概率论第四章课后习题解答
- 格式:doc
- 大小:2.32 MB
- 文档页数:34
1第四章随机变量的数字特征I 教学基本要求1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望;2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差;3、了解切比雪夫不等式及应用;4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念;5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理;6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用.II 习题解答A 组1、离散型随机变量X 的概率分布为X -2 0 2 p0.400.300.30求()E X 、(35)E X +、2()E X ?解:()(2)0.4000.3020.300.2E X =-⨯+⨯+⨯=-;(35)3()5 4.4E X E X +=+=;2222()(2)0.4000.3020.30 1.8E X =-⨯+⨯+⨯=.2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元求产品的平均价值?解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为X 0 8 10 p0.00140.80880.1898则()80.1898100.80889.61E X =⨯+⨯≈(元).3、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()E X ?解:由分布函数知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它则4()()24x E X xf x dx dx +∞-∞===⎰⎰.4、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()E X ?解:1111()(1)(1)k k k k E X kp p pk p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知 211()[1(1)]E X p p p =⨯=--.5、若随机变量X 服从参数为λ的泊松分布,即的泊松分布,即()!kp X k e k λλ-== (0,1,2,)k =求()E X 、2()E X ?解:1()!(1)!kk k k E X k ee ee k k λλλλλλλλλ-+∞+∞---======-∑∑;12201(1)()[]!(1)!!kk kk k k k k E X keee k k k λλλλλλλλ-+∞+∞+∞---===+===-∑∑∑1210[]()(1)!!k kk k e e e e k k λλλλλλλλλλλλ-+∞+∞--===+=+=+-∑∑. 6、某工程队完成某项工程的时间X (单位:月)服从下述分布X 10 11 12 13 p0.40.30.20.1(1) 求该工程队完成此项工程的平均时间;(2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1)()100.4110.3120.2130.111E X =⨯+⨯+⨯+⨯=(月);(2) ()[50(13)]65050()100E Y E X E X =-=-⨯=(万元). 7、若随机变量X 服从区间[,]a b 上的均匀分布,即1()a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其它求()E X 、2()E X ?解:()()2bax a b E X xf x dx dx b a +∞-∞+===-⎰⎰;22222()()3baxa ab b E X x f x dx dx b a +∞-∞++===-⎰⎰. 8、若随机变量X 服从参数为λ的指数分布,即的指数分布,即0()0x ex f x x λλ-⎧>=⎨≤⎩0求()E X 、2()E X ?解:0()()xxE X xf x dx x edxxdeλλλ+∞+∞+∞---∞===-⎰⎰⎰1xxxeedxλλλ+∞+∞--=-+=⎰;2222202()()2xxxE X x f x dxx edxx exedxλλλλλ+∞+∞+∞+∞----∞-∞===-+=⎰⎰⎰.9、离散型随机变量X 的概率分布为X 0 2 6 p3/12 4/12 5/12求()E X 、[ln(2)]E X +?解:34519()0261212126E X =⨯+⨯+⨯=;34513[ln(2)]ln(02)ln(22)ln(62)ln 21212126E X +=+⨯++⨯++⨯=.10、设2~(,)X N μσ,求(||)E X μ-?解:22()21(||)||2x E X x e dx μσμμπσ--+∞-∞-=-⎰令x t μσ-=,由偶函数性质有222022(||)()2t t E X e d μσσππ+∞--==⎰.11、设某商品需求量(10,30)X U ,销售商进货量n 在(10,30)之间,是一个整数.每销售一件商品获利500(元),若供小于求,每件产品亏损100(元).若供大于求,则从外地调运,每件商品可获利300(元).为使利润期望值不少于9280(元),进货量最少应为多少?解:按题意利润Y 与X 、n 的关系为500300()1030500100()1030n X n n X Y X n X X n +-≤<≤⎧=⎨--≤<≤⎩则利润平均值为10101()[[500100()][500300()]20n n E Y X n X dx n X n dx =--++-⎰⎰ 27.53505250n n =-++由题意知27.535052509280n n -++≥解得62263n ≤≤,则最少进货量为21.12、某保险公司规定,如果一年内顾客投保事件A 发生,则赔偿顾客a 元.以往资料表明事件A 发生的概率为p .为使公司收益期望值为0.1a ,则应向顾客收取都少保费?解:设应向顾客收取x 元保费,公司的收益为Y 元则Yx x a - p1p -p按题意()(1)()0.1E Y x p x a p a =-+-= 解得0.1x ap a =+.13、设随机变量X 的密度函数为1cos0()220x x f x π⎧≤≤⎪=⎨⎪⎩其它.对X 进行独立重复观测4次,Y 表示观测值大于/3π的次数,求2Y 的数学期望?解:显然~(4,)Y b p ,其中p 是(/3)X π>的概率,故31()cos 0.5322xp p Xdx πππ=>==⎰所以44()0.50.5kkkp Y k C -==⨯ (0,1,2,3,4)k =则有42244()0.50.55k kkk E Y k C -==⨯=∑.14、设随机变量X 、Y 相互独立,且都服从标准正态分布求22Z X Y =+的数学期望?解:由题意知X 、Y 的联合密度函数为2221(,)2x y f x y eπ+-=于是22222221()(,)2x y E Z x y f x y dxdy x y edxdy π++∞+∞+∞+∞--∞-∞-∞-∞=+=+⎰⎰⎰⎰令cos x r θ=、sin y r θ=得222222201()22r r E Z r e drd r e drππθπ+∞+∞--===⎰⎰⎰.15、已知(,)X Y 的分布如下,令max{,}Z X Y =,求()E Z ?YX0 5 10 15 0 0.02 0.06 0.02 0.10 5 0.04 0.15 0.20 0.10 100.010.150.140.01解:由题设可得Z 的分布为Z 0 510 15 p 0.020.25 0.52 0.21()00.0250.25100.52150.219.6E Z =⨯+⨯+⨯+⨯=.16、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求()E X 、()E Y 、()E XY 、22()E X Y +?解:12004()(,)125xE X xf x y dxdydx xy dy+∞+∞-∞-∞-∞===⎰⎰⎰⎰; 1303()(,)125x E Y yf x y dxdy dx y dy +∞+∞-∞-∞===⎰⎰⎰⎰;;131()(,)122xE XY xyf x y dxdy dx xy dy +∞+∞-∞-∞-∞===⎰⎰⎰⎰; 122222220016()()(,)()15xE XY xy f x y dxdydx xy y dy+∞+∞-∞-∞-∞+=+=+=⎰⎰⎰⎰. 17、设随机变量(,)X Y 的密度函数为1()02,02(,)8x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()E X ?解:22007()(,)()88xE X xf x y dxdyxy dxdy+∞+∞-∞-∞==+=⎰⎰⎰⎰. 18、甲乙二人相约在12:00~13:00之间会面,设X 、Y 分别表示甲乙到达时间,且相互独立已知X 、Y 的密度函数为2301()0x x f x ⎧<<=⎨⎩其它、201()0y y f y <<⎧=⎨⎩其它求先到达者需要等待时间的数学期望?解:等待时间可以表示为||X Y -,由于X 、Y 的联合密度函数为2601,01(,)0x y x y f x y ⎧<<<<=⎨⎩其它11200(||)||6E X Y x y x ydxdy ⇒-=-⎰⎰112200001()6()|64xyx y x ydydx y xx ydxdy =-+-=⎰⎰⎰⎰.19、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求数学期望()E X 、()E Y ?解:设(,)X Y 的联合密度函数为(,)(,)0(,)c x y G f x y x y G∈⎧=⎨∉⎩,由密度函数性质解出9/2c =下面分别求出边沿密度函数当12x -≤≤时,有22222()(2)99x X xf x dy x x +==+-⎰,故此 22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它 当01y ≤≤时,有24()99y Y y f y dx y--==⎰当14y <≤时,有222()(2)99y Y y f y dx y y --==+-⎰,所以 40192()(2)1490Y y y f y y y y ⎧≤≤⎪⎪⎪=+-<≤⎨⎪⎪⎪⎩其它从而22121()()(2)92XE X xfx dx x x x dx +∞-∞--==+-=⎰⎰; 1401428()()(2)995Y E Y yf y dy y yd y y y dy +∞-∞-∞==++-=⎰⎰⎰. 20、离散型随机变量X 的概率分布为X -2 0 2 p0.40 0.30 0.30求()D X ?解:由题意易知()0.2E X =-、2() 1.8E X =,所以22()()[()] 1.80.04 1.76D X E X E X =-=-=.21、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()D X解:由题意易知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它,且()2E X=,则242(2)4()(())()43x D X x E X f x dx dx +∞-∞-=-==⎰⎰. 22、若随机变量X 服从参数为λ的泊松分布,求()D X ? 解:由题意易知()E X λ=、22()E X λλ=+,故22()()[()]D X E X E X λ=-=.23、设随机变量(,)X Y 的密度函数为1()02,02(,)80x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()D X ?解:由题意易知7()8E X =,故2222001711()[()](,)()()8636D X x E X f x y dxdy x x y dxdy +∞+∞-∞-∞-∞=-=-+=⎰⎰⎰⎰. 24、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求方差()D X 、()D Y ?