)=﹣2x2+60x+2000=﹣2(x﹣15)2+2450,=2450,∴当x=15时,y最大答:每件商品降价15元时,商场日盈利最大,最大利润是2450元.22.(8分)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.【解答】解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.23.(10分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【解答】解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.。
云南省临沧市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·山西模拟) 我们在探究二次函数的图象与性质时,首先从y=ax2(a≠0)的形式开始研究,最后到y=a(x-h)2+k(a≠0)的形式,这种探究问题的思路体现的数学思想是()A . 转化B . 由特殊到一般C . 分类讨论D . 数形结合2. (2分) (2018九上·防城港期中) 在平面直角坐标系中,有A(2,-1)、B(-1,-2)、C(2,1)、D(-2,1)四点.其中,关于原点对称的两点为()A . 点A和点BB . 点B和点CC . 点C和点DD . 点D和点A3. (2分) (2017九上·河东开学考) 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A . y=(x+2)2+3B . y=(x﹣2)2+3C . y=(x+2)2﹣3D . y=(x﹣2)2﹣34. (2分)(2012·海南) 如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是()A . 1B .C .D .5. (2分) (2018九下·吉林模拟) 如图,在 O中,AB是直径,AC是弦,过点C的切线与AB的延长线交于点D,若∠A=25°,则∠D的大小为()A . 25°.B . 40°.C . 50°.D . 65°.6. (2分)(2017·顺德模拟) 如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM 的长的取值范围是()A . 3≤OM≤5B . 4≤OM≤5C . 3<OM<5D . 4<OM<57. (2分)开口向下的抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有()A . 最大值1B . 最小值-1C . 最大值-3D . 最小值38. (2分) (2019九下·温州竞赛) 如图,在平面直角坐标系响,抛物线y=a(x-m)2+1(a<0)与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,顶点是D,且∠DAB=45°,点C绕O逆时针旋转90°得到点C',当≤m≤ 之时,BC'的长度范围是()A . 0≤BC'≤B . ≤BC'≤C . ≤BC'≤D . 0≤BC'≤9. (2分)若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A . 30°B . 60°C . 90°D . 120°10. (2分)(2020·重庆模拟) 已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1 , 0),(x2 , 0),则下列说法正确是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为: m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1 , x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为: m<11.A . ①②③④B . ①②④C . ①③④D . ②③④二、填空题 (共6题;共6分)11. (1分)若二次函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是________.12. (1分)(2017·盘锦模拟) 函数中,自变量x的取值范围是________.13. (1分) (2019七下·郑州期末) 如图,Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E、F分别在边AB和边AC上,且∠EDF=90°,则下列结论一定成立的是________①△ADF≌△BDE②S四边形AEDF= S△ABC③BE+CF=AD④EF=AD14. (1分)如图,⊙O中直径AB⊥弦CD于E,若AB=26,CD=24,则OE=________.15. (1分) (2019八上·西安期中) 如图(1)如图1,中,,点在数轴-1处,点在数轴1处,,,则数轴上点对应的数是________.(2)如图2,点是直线上的动点,过点作垂直轴于点,点是轴上的动点,当以,,为顶点的三角形为等腰直角三角形时点的坐标为________.16. (1分)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为________ (结果保留π).三、解答题 (共9题;共86分)17. (5分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.求该抛物线的解析式.18. (6分) (2019九上·保山期中) 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;并写出A1、B1、C1三点的坐标.(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留π).19. (5分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=- x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面0A的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?20. (10分)已知抛物线y=﹣x2+4x+5.(1)求这条抛物线的顶点坐标和对称轴;(2)求该抛物线在x轴上截得的线段长.21. (10分) (2018八下·北海期末) 如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.22. (10分)(2011·徐州) 某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)件的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?23. (15分)(2017·高港模拟) 如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD的长;(2)求∠ABE+2∠D的度数;(3)求的值.24. (10分) (2017九上·丹江口期中) 如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB= ,CD=9,求线段BC和EG的长.25. (15分)(2020·红花岗模拟) 如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象与x 轴交于A,B两点,与y轴交于点C(0,3),且抛物线的顶点坐标为(1,4).(1)求抛物线的解析式;(2)如图2,点D是第一象限抛物线上的一点,AD交y轴于点E,设点D的横坐标为m,设△CDE的面积为S,求S与m的函数关系式(不必写出自变量的取值范围);(3)在(2)的条件下,连接AC,是否存在这样的点D,使得∠DAB=2∠ACO,若存在,求点D的坐标及相应的S的值,若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、答案:略15-2、答案:略16-1、三、解答题 (共9题;共86分)17-1、18-1、18-2、答案:略19-1、答案:略19-2、答案:略19-3、答案:略20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、答案:略24-1、24-2、答案:略25-1、答案:略25-2、25-3、答案:略。
临沧市九年级上学期期中考试数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)函数(是常数)是二次函数的条件是()A .B .C .D .2. (2分)(2020·苏家屯模拟) 下列事件中,是必然事件的是()A . 射击运动员射击一次,命中靶心B . 一个游戏的中奖概率是,则做10次这样的游戏一定会中奖C . 雨后见彩虹D . 任意画一个三角形,其外角和是360°3. (2分)若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,…则E(x,x2-2x+1)可以由E(x,x2)怎样平移得到()A . 向上平移1个单位B . 向下平移1个单位C . 向左平移1个单位D . 向右平移1个单位4. (2分) (2017九上·海淀月考) 抛物线图象如图所示,根据图象,抛物线的解析式可能是()A .B .C .D .5. (2分) (2016九上·潮安期中) 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A . 70°B . 80°C . 60°D . 50°6. (2分)若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(3,-1),则点P与⊙A的位置关系是()A . P在⊙A上B . P在⊙A外C . P在⊙A内D . 以上答案都不对7. (2分) (2019九上·沭阳期中) 如图,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画圆O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为()A .B .C .D .8. (2分) (2019七下·抚州期末) 小亮从家出发步行到公交站台后,再等公交车去学校,如图,折线表示这个过程中小亮行驶的路程s(千米)与时间t(分)之间的关系.下列说法错误的是()A . 他家离公交车站台1千米远B . 他等公交车的时间为14分钟C . 公交车的速度是500米/分D . 他步行速度是0.1千米/分9. (2分)(2020·蔡甸模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()A . 10B . 8C . 6D . 410. (2分)已知二次函数y=a(x﹣1)2+c的图象如图,则一次函数y=ax+c的大致图象可能是()A .B .C .D .二、填空题 (共7题;共7分)11. (1分)(2019·南山模拟) 下面是一道确定点P位置的尺规作图题的作图过程.如图1,直线L1与L2相交于点O,A,B是L2上两点,点P是直线L1上的点,且∠APB=30°,请在图中作出符合条件的点P.作法:如图2,⑴以AB为边在L2上方作等边△ABC;⑵以C为圆心,AB长为半径作⊙C交直线L1于P1 , P2两点.则P1、P2就是所作出的符合条件的点P.请回答:该作图的依据是________.12. (1分)若y=(3﹣m)是二次函数,则m=________.13. (1分) (2019九上·房山期中) 在平面直角坐标系xOy中,点A(m,n)在抛物线y=ax2 +2ax-3a上,点A关于此抛物线对称轴的对称点为B(p,q),则m+p的值是________.14. (1分)△ABC中,∠C为直角,AB=2,则这个三角形的外接圆半径为________.15. (1分)如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为________度.16. (1分) (2016九上·吴中期末) 如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.17. (1分)如图所示,⊙O的半径OA=4,∠AOB=120°,则弦AB长为________.三、解答题 (共7题;共92分)18. (15分)如图,在平面直角坐标系中,一次函数的图象y1=kx+b与反比例函数的图象交于点A (1,5)和点B(m,1).(1)求m的值和反比例函数的解析式;(2)当x>0时,根据图象直接写出不等式≥kx+b的解集;(3)若经过点B的抛物线的顶点为A,求该抛物线的解析式.19. (10分)在一只不透明的盒子里有背面完全相同,正面上分别写有数字1、2、3、4的四张卡片,小马从中随机地抽取一张,把卡片上的数字作为被减数;在另一只不透明的盒子里将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小虎从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小马与小虎做游戏,规则是:若这两数的差为非正数,则小马赢;否则小虎赢.你认为该游戏公平吗?请说明理由.20. (15分)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w (元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?21. (15分)(2018·红桥模拟) 已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB= .(1)当t=1时,求抛物线的表达式;(2)试用含t的代数式表示点C的坐标;(3)如果点C在这条抛物线的对称轴上,求t的值.22. (15分) (2017九上·蒙阴期末) 如图,已知抛物线y=﹣ x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由.23. (15分) (2019八上·下陆月考) 如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.24. (7分)(2018·无锡模拟) 如图①,Rt△ABC中,∠B=90°,∠CAB=30°,它的顶点A的坐标为(10,0),顶点B的坐标为(5,5 ),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),则点P的运动速度为________;(2)求(1)中面积S与时间t之间的函数关系式及面积S的最大值及S取最大值时点P的坐标;(3)如果点P,Q保持(1)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有________个.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共92分)18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。