解:由题意易知22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它、40192()(2)1490Y yy f y y y y ⎧≤≤⎪⎪=+-<≤⎨⎪⎪⎪⎩其它1()2E X =、8()5E Y =22222127()()(2)910X E X x f x dx x x x dx+∞-∞--==+-=⎰⎰14222214247()()(2)9914Y E Yy f y dyy ydyy y dy +∞-∞-∞==++-=⎰⎰⎰229()()[()]20D X E X E X =-=;22279()()[()]350D YE Y E Y =-=.25、设10只同种元件中由2只是坏的,装配仪器时,从中任取1只,如果是不合格品,则扔掉后重取1只,求取出合格品前取出次品数的方差?只,求取出合格品前取出次品数的方差?解:设X 表示取出合格品前已取出次品的数目,则X0 1 2 p8/10 16/90 2/90故2()9E X =、24()15E X =所以2288()()[()]405D XE X E X =-=.26、设随机变量X 的密度函数为||1()2x f x e -=.求()E X 、()D X ?解:||1()()02x E X xf x dx x e dx+∞+∞--∞-∞===⎰⎰; 222||2011()(())()222x xD XE X E X x f x dx x e dx x e dx +∞+∞+∞---∞-∞=-====⎰⎰⎰.27、设X 为随机变量,证明:对任意常数C ,有2()()D X E X C ≤-,当()C E X =时等号成立.证明:22222()(2)()2()E X C E X CX C E X CE X C -=-+=-+22222()[()]{[()]2())}()[()]E X E X E X CE X C D X E X C =-+-+=+-由于2[()]E X C -非负,从而有2()()D X E X C ≤-,且当()C E X =时2()()D X E X C =-.28、设U 服从(-2,2)上的均匀分布,定义X 、Y 如下1111U X U -<-⎧=⎨>-⎩、1111U Y U -<⎧=⎨>⎩求()D X Y +?解:先求X Y +的分布(2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=-==-=-=<-<=<-= (2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=====≥-≥=≥= (0)1(2)(2)1/2p X Y p X Y p X Y +==-+=-+=-=所以()0E X Y +=,从而2()()2D X Y E X Y +=+=.29、已知()750E X =、2()15D X =.请估计概率(700800)p X <<? 解:由切比雪夫不等式有2215(700800)(|750|50)10.9150p X p X <<=-<≥-≈.30、设()2E X =-、()1D X =、()2E Y =、()4D Y =、0.5XY ρ=-,利用由切比雪夫不等式估计概率(||6)p X Y +≥的上限?解:因为()0E X Y +=、()()()2(,)3D X Y D X D Y Cov X Y +=++=,所以,所以2()1(||6)(|()()|6)612D X Y p X Y p X YE X Y ++≥=+-+≥≤=. 31、设()4D X =、()9D Y =、0.5XY ρ=,求(23)D X Y -? 解:(,)()()3XY Cov X Y D X D Y ρ==(23)4()9()2(2,3)16813661D X Y D X D Y Cov X Y -=++-=+-=.32、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求(,)Cov X Y ?解:由题意易知4()5E X =、3()5E Y =、1()2E XY =,故 1431(,)()()()25550Cov X Y E XY E X E Y ⨯=-=-=⨯. 33、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求协方差(,)Cov X Y 与相关系数XY ρ?解:由题意易知1()2E X =、8()5E Y =、9()20D X =、279()350D Y =2221225()994x x G E XY xy dxdy xdx ydy +-===⎰⎰⎰⎰所以9(,)()()()20Cov X Y E XY E X E Y =-=; (,)0.751()()XYCov X Y D X D Y ρ=≈.34、设二维随机变量(,)X Y 的联合分布为YX-1 0 1 00.07 0.18 0.15 100.080.320.20求22(,)Cov X Y解:先求2X 、2Y 、22X Y 的分布2(0)0.4p X ==、2(1)0.6p X == 2(0)0.5p Y ==、2(1)0.5p Y == 22(0)0.72p X Y ==、22(1)0.28p X Y ==所以2()0.6E X =、2()0.5E Y =、22()0.28E X Y =,由此得222222(,)()()()0.02Cov X Y E X Y E X E Y =-=-.35、随机变量(,)X Y 的密度函数为201,11(,)0x x y f x y ≤≤-≤≤⎧=⎨⎩其它求()D X Y +?解:当01x <<时,有11()22X x f x d y x -==⎰;当01y <<时,有11()22Y y f y d x y -==⎰,故2()()3E X E Y ==、1()()18D X D Y == 由于(,)()()X Y f x y f x f y ≠,即X 与Y 不独立.所以11015()212xE XY xydxdy -==⎰⎰541(,)()()()12936Cov X Y E XY E X E Y =-=-=- 1()()()2ov(,)18D X Y D X D Y C X Y +=++=.36、将1枚硬币抛n 次,以X 、Y 分别表示正面向上与反面向上的次数,求(,)Cov X Y 、XY ρ解:由于X Y n+=,即Y n X=-,于是1XYρ=-;又因~(,0.5)X b n 、~(,,0.5)Y b n ,所以()()/4D X D Y n ==,故(,)(,)(,)()/4Cov X Y Cov X n X Cov X X D X n =-=-==.37、设X 与Y 独立,且都服从参数为λ的泊松分布,令2U X Y =+、2V X Y =-求U 与V 的相关系数?解:由于()(2)4()()5D U D X Y D X D Y λ=+=+= ()(2)4()()5D V D X Y D X D Y λ=-=+=所以(,)(2,2)Cov U V Cov X Y X Y =+-4()(,2)(2,)()3D X Cov Y X Cov X Y D Y λ=+--=由此得(,)35(),()XYCov X Y D X D Y ρ==. 38、设二维随机变量(,)X Y 的联合密度函数为1||0,01(,)0y x f x y <<<⎧=⎨⎩其它判断X 与Y 之间的相关性与独立性.解:由于12()3x xE X xdydx -==⎰⎰、、10()0x xE Y ydydx -==⎰⎰、10()0xxE XY xydydx -==⎰⎰,则(,)()()()0Cov X Y E X E Y E XY =-=故X 与Y 之间不相关;又因当01x <<时,有()2xXxf x dy x-==⎰,即201()0X x x f x <<⎧=⎨⎩其它同理可以求出110()1010X y y f x y y +-<<⎧⎪=-<<⎨⎪⎩其它由于(,)()()X Y f x y f x f y ≠,故X 与Y 之间不独立.39、设a 为区间(0,1)上一定点,随机变量(0,1)X U ,Y 是X 到a 的距离.问a 为何值时X 与Y 是不相关?解:由题设知()0.5E X =、||Y X a =-,所以11201()||()()2aaE Y x a dx a x dx x a dx a a =-=-+-=-+⎰⎰⎰3101()()()323a a a a E XY x a x dx x x a dx =-+-=-+⎰⎰31(,)3212a aCov X Y =-+令31(,)03212a a Cov X Y =-+=,可得方程2(21)(221)0a a a ---=在(0,1)内解得0.5a =,即0.5a =时,X 与Y 不相关. 40、设计算器进行加法计算时,所有舍入误差相互独立且在(0.5,0.5)-上服从均匀分布.(1) 将1500个数相加,问误差总和的绝对值超过15的概率是多少;(2) 最多可以有几个数相加,其误差总和的绝对值小于10的概率不小于0.90? 解:设第i 个数的舍入误差为i X (1,,)i n = ,故()0i E X =、()1/12i D X = (1,,)i n =记1ni i X X ==∑(1) 由林德伯格-列维中心极限定理有15001150001515000(||15)(||)15001/1215001/12i i x p X p =-⨯-⨯>=>∑151[2()1]0.180215001/12≈-Φ-=;(2) 由林德伯格-列维中心极限定理有1100100.90(||10)(||)2()11/121/121/12ni i x n n p X p n n n =-⨯-⨯≤<=≤≈Φ-∑即10()0.951/12n Φ≥,由于(1.645)0.95Φ=,则101.6451/12n ≥因此443.45n £,再由n 为整数得满足题意的个数为443.41、一批木材中有80%的长度不小于3m ,从中任取100根,求其中至少有30根长度短于3m 的概率?解:以X 表示100根木材中长度短于3m 的数目,则~(100,0.2)X b ,于是()20E X =,()16D X =.由于100n =较大,则由中心极限定理,近似有2~(20,4)X N ,由此有20302010(30)1(30)1()1()0.0062444X p X p X p --≥=-<=-<≈-Φ-=. 42、某商店出售价格分别为1(元)、1.2(元)、1.5(元)的3种蛋糕,种蛋糕,每种蛋糕被购买的概每种蛋糕被购买的概率分别为0.3、0.2、0.5.若某天售出300只蛋糕,(1) 求这天收入为400(元)的概率;(2) 求这天售出价格为1.2(元)蛋糕多于60只的概率?解:(1) 设第i 只蛋糕价格为iX (1,,300)i = .则i X的分布为i X1 1.2 1.5 p0.30.20.5于是可得() 1.29i E X =、2() 1.713iE X =、()0.0489i D X =令3001i i X X ==∑表示总收入,则由林德伯格-列维中心极限定理有300 1.29400300 1.29(400)()1(3.39)0.00033000.04893000.0489X p X p -⨯-⨯≥=>≈-Φ=⨯⨯;(2) 记Y 为300只蛋糕中售价为1.2(元)的蛋糕数目,则~(300,0.2)Y b ,于是()60E Y =、()48D Y =,由中心极限定理,近似有~(60,48)X N ,由此有606060(60)1()1(0)0.54848Y p Y p --≥=-<≈-Φ=.43、进行独立重复试验,每次试验中事件A 发生的概率为0.25.问能以95%的把握保证1000次试验中事件A 发生的频率与概率相差多少?此时A 发生的次数在什么范围内?解:设X 为1000次试验中事件A 发生的次数,则~(1000,0.25)X b ,由二项分布的性质知()250E X =、()187.5D X =,而事件A 发生的频率为/1000X .根据题意,可得如下不等式(|0.25|)0.951000X p ε-≤≥即(|250|1000)0.95p X ε-≤≥,由棣莫弗―拉普拉斯定理有25010001000(||)2()10.95187.5187.5187.5X p εε-≤≈Φ-≥即1000()0.975(1.96)187.5εΦ≥=Φ解得0.026ε³,这表明1000次试验中事件A 发生的频率与概率相差不超过0.026,相应的有1000次试验中事件A 发生的次数在224到276之间.44、某车间有同型号车床150台,在1小时内每台车床约有60%的时间在工作.假定各车床工作相互独立,工作时每台车床要消耗电能15kw.问至少要多少电能,才可以有99.5%的可能性保证此车间正常工作?解:以X 表示同时工作的车床数,则~(150,0.6)X b ,于是()90E X =、()36D X =,由题意知x 应使得下式成立(0)0.995p X x ≤≤≥由中心极限定理,近似有~(90,36)X N ,故有090909090(0)()()(15)0.9956666X x x p X x p ----≤≤=<<≈Φ-Φ-≥ 查标准正态分布表得90 2.586x -≥,即105.28x ≥,取整得106x =.故要保证车间有99.5%的可能性正常工作,需供电能151061590⨯=()kw .B 组1、将n 只球(1n 号)随机的装入n 只盒子(1n 号),一只盒子装一只球.若一只球装入的盒子与球同号,称为一个配对.记X 为配对数,求()D X ?解:引入随机变量i X (1,)i n = ,1i X =表示第i 号配对,0i X =表示第i 号不配对,则1n X X X =++ ,且1(1)i p X n ==(1,)i n = 即1()i E X n = (1,)i n =于是1()()1n E X E X X =++=因为i X 之间不独立,所以11111()()2(,)nn ni i i i j ii ij D X D X Cov X X -=====+∑∑∑∑下面考虑i j X X 的分布,由于i j X X 的取值只能是0、1,且1(1)(1,1)(1)i j i j p X X p X X n n =====- 所以1()(1)i j E X X n n =-,因此 21()()()()(1)i j i j i j Cov X X E X X E X E X n n =-=- 2211()21(1)nn D X Cnn n -⇒=+=-.2、设随机变量X 的分布函数为()F x ,其数学期望存在,证明()[1()]()E X F x dx F x dx +∞-∞=--⎰⎰.证明:00()()()()E X xf x dxxf x dxxf x dx +∞+∞-∞-∞==-⎰⎰⎰由于00()()()xxf x dxxdy f x dx +∞-∞=-⎰⎰⎰改变积分次序有00()(())()yxf x dxf x dx dyF y dy +∞-∞-∞-∞=-=-⎰⎰⎰⎰同理有()[1()]xf x dx F y dy +∞+∞=-⎰⎰ 0()[1()]()E X F x dxF x dx +∞-∞⇒=--⎰⎰.3、设随机变量X 的分布函数为0111()arcsin 11211x F x x x x π⎧<-⎪⎪=+-≤<⎨≥⎪⎩求()E X ?解:由上一题结论有()[1()]()E X F x dxF x dx +∞-∞=--⎰⎰111111[1arcsin ](arcsin )022x dx x dx ππ--=---+=⎰⎰.4、设连续随机变量X 的密度函数为()f x 若对任意常数c 有()()f c x f c x +=- (0)x >且()E X 存在.证明()E X c =.证明:令x t c =-则有()()()()()()E X xf x dxc t f c t dtcf c t dttf c t dt +∞+∞+∞+∞-∞-∞-∞-∞==++=+++⎰⎰⎰⎰由密度函数性质有()()cf c t dt cf c t dt c +∞+∞-∞-∞+=+=⎰⎰令u t =-,有()()()()tf c t dttf c t dtuf c u duuf c u du +∞+∞-∞-∞+=-=+=-+⎰⎰⎰⎰故()0tf c t dt +∞-∞+=⎰所以()E X c =.5、证明事件A 在一次试验中发生次数的方差不超过0.25.证明:设X 表示事件A 在一次试验中发生的次数,则(1,)X b p ,其中p 是事件A 发生的概率,则()(1)0D X p p =-≥由均值不等式得,当0.5p =时,()D X 有最大值0.25. 6、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()D X解:1111()(1)(1)k k k k E X kp p p k p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知211()[1(1)]E X p p p =⨯=--又111[(1)](1)()(1)(1)k k k E X Xk k p Xk pk k p +∞+∞-==+=+==+-∑∑将21(1)x -的展开式两端求导得 1321223(1)(1)k x k kx x -=⋅+⋅++-+- 3222[(1)][1(1)]E X X pp p ⇒+==--222()()[()][(1)][()]D X E X E X E X X X E X ⇒=-=+-- 221[(1)]()[()]p E X X E X E X p-=+--=. 7、一只昆虫所生虫卵X 服从参数为λ的泊松分布,而每个虫卵发育成幼虫的概率为p ,且每个虫卵是否发育成幼虫相互独立,求一只昆虫所生幼虫数Y 的期望与方差?解:由题意知()!np X n en λλ-==(0,1,2,)λ= ,而n 个虫卵发育成k ()k n ≤个幼虫的概率为(|)(1)k kn knp Y k X n C p p -===- (0,1,,)k n =由全概率公式,对任意0,1,,k n = 有()()(|)(1)!nkkn kn n k n k p Y k p X n p Y k X n e C p p n λλ+∞+∞--========-∑∑(1)()[(1)]()()!()!!!k n kk kp pn k p p p p e e e e k n k k k λλλλλλλλ-+∞----=-===-∑即Y服从参数为pλ的泊松分布所以()()E Y D Y p λ==.8、设随机变量X 的密度函数()f x 是偶函数,且2(||)E X <+∞,证明X 与2X 不相关,但不独立.证明:因()f x 是偶函数,所以()xf x 、3()x f x 是奇函数,故此3()()0E X E X ==222(,)()()()0Cov X X E X X E X E X ⇒=⋅-=因而,X 与2X 不相关;选取0a >使得()1p X a ≤<,考察如下特定事件概率22(,)()()()p X a X a p a X a p X a p a X a ≤≤=-≤≤>≤-≤≤ 22()()p X a p X a =≤≤即2222(,)()()p X a X a p X a p X a ≤≤≠≤≤ 故X 与2X 不独立.9、设1X 、…、n X 中任意两个的相关系数都是ρ,试证:11n ρ≥--. 证明:因为111110()()2(,)nnni iiiji i i j D X D X Cov X X-====≤=+∑∑∑∑1111()2()()nni i i j i ij D X D X D X ρ-====+∑∑∑11111()[()()]()[1(1)]n ni ni i j i i i j i D X D X D X D X n ρρ-====≤++=+-∑∑∑∑11n ρ⇒≥--.。
第四章 正态分布1、解:(0,1)ZN(1){ 1.24}(1.24)0.8925P Z ∴≤=Φ={1.24 2.37}(2.37)(1.24)0.99110.89250.0986P Z <≤=Φ-Φ==-= {2.37 1.24}( 1.24)( 2.37)(1.24)(2.37)0.89250.99110.0986P Z -<≤-=Φ--Φ-=-Φ+Φ=-+=(2){}0.9147()0.9147 1.37{}0.05261()0.0526()0.9474 1.62P Z a a a P Z b b b b ≤=∴Φ==≥=-Φ=Φ==,,得,,,得2、解:(3,16)XN8343{48}()()(1.25)(0.25)0.89440.59870.295744P X --∴<≤=Φ-Φ=Φ-Φ=-= 5303{05}()()(0.5)(0.75)44(0.5)1(0.75)0.691510.77340.4649P X --<≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 31(25,36){25}0.95442(3,4){}0.95X N C P X C X N C P X C -≤=>≥、()设,试确定,使;()设,试确定,使解:(1)(25,36){25}0.9544X N P X C -≤=,{2525}0.9544P C X C ∴-≤≤+=25252525()()0.954466()()2()10.9544666()0.9772,21266C C C C CC CC +---Φ-Φ=-Φ-Φ=Φ-=Φ=∴==即, (2)(3,4){}0.95XN P X C >≥,331()0.95()0.952231.6450.292C CCC ---Φ≥Φ≥-≥≤-即,,4、解:(1)2(3315,575)XN4390.2533152584.753315{2584.754390.25}()()575575(1.87)( 1.27)(1.87)1(1.27)0.969310.89800.8673P X --∴≤≤=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= (2)27193315{2719}()( 1.04)1(1.04)10.85080.1492575P X -≤=Φ=Φ-=-Φ=-=(25,0.1492)YB ∴4440{4}(0.1492)(10.1492)0.6664ii i i P Y C -=∴≤=-=∑5、解:(6.4,2.3)X N{}{}1()81(1.055)10.85540.14462.3(85}0.17615 6.451(0.923)(0.923)0.82121()2.3P X P X X P X -Φ>-Φ-∴>>======->-Φ-Φ-Φ6、解:(1)2(11.9,(0.2))XN12.311.911.711.9{11.712.3}()()(2)(1)(2)1(1)0.20.20.977210.84130.8185P X --∴<<=Φ-Φ=Φ-Φ-=Φ-+Φ=-+= 设A ={两只电阻器的电阻值都在欧和欧之间} 则2()(0.8185)0.6699P A ==(2)设X , Y 分别是两只电阻器的电阻值,则22(11.9,(0.2))(11.9,(0.2))X N Y N ,,且X , Y 相互独立[]22212.411.9{(12.4)(12.4)}1{12.4}{12.4)}1()0.21(2.5)1(0.9938)0.0124P X Y P X P Y -⎡⎤∴>>=-≤⋅≤=-Φ⎢⎥⎣⎦=-Φ=-=7、一工厂生产的某种元件的寿命X (以小时计)服从均值160μ=,均方差为的正态分布,若要求{120200}0.80P X <<≥,允许最大为多少解:因为2(160,)XN σ由2001601201600.80{120200}()()P X σσ--≤<<=Φ-Φ从而 40402()10.80()0.9σσΦ-≥Φ≥,即,查表得401.282σ≥,故σ≤8、解:(1)2(90,(0.5))XN8990{89}()(2)1(2)10.97720.02280.5P X -∴<=Φ=Φ-=-Φ=-= (2)设2(,(0.5))X N d由808080{80}0.991()0.99()0.99 2.330.50.50.5d d d P X ---≥≥∴-Φ≥Φ≥≥,,,即 从而d ≥ 9、解:22~(150,3),~(100,4)X Y X N Y N 与相互独立,且则(1)2221~(150(100,3)4)(250,5)W X Y N N =+++=()222222~2150100,(2)314(200,52)W X Y N N =+-⨯+-⨯+⨯=-22325~(125,)(125,(2.5))22X Y W N N +== (2)242.6250{242.6}()( 1.48)1(1.48)10.93060.06945P X Y -+<=Φ=Φ-=-Φ=-= 12551255125522212551251255125()1()(2)1(2)2.5 2.522(2)220.97720.0456X Y X Y X Y P P P ⎧+⎫++⎧⎫⎧⎫->=<-+>+⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭--+-=Φ+-Φ=Φ-+-Φ=-Φ=-⨯=10、解:(1)22~(10,(0.2)),~(10.5,(0.2))X N Y N X Y ,且与相互独立22~(0.5,2(0.2))(0.5,(0.282))X Y N N ∴--⨯=-0(0.5){0}()(1.77)0.96160.282P X Y ---<=Φ=Φ=(2)22~(10,(0.2)),~(10.5,)X N Y N X Y σ设,且与相互独立222~(0.5,2(0.2))(0.5,(0.2))X Y N N σ∴--⨯=-+0.90{0}P X Y ≤-<=Φ=Φ由1.28≥,故σ≤11、设某地区女子的身高(以m 计)2(1.63,(0.025))WN ,男子身高(以m 计)2(1.73,(0.05))MN ,设各人身高相互独立。