云南省临沧市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果关于x的方程(m+2)x|m|+3mx+1=0是一元二次方程,则m的值是()A . ±2B . 2C . ﹣2D . m≠﹣22. (2分) (2017八下·常州期末) 剪纸艺术是中华文化的瑰宝,下列剪纸图案中,既不是中心对称图形也不是轴对称图形的是()A .B .C .D .3. (2分)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A . x2-2x=5B . 2x2-4x=5C . x2+4x=5D . x2+2x=54. (2分)如图,O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A .B .C .D . 35. (2分) (2016九上·乐昌期中) 抛物线y=﹣2x2先向左平移1个单位,再向下平移3个单位,所得抛物线是()A . y=﹣2 (x+1)2+3B . y=﹣2 (x+1)2﹣3C . y=﹣2 (x﹣1)2﹣3D . y=﹣2 (x﹣1)2+36. (2分)已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是()A . r>6B . r≥6C . 0<r<6D . 0<r≤67. (2分)如图,在扇形纸片AOB中,OA =10,AOB=36°,OB在桌面内的直线l上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为().A . 12πB . 11πC . 10πD . 10π+-58. (2分)已知x=-1是方程x2+mx+1=0的一个实数根,则m的值是()A . 0B . 1C . 2D . -29. (2分)一元二次方程(x-9)2=0的解是()A . x1=x2=9B . x1=x2=3C . x1=9,x2=-9D . x1=3,x2=-310. (2分)喜羊羊每个月有100元零用钱,一块巧克力3元,一张魔力卡2元.喜羊羊的幸福值可以用下面这个公式来表示:幸福值=巧克力块数×魔力卡片数,则喜羊羊一个月可达到的幸福值最高为()A . 300B . 405C . 416D . 450二、填空题 (共6题;共6分)11. (1分)如果﹣﹣6=0,则的值是________.12. (1分) (2016九上·黄山期中) 若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为________。
临沧市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,若设个位数字为a,则可列方程为()A . a2+(a-4)2=10(a-4)+a-4B . a2+(a+4)2=10a+a-4-4C . a2+(a+4)2=10(a+4)+a-4D . a2+(a-4)2=10a+(a-4)-42. (2分) (2016九上·保康期中) 下列图形中,中心对称图形有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2015九上·大石桥期末) 用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A . (x﹣2)2=2B . (x+2)2=2C . (x﹣2)2=﹣2D . (x﹣2)2=64. (2分)某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增长率是x ,则可以列方程()A . 500(1+2x)=720B . 500(1+x)2=720C . 500(1+x2)=720D . 720(1+x)2=5005. (2分) (2016九上·保康期中) 我校生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组互赠182件,如果全组有x名同学,则根据题意列出的方程是()A . x(x+1)=182B . x(x﹣1)=182C . 2x(x+1)=182D . x(x﹣1)=182×26. (2分) (2016九上·江夏期中) 抛物线y=x2﹣2x+1与坐标轴交点个数为()A . 无交点B . 1个C . 2个D . 3个7. (2分) (2016九上·保康期中) 在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得解析式为()A . y=2x2+2B . y=2x2﹣2C . y=2(x+2)2D . y=2(x﹣2)28. (2分)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A .B .C .D .9. (2分) (2016九上·保康期中) 设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1 , y2 , y3的大小关系为()A . y1>y2>y3B . y1>y3>y2C . y2>y3>y1D . y3>y1>y210. (2分) (2016九上·保康期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2018·来宾模拟) 二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m 的最小值为________.12. (1分)若 +(b+4)2=0,那么点(a,b)关于原点对称点的坐标是________.13. (1分) (2016八上·海门期末) 若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.14. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.15. (1分)已知点,现将点先向左平移个单位,之后又向下平移个单位,得到点,则 ________.16. (1分) (2016九上·保康期中) 已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为________.三、解方程 (共8题;共90分)17. (10分) (2018八上·浦东期中) 已知:关于x的方程x2+2kx+k2﹣1=0.(1)试说明无论k取何值时,方程总有两个不相等的实数根;(2)如果方程有一个根为3,试求2k2+12k+2018的值.18. (10分)(2019·浙江模拟) 已知关于x的一元二次方程x2-(m+1)x+ (m2+1)=0.(1)若该方程有实数根,求m的值.(2)对于函数y1=x2-(m+1)x+ (m2+1),当x>1时,y1随着x的增大而增大.①求m的范围.②若函数y2=2x+n与函数交于y轴上同一点,求n的最小值.19. (5分) (2016九上·保康期中) 如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米,求:鸡场的长和宽各为多少米?20. (10分) (2016九上·保康期中) 已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.21. (15分) (2016九上·保康期中) 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2、B2、C2坐标;(3)请画出△ABC绕O顺时针旋转90°后的△A3B3C3;并写出点A3、B3、C3坐标.22. (10分) (2017九上·澄海期末) 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.23. (15分) (2016九上·保康期中) 为了拉动内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益p(元)会相应降低且满足:p=﹣ x+110(x≥0).