第四章 随机变量的数字特征2.某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备。
以X 表示一天中调整设备的次数,试求E (X )。
(设诸产品是否为次品是相互独立的。
)解:先求检验一次,决定需要调整设备的概率。
设抽检出次品件数为Y ,则Y ~b (10,0.1).记需调整设备一次的概率为p ,则2639.01.09.01109.01}1{}0{1)1(910=⨯⨯⎪⎪⎭⎫ ⎝⎛--==-=-=>=Y P Y P Y P p 又因各次检验结果相互独立,故)2639.0,4(~b X X 的分布律为于是0556.12639.0444)1(43)1(62)1(41)(43223=⨯==⨯+-⨯+-⨯+-⨯=p pp p p p p p X E以后将会知道若X ~b (n ,p ),则np X E =)(.6.(1)设随机变量X 的分布律为求)53(),(),(22+XE X E X E(2)设)(~λπX ,求)11(+X E解:(1)E (X )=(-2)⨯0.4+0⨯0.3+2⨯0.3=-0.2 由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2⨯0.4+02⨯0.3+22⨯0.3=2.8E (3X 2+5)=[3⨯ (-2)2+5]⨯0.4+[3⨯ 02+5]⨯0.3+[3⨯22+5]⨯0.3=13.4如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3⨯2.8+5=13.4(2)因)(~λπX ,故!}{k ek X P k λλ-==)1(1)1()1!(!)!1()!1(}{11)11(1100λλλλλλλλλλλλλλλλ--∞=-∞=-∞=+-∞=-∞=-=-=-==+=+==+=+∑∑∑∑∑eeej ej ek ek ek X P k X E j jj jk k k k k7. (1)设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x求(I)Y =2X ;(II) Y =e -2X 的数学期望(2)设随机变量n X X X ,,2,1 相互独立,且都服从(0,1)上的均匀分布,(I)求},,max{2,1n X X X U =的数学期望;(II)求},,min{2,1n X X X V =的数学期望。
第四章数字待征4・1 解:£(X) = Vx p ;=iE (门=2>少产09I•.甲机床生产的零件茨品数多于乙机床生产蹒件次融,又•.•两硼床的^的产量相同 ••.乙机床生产的豹的质量较好.4・2解;X 的所有可能取值为:3, 4, 5E(X) = Vxp. =3x0・l + 4x0.3 + 5x0.6 =4.5P{X= 5}=fl0.6尸心3}=P{X = 4} =00$T =0001*OOS-粹(000—畔1-了 +呻i =ooor z OOH护(x)/J =(y)jL l = £Oxt = ^ = CY)y (LO £)&-/!«审伽里必坊叱也範銮黔砲OK申站尋卄d .[(d_DT】= 二Y = — = ^-i)^Z= d^Z = Cr)j……£ = [ = “¥«_【対={—汕4.10裁见课本后面231页参考答秦心腿抿題1泊: 4.11解:设i酒为“,方差为(J:,则X~N( UP(A F>96)=1-P(X<96)= 1-P( )所以酸在60到84的抚率为P(60 S X S 84) = P(竺丄 < 丄上12 a4151)=20(1)-1-2x0.8413 ・1=0.68264.!2E(X 2) = OxO4+l :xO.3 + 22xO2+3:xO 1 = 2£(5X 2 + 4) = 4x0.4+(5xl 2 + 4)x0.3 + (5x22 + 4)x0 2+(5x3:+ 4)x0.1 = 14EQ ・)=£(2X) = F 2xe^dx =£( V) = H V |: + 不呦4.13 H :=2(-厂)|; = 24 15聲看课本后面231页答案E(T) = E(<?4) = {「Q-3x4.14 H: r = —3设球的肓径为x 则:/(x) = ^-a■a<x<b其它4^Xi够胡_子)胡尹兄◎挣牛在 夕卜吕(》如4.16 解:仁(x)=匸/(〔>)4 = f. 12yd> = 4xf (v)=匸fg)e=j l lydx=12y -12y3£W =匸/「(X)•曲叮 4.X逐 WE(T)=匸/ (x) ydy = [ 12y -12y*d> = |E(AT)= [f f(x,y)xydxdy = [f 12xy dxdy = ' 12xtic =0<><xS 03 0 2E(X、心(环讼諒4.&=|£(丫)=匚/())y0 = fl2y°-12ydy =;4"解•.X与Y相互独立,■• •EQT) = E(X)E(D = f 疋还f〉/迪.二(扌斗:)J; "(4)°JO= jx(一“i|;+J;/•⑥)=亍[5 + (r 灯)卩彳x(5+l) = 44.18, 4.19, 4・20势看课本后面231, 232页答秦• 9•4上设X表示10颗骰子皈的点数之和,X (心1丄…10)表示第:颗般子出现的点«,则X^X:,且X\,X“・X*是*1独立同分布的,又E(A;)=1X1+2X1+...+6X1=A1o o 6 610 10 九^£(A^ = £(yXJ = X£W = 1Ox^ = 35MI Z64.22爹看课本后面232页答案4.23 E(X\ = OxO4 + l2xO.3 + 22xO2+35xO 1 = 2D(X)= £(X:)-[£(X)]2 =2-l2=l£(F2)=O X O.3+12X O5+22X O.2+32X O=1.3z)(y)=£(r2)-[£(r)j2=1.3-0.^ =0.49 4.24E(X:)叮斗皿+胆毎存*卜护+护|;十¥ = ¥DW = E(X:) - [E(X)f =y-4 = |Var(X) = E(X:)-[E(X)f =[我[[加r],0 其它-1 < > < 1 其它4.25Zr(x) = {呼—0 其它二扌-1<X<10其它w •计 m 吏支ue >n ¥x =p > “轻H£5>^V 3«20)P A#・0Z —X GUNbl -%十»・x )4+・:+(E 4.+c r )4MKs s(T )Q +(电Q «(W+...+W +WQ »§(小)2•士小 N+示)3 Hf …咅麗&。
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
习题四1.设随机变量X的分布律为1 0 12求E(X),E(X2),E(2X+3).【解】(1)11111 ()(1)012;82842 E X=-⨯+⨯+⨯+⨯=(2)2222211115 ()(1)012;82844 E X=-⨯+⨯+⨯+⨯=(3)1 (23)2()32342E X E X+=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.【解】设任取出的5个产品中的次品数为X,则X的分布律为故()0.58300.34010.07020.00730405E X=⨯+⨯+⨯+⨯+⨯+⨯0.501,=52()[()]i iiD X xE X P==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X的分布律为1 0 1P p1 p2 p3且已知E (X )=,E(X2)=,求P1,P2,P3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②, 222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式001{}{}1().NNk k k P X k kP X k NN n E X NN ========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】1221()()d d (2)d E X xf x x x x x x x+∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰故221()()[()].6D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U=2X+3Y+1; (2) V=YZ4X.【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+= (2) [][4][]4()E V E YZ X E YZ E X =-=-,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X 2Y ),D (2X3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2)22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ).【解】因1001(,)d d d d 1,2x f x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k=210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为fX (x )=⎩⎨⎧≤≤;,0,10,2其他x x fY (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值102()2d ,3E X x x x ==⎰5(5)5()ed 5e d e d 51 6.z y y zz E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为fX (x )=⎩⎨⎧≤>-;0,0,0,22x x x e fY (y )=⎩⎨⎧≤>-.0,0,0,44y y y e求(1) E (X+Y );(2) E (2X 3Y2).【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x+∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰ 401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c;(2) E (X );(3) D (X ).【解】(1) 由222()d e d 12k x c f x x cx x k +∞+∞--∞===⎰⎰得22c k =.(2)2220()()d()2e d k x E X xf x x x k x x+∞+∞--∞==⎰⎰22220π2e d .2k x k x x k +∞-==⎰(3)222222201()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰故 222221π4π()()[()].4D X E X E X k k ⎛⎫-=-=-= ⎪ ⎪⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下: X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元). 