(1)在政府补贴政策实施后,求出该商场销售彩电台数y与政府补贴款额x之间的函数关系式;(2)在政府未出台补贴措施之前,该商场销售彩电的总收益额为多少元?(3)要使该商场销售彩电的总收益最大,政府应将每台补贴款额x定为多少?并求出总收益的最大值.24. (15分) (2016九上·保康期中) 边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求E点坐标;(2)设抛物线的解析式为y=a(x﹣h)2+k,求a,h,k;(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点M,N的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解方程 (共8题;共90分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
临沧市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017九上·井陉矿开学考) 一组数据20,20,50,20,37,2,把2换成其他的任意数,不改变的是()A . 众数B . 平均数C . 中位数D . 众数和中位数2. (2分)数据0,1,1,3,3,4的平均数和方差分别是()A . 2和1.6B . 2和2C . 2.4和1.6D . 2.4和23. (2分)某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A . 排球B . 乒乓球C . 篮球D . 跳绳4. (2分)为了备战2012英国伦敦奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c(如图5所示),则下列结论正确的是()①a<-②-<a<0③a-b+c>0 ④0<b<-12aA . ①③B . ①④C . ②③D . ②④5. (2分)如图,以(1,﹣4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A . 2<x<3B . 3<x<4C . 4<x<5D . 5<x<66. (2分) (2017八下·蒙阴期末) 下列点不在正比例函数y=﹣2x的图象上的是()A . (5,﹣10)B . (2,﹣1)C . (0,0)D . (1,﹣2)二、填空题 (共10题;共10分)7. (1分)(2016·景德镇模拟) 在一次体检中,测得某小组5名同学的身高分别是:170,162,155,160,168(单位:厘米),则这组数据的极差是________厘米.8. (1分)小明与小亮在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是________9. (1分)(2017·海珠模拟) 某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这6天销售量的中位数是________.10. (1分) (2015八下·杭州期中) 已知一组数据:x1 , x2 , x3 ,…xn的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3xn﹣2的方差是________.11. (1分)已知二次函数y=ax|a﹣1|+3在对称轴的左侧,y随x的增大而增大,则a=________.12. (1分)一个圆柱的高等于底面半径,写出它的表面积S与底面半径r的函数关系式为________ .13. (1分)(2019·潮南模拟) 二次函数的最大值为________.14. (1分)已知抛物线y=ax2-4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x 轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________ .15. (1分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(, y2)在该图象上,则y1>y2 .其中正确的结论是________(填入正确结论的序号).16. (1分) (2018九上·绍兴月考) 二次函数与两坐标轴的三个交点确定的三角形的面积是________.三、解答题 (共10题;共121分)17. (15分)(2018·益阳模拟) 如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.18. (12分) (2019八下·诸暨期末) 某中学开展的“好书伴我成长”读书活动中,为了解七年级600名学生读书情况,随机调查了七年级50名学生读书的册数,统计数据如下表所示:册数01234人数31316171(1)这50个样本数据的众数为________、中位数为________;(2)求这50个样本数据的平均数;(3)根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.19. (10分) (2016九上·余杭期中) 甲、乙两人同在如图所示的地下车库等电梯,两人到1至4层的任意一层出电梯,(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.20. (9分) (2015八下·绍兴期中) 甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8________80.4乙________9________ 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差________.(填“变大”、“变小”或“不变”).21. (5分)(2012·北海) 为了纪念中国共产主义青年团成立90周年,某校初三(1)、(2)班团支部组织了一次联欢会,小乐为活动设计了一个游戏:把两个可以自由转动的转盘各等分成三个扇形,分别标上1,2,3和4,5,6,每班级各派一名选手参加,每人同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,指针指向的数字之和为偶数时(1)班获胜,数字之和为奇数时(2)班获胜,小乐设计的游戏规则公平吗?请用树状图或列表分析说明,若认为不公平,请修改规则使游戏变得公平.22. (15分)(2016·无锡) 某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)23. (15分)(2019·甘肃) 良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下:收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:七年级:748175767075757981707480916982八年级:819483778380817081737882807050整理数据:年级x<6060≤x<8080≤x<9090≤x≤100七年级01041八年级1581(说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格)分析数据:年级平均数中位数众数七年级7575八年级77.580得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出几年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.24. (15分) (2016九上·常熟期末) 在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。