14.设X1,X2,…,Xn 是相互独立的随机变量,且有E (Xi )=μ,D (Xi )=σ2,i=1,2,…,n ,记∑==n i i S X n X 12,1,S2=∑=--n i i X X n 12)(11.(1) 验证)(X E =μ,)(X D =n 2σ;(2) 验证S2=)(11122∑=--ni i X n X n ;(3) 验证E (S2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑ 22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n n σσ==(2) 因222221111()(2)2nnnniii iii i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X n σ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X,Y)=1,计算:Cov (3X2Y+1,X+4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X,3)=Cov(Y,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】设22{(,)|1}D x y x y =+≤. 2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰2π1001=cos d d 0.πr r r θθ=⎰⎰同理E(Y)=0. 而Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰,由此得XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x|≤1时,2212112()1.ππx X x f x y x ----当|y|≤1时,1()Yf y x.显然()()(,). X Yf x f y f x y≠故X和Y不是相互独立的.17.设随机变量(X,Y)的分布律为1 0 111验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表111由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY.【解】如图,SD=12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d D E X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xxx y -==⎰⎰从而222111()()[()].6318D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 同理11(),().318E Y D Y == 而 11001()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-.从而11362()()111818XY D X D Y ρ-===-⨯19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY.【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D X E X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+-又π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭ 222222π4(π4)π8π164.πππ8π32π8π32()()2162XY D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z1=X 2Y 和Z2=2X Y 的相关系数.【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1. 从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故121212Cov(,)5513.26()()134Z Z Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V2),E (W2)存在,证明: [E (VW )]2≤E(V2)E (W2). 这一不等式称为柯西许瓦兹(CouchySchwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈ 显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈ 可见此关于t 的二次式非负,故其判别式Δ≤0,即2220[2()]4()()E VW E W E V ≥∆=-2224{[()]()()}.E VW E V E W =- 故222[()]()()}.E VW E V E W ≤ 22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(λ),E(X)=1λ=5.依题意Y=min(X,2). 对于y<0,f(y)=P{Y≤y}=0. 对于y≥2,F(y)=P(X≤y)=1.对于0≤y<2,当x≥0时,在(0,x)内无故障的概率分布为 P{X≤x}=1eλx,所以F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1e y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率.【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k =Z=k 0 1 2 3Pk120 920 920 120因此,19913()0123.202020202E Z =⨯+⨯+⨯+⨯=(2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有3(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯=24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T=⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若问:平均直径μ取何值时,销售一个零件的平均利润最大 【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12}(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u u u u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()125(12)(1)21(10)(1)0(()e ),d 2x E T u u x u ϕϕϕπ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u=10.9毫米时,平均利润最大. 25.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y2的数学期望. (2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯= 2211()41()()22D Y E Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+= 26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T=T1+T2的概率密度fT(t),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T1,T2独立,所以fT(t)=f1(t)*f2(t). 当t<0时,fT(t)=0; 当t≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x tT f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于Ti ~E(5),故知E(Ti)=15,D(Ti)=125(i=1,2)因此,有E(T)=E(T1+T2)=25.又因T1,T2独立,所以D (T )=D (T1+T2)=225.27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|XY|的方差.【解】设Z=XY ,由于22~0,,~0,,22X N Y N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 且X 和Y 相互独立,故Z~N (0,1). 因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =- 而22/21()()1,(||)||e d 2πz EZ D Z E Z z z +∞--∞===⎰2/2022e d π2πz z z +∞-==⎰,所以2(||)1πD X Y -=-.28.某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ). 【解】记q=1p,X 的概率分布为P{X=i}=qi1p,i=1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i q p i i q p iq p∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p ∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以22222211()()[()].p pD XE X E X p p p --=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y 的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2[E(XY)E(X)·E(Y)].由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,1}.G x y x y x y =≤≤≤≤+≥从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D X E X E X =-=-=同理可得31(),().218E Y D Y == 11015()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=-于是 1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[2,2]上服从均匀分布,随机变量X=1,1,1,1,U U -≤-⎧⎨>-⎩ Y=1,1,1, 1.U U -≤⎧⎨>⎩若 试求(1)X 和Y 的联合概率分布;(2)D (X+Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值(1,1),(1,1),(1,1)及(1,1)的概率. P{x=1,Y=1}=P{U≤1,U≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰ P{X=1,Y=1}=P{U≤1,U>1}=P{∅}=0, P{X=1,Y=1}=P{U>1,U≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰.故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦.(2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X+Y 及(X+Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 204()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦.从而11()(2)20,44E X Y +=-⨯+⨯=211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+= 31.设随机变量X 的概率密度为f(x)=x-e 21,(∞<x<+∞)(1) 求E (X )及D (X );(2) 求Cov(X,|X|),并问X 与|X|是否不相关 (3) 问X 与|X|是否相互独立,为什么【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-=||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X|互不相关.(3) 为判断|X|与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域∞<x<+∞中的子区间(0,+∞)上给出任意点x0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X|不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY=1/2,设Z=23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ; (3) 问X 与Z 是否相互独立,为什么【解】(1) 1().323X Y E Z E ⎛⎫=+= ⎪⎝⎭()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯=(2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭119()(6)3=0,323D X =+⨯-=- 所以0.()()XZ D X D Z ρ==(3) 由0XZρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X+Y=n ,则有D (X+Y )=D (n )=0.再由X~B(n,p),Y~B(n,q),且p=q=12,从而有 ()()4nD X npq D Y ===所以0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++2,24XY n nρ=+ 故XY ρ= 1.34.设随机变量X 和Y 的联合概率分布为1 0 10 1试求X 和Y 的相关系数ρ.【解】由已知知E(X)=,E(Y)=,而XY 的概率分布为YX 10 1 P所以E (XY )=+= Cov(X,Y)=E(XY)E(X)·E(Y)=×=0从而XY ρ=035.对于任意两事件A 和B ,0<P(A)<1,0<P(B)<1,则称Y Xρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P(AB)P(A)·P(B)=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从01分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E(X)=P(A),E(Y)=P(B),D(X)=P(A)·P(A ),D(Y)=P(B)·P(B ), Cov(X,Y)=P(AB)P(A)·P(B)所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为fX(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y=X2,F (x,y )为二维随机变量(X ,Y )的分布函数,求: (1) Y 的概率密度fY(y); (2) Cov(X,Y);(3)1(,4)2F -.解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y≤0时, ()0Y F y =,()0Y f y =;当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=≤<+≤≤=,()Y f y =;当1≤y<4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y≥4时,()1Y F y =,()0Y f y =.故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他(2)210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,2222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,2233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=. 37. 习题五1.一颗骰子连续掷4次,点数总和记为X.估计P{10<X<18}.【解】设iX 表每次掷的点数,则41ii X X ==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X1,X2,X3,X4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑44113535()()()4.123i i i i D X D X D X =====⨯=∑∑所以235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈2. 假设一条生产线生产的产品合格率是.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i=1,2,…,n,且 X1,X2,…,Xn 独立同分布,p=P{Xi=1}=. 现要求n,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即0.80.9niXnP -≤≤≥∑由中心极限定理得0.9,Φ-Φ≥整理得0.95,10⎛Φ≥ ⎝⎭查表 1.64,≥n≥, 故取n=269.3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X~B (200,),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ 查表知1.64,= ,m=151.所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压Vk (k=1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V=∑=201k kV,求P{V >105}的近似值.【解】易知:E(Vk)=5,D(Vk)=10012,k=1,2,…,20由中心极限定理知,随机变量201205~(0,1).10010020201212kk VZ N =-⨯==⨯⨯∑近似的于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⨯⎪⎪⎩⎭ 1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⨯⎪⎪⎩⎭即有 P{V>105}≈5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少 【解】设100根中有X 根短于3m ,则X~B (100,) 从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 (2) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.i i X X ==∑(1) X~B(100,,1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑1( 1.25)(1.25)0.8944.=-Φ-=Φ= (2) X~B(100,,1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ=7. 用Laplace 中心极限定理近似计算从一批废品率为的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则 p=,n=1000,X~B(1000,, E(X)=50,D(X)=. 故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T1,…,T30服从参数λ=[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率.【解】11()10,0.1i E T λ=== 21()100,i D T λ==()1030300,E T =⨯= ()3000.D T = 故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ=9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E(Ti)=10,D(Ti)=100, E(T)=10n ,D(T)=100n.从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ 故0.95,1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为,,.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率(2) 求有1名家长来参加会议的学生数不多于340的概率.【解】(1) 以Xi(i=1,2,…,400)记第i 个学生来参加会议的家长数.则Xi 的分布律为易知E (Xi=),D(Xi)=,i=1,2, (400)而400iiX X =∑,由中心极限定理得400400 1.1~(0,1).iXN -⨯=∑近似地于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y~B(400,由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为,求在10000个新生婴儿中女孩不少于男孩的概率【解】用X 表10000个婴儿中男孩的个数,则X~B (10000,)要求女孩个数不少于男孩个数的概率,即求P{X≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.100000.5150.485P X ≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入 (2)至多有多少人能够进入【解】用Xi 表第i 个人能够按时进入掩蔽体(i=1,2,...,1000). 令 Sn=X 1+X2+ (X1000)(1) 设至少有m 人能够进入掩蔽体,要求P{m≤Sn≤1000}≥,事件{}.10000.90.190nn m S ≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:{}1{}10.95.10000.90.1n n P m S P S m ≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭ 从而 0.05,90Φ≤ ⎪⎝⎭故 1.65,90=-所以 m==≈884人(2) 设至多有M 人能进入掩蔽体,要求P{0≤Sn≤M}≥.{}0.95.90n P S M ≤≈Φ= ⎪⎝⎭查表知90=,M=900+=≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大 【解】设X 为在一年中参加保险者的死亡人数,则X~B (10000,).(1) 公司没有利润当且仅当“1000X=10000×12”即“X=120”. 