云南省临沧市九年级上学期数学期中考试试卷(B)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)下列方程中,常数项为零的是()A . x2+x=0B . 2x2-x-12=12C . 2(x2-1)=3(x-1)D . 2(x2+1)=x+22. (1分) (2017八下·萧山期中) 一元二次方程,若,则它的一个根是()A .B .C .D . 23. (1分) (2018九上·丽水期中) 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .B .C .D .4. (1分)(2018·重庆) 下列命题正确的是()A . 平行四边形的对角线互相垂直平分B . 矩形的对角线互相垂直平分C . 菱形的对角线互相平分且相等D . 正方形的对角线互相垂直平分5. (1分)若x1 , x2是方程x2+x﹣1=0两根,则的值为()A . 2B . ﹣2C . ﹣1D . 16. (1分)菱形具有而一般平行四边形不具有的性质是()A . 对边相等B . 对角相等C . 对角线互相垂直D . 对角线互相平分7. (1分) (2018九上·海口月考) 一元二次方程 x 2 - 2 x+ m= 0 总有实数根,则 m 应满足的条件是()A . m>1B . m<1C . m≥1D . m≤18. (1分)(2017·市北区模拟) 如图所示,左边的正方形与右边的扇形面积相等,扇形的半径和正方形的边长都是2cm,则此扇形的弧长为()cm.A . 4B . 4πC . 8D . 8﹣π9. (1分)以下列各组线段为边,能组成三角形的是()A . 3cm,2cm,1cmB . 2cm,6cm,8cmC . 4cm,5cm,10cmD . 2cm,4cm,5cm10. (1分)下列说法错误的是()A . Rt△ABC中,AB=3,BC=4,则AC=5B . 极差能反映一组数据的变化范围C . 经过点A(2,3)的双曲线一定经过点B(-3,-2)D . 连接菱形各边中点所得的四边形是矩形二、填空题 (共6题;共6分)11. (1分) (2018九上·淮阳期中) 方程:的解是________。
2016-2017学年云南省临沧市凤庆县腰街中学九年级(上)期中数学试卷一、选择题(每题4分,共32分)1.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)点(﹣2,﹣3)关于原点的对称点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(4分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=04.(4分)一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根5.(4分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点6.(4分)若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离7.(4分)到三角形三个顶点距离相等的点是三角形的()A.内心B.外心C.重心D.垂心8.(4分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5% B.9% C.9.5% D.10%二、填空题(每题3分,共21分)9.(3分)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为.10.(3分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为.11.(3分)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.12.(3分)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为cm.13.(3分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为.14.(3分)用总长为60米的篱笆围成矩形场地,设矩形的一边长为x米,当x=米时,场地的面积最大.15.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.三、解答题(共8小题,满分67分)16.(8分)解下列方程:(1)4(x﹣1)2=36(2)x2+x﹣1=0.17.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.18.(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB 上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.19.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?20.(8分)在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).(1)画出△ABC,并求出AC所在直线的解析式.(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.21.(9分)商场某种商品平均每天可销售40件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利最大,最大利润是多少元?22.(8分)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.23.(10分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.2016-2017学年云南省临沧市凤庆县腰街中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共32分)1.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:既是轴对称图形,又是中心对称图形的是正方形和圆的组合图形,故选:B.2.(4分)点(﹣2,﹣3)关于原点的对称点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),故选:A.3.(4分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.4.(4分)一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【解答】解:∵a=1,b=2,c=4,∴△=b2﹣4ac=22﹣4×1×4=﹣12<0,∴方程没有实数根.