于是所求概率为{120}100000.0060.994100000.0060.994P X ϕ=≈⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.1811e 59.6459.64259.640.0517eϕπ--== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为试根据契比雪夫不等式给出P{|X-Y|≥6}的估计. (2001研考) 【解】令Z=X-Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P Z E Z P X Y --≥=-≥≤==15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值. (1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是,因此,X~B(100,,故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于.【解】设Xi (i=1,2,…,n)是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X1,X2,…,Xn 视为独立同分布的随机变量,而n 箱的总重量Tn=X1+X2+…+Xn 是独立同分布随机变量之和,由条件知:()50,i E X =5,=()50,n E T n ==依中心极限定理,当n~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).n ≈Φ>=Φ ⎪⎝⎭因此可从2n >解出n<,即最多可装98箱. 习题六1.设总体X~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n=100~(0,1)/X Z N n σ-=即60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (,52)中抽取容量为n 的样本,若要求其样本均值位于区间(,)内的概率不小于,则样本容量n 至少取多大 【解】~(0,1)5/X Z N n -=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<< 2(0.4)10.95,n =Φ-=则Φn =,故n >, 即n>,所以n 至少应取253.设某厂生产的灯泡的使用寿命X~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S2=1002,试求P(X>1062).【解】μ=1000,n=9,S2=10021000~(8)100/3X Xt t-==10621000(1062)()( 1.86)0.05100/3P X P t P t->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.【解】~(0,1)Z N=,由P(|X-μ|>4)=得P|Z|>4(σ/n)=,故210.02σ⎡⎤⎛-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.Φ=⎝⎭查表得2.33,σ=所以5.43.σ==5.设总体X~N(μ,16),X1,X2,…,X10是来自总体X的一个容量为10的简单随机样本,S2为其样本方差,且P(S2>a)=,求a之值.【解】2222299~(9),()0.1.1616S aP S a Pχχχ⎛⎫=>=>=⎪⎝⎭查表得914.684,16a=所以14.6841626.105.9a⨯==6.设总体X服从标准正态分布,X1,X2,…,Xn是来自总体X的一个简单随机样本,试问统计量Y=∑∑==-ni ii i X X n 62512)15(,n >5服从何种分布【解】2522222211~(5),~(5)inii i i X X X n χχχ====-∑∑且12χ与22χ相互独立.所以2122/5~(5,5)/5X Y F n X n =--7.求总体X~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于的概率.【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N(20,310),Y ~N(20,315),且X 与Y 相互独立.则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),X YZ N =所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝2(10.6628)0.6744.=-=8.设总体X~N (0,σ2),X1,…,X10,…,X15为总体的一个样本.则Y=()21521221121022212X X X X X X ++++++ 服从 分布,参数为 .【解】~(0,1),iX N σi=1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++所以Y~F 分布,参数为(10,5).9.设总体X~N (μ1,σ2),总体Y~N(μ2,σ2),X1,X2,…,1n X 和Y1,Y2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = .【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑则122222112211()(1),()(1),n n i j i j X X n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X~N (μ,σ2),X1,X2,…,X2n (n≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y=∑=+-+ni i n iX X X12)2(,求E(Y).【解】令Zi=Xi+Xn+i, i=1,2,…,n.则Zi~N(2μ,2σ2)(1≤i≤n),且Z1,Z2,…,Zn 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则21111,222nn i i i i X X Z Z n n =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f(x)=x-e 21 (-∞<x<+∞),X1,X2,…,Xn 为总体X 的简单随机样本,其样本方差为S2,求E(S2). 解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xx x E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.。
概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示:ξ0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示:ξ0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{48.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φd d即9332.00668.01)210(0=-=-Φd ,查表得5.1210=-d , 解得7310=-=d27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。
60解 E(Y) E(2X) 2E(X) 2 xe xdx 2,E(Z) E(e 2X ) e 2x e x dx 1.33. 游客乘电梯从底层到电视塔顶观光 , 电梯于每个整点的第 5 分钟、第 25 分钟和第 55分钟从底层起行 . 假设一游客在早八点的第 X 分钟到达底层侯梯处 , 且 X 在区间[0, 60] 上服从均匀分布 . 求该游客等候电梯时间的数学期望 . 解已知X 在[0,60] 上服从均匀分布 , 其概率密度为1X -20 2 P0.40.30.3E(X);E(2-3 X); E(X 2);2 E(3X 25).解 由定义和数学期望的性质知E(X) ( 2) 0.4 0 0.3 2 0.30.2;E(2 3X) 2 3E(X ) 2 3 (0 2) 2.6; E(X 2) ( 2)2 0.4 0 20.3220 3 2.8 ;E(3X 2 5) 3E(X 2)53 2.8 5 13.4. 2. 设随机变量 X 的概率密度为xe, x 0, 1. 设随机变量 X 的分布律为习题 4-1f (x)2X求Y 2X 和Z e 2X的数学期望 .0,x ≤0.0,其它.记Y 为游客等候电梯的时间,则5 X, 0 X ≤5,25 X,5 X ≤25,Y g(X)55 X, 25 X ≤55,65 X,55 X ≤60.160 因此, E(Y) E[g(X)] g(x) f (x)dxg(x)dxf (x) 60, 0≤x≤60,60(A) 若 X ~ B(n, p),则E(X) np.c a , Yc,X 1, X 0.于是 E(Y) (c a) P{ X 1} c P{X 0} ap c .据题意有 ap c a 10% , 因此应要求顾客角保费 c (0.1 p)a .习题 4-21. 选择题(1) 已知 E(X ) 1,D(X)3 则 E[3(X2 2)2] ().(A) 9.(B) 6.(C) 30.(D)36解 E[3(X 2)2] 3E(X24X 4)3[E(X 2)4E(X)4]3{D(X) [E(X)]2 4E(X) 4}3 (3 14 4) 36 .可见,应选 (D).(2) 设 X ~ B(n, p),E(X )6,D(X) 3.6 , 则有 ( ).(A) n 10, p 0.6 . (B) n 20, p 0.3 (C) n 15, p 0.4 .(D) n 12, p 0.5解 因为 X ~ B(n, p), 所以 E(X)=np,D(X)=np(1-p), 得到 np=6, np(1-p)=3n=15 , p=0.4 . 可见,应选 (C).(3) 设 X 与 Y 相互独立,且都服从2N( , 2) , 则有 ( ).(A) E(X Y) E(X) E(Y). (B) E(X Y) 2 .(C) D(X Y) D(X)D(Y).(D) D(XY) 2 2.解 注意到 E(X Y) E(X) E(Y) 0.由于 X 与Y 相互独立 ,所以D(X Y) D(X) D(Y) 222. 选 (D).(4) 在下列结论中 , 错误的是 ().6 . 解之 ,1 5 25(5 x)dx (25 x)dx600 5=11.67(分钟 )..14. 某保险公司规定 , 如果在一年内顾客的投保事件 A 发生 , 该公司就赔偿顾客 a 元. 若一年内事件 A 发生的概率为 p, 为使该公司受益的期望值等于 a 的 10%, 该公司应该要求 顾客交多少保险费?解 设保险公司要求顾客交保费 55(55 x)dx60 (65 x)dx55c 元. 1, 0, 则 P{X 1} p, P{X 0} p . 引入随机变量 事件A 发生, 事件A 不发生. 保险公司的受益值(B) 若 X ~ U 1,1 ,则 D(X) 0 . (C) 若 X 服从泊松分布 , 则 D(X) E(X).(D) 若 X ~ N( , 1 2), 则 X~ N (0,1) .14.3 又 X 1, X 2 , X 3相互独立 , 所以D(Y) D(X 1 2X 2 3X 3) D(X 1) 4D(X 2) 9D(X 3)1 3 4 4 9 20.914. 设两个随机变量 X 和 Y 相互独立 , 且都服从均值为 0, 方差为 的正态分布 , 求2 |X Y |的的期望和方差 .11 解 记U X Y . 由于X ~ N(0, ),Y ~ N(0, ),所以22E(U) E(X) E(Y) 0, D(U) D(X) D(Y) 1. 由此 U ~ N (0,1) . 进而3203~ U( 1,1) , 则 D(X) (b a)122. 已知 X, Y 独立, E(X)= E(Y)=2, E(X 2)= E(Y 2)=5,解 由数学期望和方差的性质有E(3X- 2Y)= 3E(X)-2 E (Y)=3×2-2×2=2,D(3X 2Y) 9D(X) 4D(Y)9 {E(X 2) [E(X)]2} 9 (5 4) 4 (5 4) X 2, X 3 相 互独立 , 其 中 2X 2解X221. 选(B).312求 E(3X-2Y),D(3X-2Y).3. 