故选:D.5.(4分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.6.(4分)若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离【解答】解:∵⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,又∵6﹣4=2,6+4=10,∴6﹣4<8<6+4,∴⊙O1与⊙O2的位置关系是相交.故选:B.7.(4分)到三角形三个顶点距离相等的点是三角形的()A.内心B.外心C.重心D.垂心【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,这个交点称为三角形的外心.故选:B.8.(4分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5% B.9% C.9.5% D.10%【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.二、填空题(每题3分,共21分)9.(3分)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为±.【解答】解:把x=2代入方程x2﹣x﹣a2+5=0得:4﹣2﹣a2+5=0,解得:a=±.故答案为:±.10.(3分)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为1米.【解答】解:假设修建的路宽应x米,利用图形的平移法,将两条道路平移的耕地两边,即可列出方程:∴(20﹣x)(30﹣x)=551,整理得:x 2﹣50x+49=0,解得:x 1=1米,x 2=49米(不合题意舍去),故答案为:1米.11.(3分)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为2.【解答】解:∵在等边三角形ABC中,AB=6,∴BC=AB=6,∵BC=3BD,∴BD=BC=2,∵△ABD绕点A旋转后得到△ACE,∴△ABD≌△ACE,∴CE=BD=2.故答案为:2.12.(3分)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为8cm.【解答】解:∵OC⊥AB,∴AC=AB=6cm.在直角△AOC中,OC===8(cm).故答案是:8.13.(3分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为72π.【解答】解:∵圆锥的底面半径为8,母线AB为9,∴圆锥的侧面积=π×8×9=72π.故答案为:72π.14.(3分)用总长为60米的篱笆围成矩形场地,设矩形的一边长为x米,当x= 15米时,场地的面积最大.【解答】解:设矩形的一边长为x米,则矩形的另一边长为(30﹣x)米,∴S=x(30﹣x)=﹣x2+30x=﹣(x﹣15)2+225,=225,即当x=15时,S最大值故答案为:15.15.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.三、解答题(共8小题,满分67分)16.(8分)解下列方程:(1)4(x﹣1)2=36(2)x2+x﹣1=0.【解答】解:(1)∵(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,解得:x=4或x=﹣2;(2)∵a=1,b=1,c=﹣1,∴△=1﹣4×1×(﹣1)=1+4=5>0,则x=.17.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.【解答】解:(1)由方程有两个实数根,可得△=b2﹣4ac=4(k﹣1)2﹣4k2=4k2﹣8k+4﹣4k2=﹣8k+4≥0,解得,k≤;(2)依据题意可得,x1+x2=2(k﹣1),x1•x2=k2,由(1)可知k≤,∴2(k﹣1)<0,x1+x2<0,∴﹣x1﹣x2=﹣(x1+x2)=x1•x2﹣1,∴﹣2(k﹣1)=k2﹣1,解得k1=1(舍去),k2=﹣3,∴k的值是﹣3.答:(1)k的取值范围是k≤;(2)k的值是﹣3.18.(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB 上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【解答】证明:(1)过点D作DF⊥AC于F;(1分)∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,(3分)∴AC为⊙D的切线.(4分)(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),(6分)∴EB=FC.(8分)∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.(10分)19.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【解答】解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,整理得(1+x)2=81,则x+1=9或x+1=﹣9,解得x 1=8,x2=﹣10(舍去),∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.20.(8分)在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,9).(1)画出△ABC,并求出AC所在直线的解析式.(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.【解答】解:(1)如图所示,△ABC即为所求,设AC所在直线的解析式为y=kx+b(k≠0),∵A(﹣1,2),C(﹣2,9),∴,解得,∴y=﹣7x﹣5;(2)如图所示,△A1B1C1即为所求,由图可知,,S=S 扇形+S△ABC,=+2×7﹣1×5×﹣1×7×﹣2×2×,=.21.(9分)商场某种商品平均每天可销售40件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加2x件,每件商品盈利50﹣x元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利最大,最大利润是多少元?【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50﹣x)元,故答案为:2x,50﹣x;(2)设商场日盈利为y,则y=(50﹣x)(40+2x)=﹣2x2+60x+2000=﹣2(x﹣15)2+2450,=2450,∴当x=15时,y最大答:每件商品降价15元时,商场日盈利最大,最大利润是2450元.22.(8分)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.【解答】解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.23.(10分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【解答】解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。