设随 机变 量 2X 2 ~ N (0, 22), X 3解 由题设知X 1,~ P (3), 记 Y X 14 {E(Y 2) [E(Y)]2}13.X 1 服从区 间[0, 6]上的均匀分布, 3X 3 ,求 E(Y)和 D(Y) .E(X 1) 3, D(X 1) E(X 3)(6 0)2 3,12 113,D(X 3)E(X 2) 0,D(X 2 ) 4,由期望的性质可得E(Y) E(X 12X 2 3X 3) E(X 1) 2E(X 2 ) 3E(X 3)5. 设随机变量X ~U[ 1,2], 随机变量1, X 0,Y 0, X 0,1, X 0. 求期望E(Y) 和方差D(Y) .解因为X的概率密度为1, 1≤x≤2,f X (x) 3于是Y的分布率为P{Y 1} P{XP{YP{Y 1} P{ X因此0, 其它.0110}-f X(x)dx dx-133 0}P{ X 0} 0 ,+2120}0 f X (x)dx dx0033 21 x22 E(|X Y|) E(|U |) |x| e 2dx 0 xe E(|U |2) E(U2) D(U ) [E(U)]22x2 dx02故而D(|X Y|) D(|U|) E(|U|2) [E(|U |)]22e1.2212故有6. 设随机变量U1,X1,求E(X+Y), D(X+Y).E(Y)E(Y2 ) (1)20212D(Y) E(Y2 )[E(Y)]2321.389.在区间[-2, 2]上服从均匀分布若U ≤1, 若U1.9, 随机变量1, 若U≤1, Y 1,若U 1.解(1) 随机变量(X, Y) 的可能取值为(-1,- 1),(- 1,1),(1,- 1),(1,1).-11 1P{X 1,Y 1}P{U ≤ 1,U ≤ 1} P{U ≤ 1}dx-24 4P{ X 1,Y 1}P{U ≤ 1,U1} 0,111 P{ X 1,Y1}P{U1,U ≤1}14dx , 221 1 P{X 1,Y1}P{U1,U1}dx .144 于是得 X 和Y 的联合密度分布X+Y-2 0 21 1 1 P{ X+Y =k}424(X+Y)24P{ (X+Y)2=k}1 1 22由此可见2 2 2 E(X Y) 0;D(X Y) E[( X Y)2] 2. 44习题 4-31. 选择题(1) 在下列结论中 , ( )不是随机变量 X 与 Y 不相关的充分必要条件(A) E(XY)=E(X)E(Y). (B) D(X+Y)=D(X)+D(Y).(C) Cov(X,Y)=0.(D) X 与 Y 相互独立 .解 X 与 Y 相互独立是随机变量 X 与 Y 不相关的充分条件 ,而非必要条件 . 选(D).(2) 设随机变量 X 和 Y 都服从正态分布 , 且它们不相关 , 则下列结论中不正确的是(C) X 与 Y 未必独立 . (D) 解 对于正态分布不相关和独立是等价的 ).(A) X 与 Y 一定独立 . (B) (X, Y)服从二维正态分布 X+Y 服从一维正态分布 . 选 (A).(2) X(3) 设(X, Y)服从二元正态分布, 则下列说法中错误的是( ).(A) ( X, Y) 的边缘分布仍然是正态分布 . (B) X 与 Y 相互独立等价于 X 与 Y 不相关 . (C) (X, Y)是二维连续型随机变量 .(D)由(X, Y)的边缘分布可完全确定 (X, Y)的联合分布 .解 仅仅由 (X, Y)的边缘分布不能完全确定 (X, Y)的联合分布 . 选 (D) 2 设 D(X)=4, D(Y)=6, ρXY =0.6, 求 D(3X-2Y) .解 D(3X 2Y) 9D(X) 4D(Y) 12Cov( X,Y)9 4 4 6 12 XY D(X) D(Y)36 24 12 0.6 2 6 24.727 .3. 设随机变量 X, Y 的相关系数为 0.5, E(X) E(Y) 0, E(X2) E(Y 2) 2,2求 E[(X Y)2] .2 2 2 解 E[(X Y)2] E(X 2) 2E(XY) E(Y 2)4 2[Cov( X,Y) E(X)E(Y)] 4 2 XY D(X) D(Y) 4 2 0.5 2 6.4. 设随机变量 (X, Y)的分布律为1 0 0.42 0 a 1 1 0.2 2 1 b 0.2 2b0.1. 由此可得边缘分布律5. 已知随机变量 ( X ,Y ) ~ N (0.5, 4; 0.1, 9; 0) , Z=2X- Y, 试求方差D(Z), 协方差X 1 2 Y 01P{X i} 0.6 0.4 P{Y j} 0.5 0.5E(Y) 0 0.5 1 0.5 0.5. 0.5 0.1. E(X) 1 0.6 2 0.4 1.4 , Cov( X,Y) E(XY) E(X)E(Y) 0.8 1.4 0.8 E(XY) 得 b 0.3. 进而 a于是故 若 E(XY)=0.8, 求常数 解 首先由p ij 1 得 a b 0.4. 其次由i 1 j1Cov( X ,Z) , 相关系数 ρXZ .解 由于 X,Y 的相关系数为零 , 所以 X 和 Y 相互独立(因X 和Y 服从正态分布 ). 因此D(Z) D(2X Y) 4D(X) D(Y) 4 4 9 25 ,Cov( X,Z) Cov( X,2X Y)2Cov(X,X) Cov( X,Y) .1 X Y关系数XY , Z . 求: (1) E(Z), D(Z); (2) X 与 Z 的相关系数 ρXZ ; (3)问 XY2 3 2 X 与 Z 是否相互独立 ?为什么? 22 解 (1) 由于 X ~ N (1,32 ) , Y ~ N(0,42) , 所以(3) 由 XZ 0知X 与Z 不相关, 又 X 与Z 均服从正态分布 , 故知 X 与 Z 相互独立 .7.证明: 对随机变量 (X, Y), E(XY)=E(X)E(Y)或者 D(X Y)=D(X)+D(Y)的充要条件是 X 与 Y 不相关 .证 首先我们来证明 E(XY) E(X)E(Y) 和D(X Y) D(X) D(Y)是等 价的. 事实上, 注意到 D(X Y) D(X) D(Y) 2Cov( X,Y) . 因此D(X Y) D(X) D(Y) Cov( X,Y) 0 E(XY) E(X)E(Y).因此2D(X) Cov( X,Z) D(X) D(Z) 6. 设随机变量 (X, Y)服从二维正态分布 : XXZ0880.8 . 2522~ N(1,32), Y ~N(0, 42);X 与 Y 的相因此E(Z)D(Z) (2) 由于Cov( X,Z)所以XZXYD(X) D(Y) 12 346.Y 2) 1 13E(X)1E(Y) 2 1 3 11 2 0 1 3 Y 1 111Y 2) D(X) 9 D(Y) 42Cov( 3 X , 12Y) 1 16 1 Cov( X,Y) 1 4 1( 6) 3.4 33Y1 11 1) D(X) Cov( X,Y)9( 6)2 323 2E(X) 1,D(X) 9,E(Y) 0,D(Y) 16,Cov( X,Y)9 X Cov( X, 3 E(X 3D(X 3 1 9Cov( X,Z)D(X) D(Z)0.0,其次证明必要性 . 假设 E(XY)=E(X)E(Y), 则Cov( X,Y) E(XY) E(X)E(Y) 0 .最后证明充分性 . 假设 X 与 Y 不相关, 即 XY 0, 则Cov( X,Y)E(XY) E(X)E(Y) .总习题四1. 设 X 和 Y 是相互独立且服从同一分布的两个随机变量 , 已知 X 的分布律为 1 P{X i} ,i 1,2,3 . 又设U max{ X ,Y}, V min{ X,Y} .3(1) 写出二维随机变量 (U, V)的分布律 ;(2) 求 E(U ). 解 (1) 下面实际计算一下 P{U 1,V 3}.注意到U max{ X,Y}, V min{ X ,Y} , 因此P{U 1,V 3} P{X 1,Y 3}P{X 1}P{Y 1111(2) 由的分布律可得关于 U 的边缘分布律进而XYCov( X,Y)D(X) D(Y)0, 即 X 与 Y 不相关 .0 . 由此知P{X 3,Y 1} 3} P{X 3}P{Y 1} 21 3 5 22 所以 E(U) 112 33 5 22. 99 9 92. 从学校乘汽车到火车站的途中有 3 个交通岗 . 假设在各个交通岗遇到红灯的事件是2相互独立的 , 并且概率是 . 设 X 为途中遇到红灯的次数 , 求随机变量 X 的分布律、 分布函5数和数学期望 .3. 设随机变量 (X,Y) 的概率密度为212y 2, 0≤ y ≤x ≤1, f(x,y) 0, 求E(X), E(Y), E(XY), E(X 2 Y 2).X0 1 2 3P2754 36 8125 125 125 1252754 36 8k} 0 1 2 3125125 125 125解 令 X 表示途中遇到红灯的次数 , 由题设知 X ~ B(3,2) . 即 X 的分布律为53从而 E(X) kP{Xk16 5其它. 解 E(X) xf ( x, y)dxdy 1dx12y 2dy4x 4dxE(X) yf ( x, y)dxdy 0dx 0y12y 2dy 03x 4dxE(XY)xyf(x,y)dxdy1 dx 0x0 xy 12 y 2dy3x 5dxE(X 2 Y 2)(x 2 y 2) f (x,y)dxdy4. 设随机变量(4x5 12 x 5)dx 05 (X,Y)的概率密度为1sin( x f(x,y) 20,2 325 30 1 dx16 15 .(x 2y 2)35 3 612y 2dyy),π0≤x ≤ π, 0≤y ≤22 其它.求E(X),D(X),E(Y),D(Y),E(XY)和Cov(X,Y).于是有1. 22 所以协方差Cov( X,Y) E(XY) E(X)E(Y) 1.2 1615. 设随机变量 X 与 Y 独立, 同服从正态分布 N(0, ) , 求2(1) E(X Y); D( X Y);(2) E (max{ X ,Y}); E(min{ X,Y}) .11解 (1) 记 X Y .由于 X ~ N(0, ),Y ~ N(0, ),所以E( ) E(X) E(Y) 0, D( ) D(X) D(Y) 1. 由此 ~ N(0,1).所以解 E(X)122xf(x,y)dxdy 2 2 x sin( x y)dxdy2E(X 2)2x f (x, y)dxdy2y)dxdy 2. 2 0 2 0x 2 sin(x x 2 E(| X Y |) E(| |)12|x| 2 e 2dx 2 0xe x 22 dx82D(X)2E(X 2)2[E(X)]22.16 22利用对称性 ,有E(Y) 4,D(Y) 16 2. 2 又E(XY)1 xyf ( x, y)dxdy22xy sin( x y)dxdy 1 2 1 2 02 xdx 02 xdx 02ysin(x y)dy 2 y[sin x cos y cos xsin y]dyE(XY) xyf (x, y)dxdy2e x 22E(| |2) 0E( 2) D( ) [E( )]21 故而D(| X Y|) D(| 22|) E(| |2) [E(| |)]2 1021.221 2所以 (2) 注意到max( X , Y) (X Y) |X Y | , min( X , Y)X Y |X Y|E[max( X , Y)] 112{E(X) E(Y) E[| X Y|]} 12 12 212,1 12{E(X) 6. 设随机变量 (X,Y) 的联合概率密度为 x y, 0≤ x ≤2,0≤y ≤2,f (x, y) 8E[min( X,Y)] E(Y) E[| X Y|]} 0, 求: E(X), E(Y), Cov( X,Y), ρXY , D (X+Y ). 解 其它.注意到 f (x, y)只在区域 G:0≤x ≤2,0≤y ≤ 2上不为零,x x y dxdyG 82x(xE(X) xf(x,y)dxdy 因而所以E(X 2)2 dx 02dxD(X)21 0 x(x y)dy 42 x f (x,y)dxdy22 10x (x y)dy 4 22E(X 2) [E(X)]27 1)dx 7623(x 35 72 3 622x )dx11 3612 2 1 22 44 dx xy(x y)dy (x x)dx .8 0 0 4 0337 2 2 5 11E(X) , E(Y 2) E(X 2) , D(Y) D(X) . 6 3 364 491 Cov( X,Y) E(XY) E(X)E(Y) ,3 3636Cov( X,Y) 1XYD(X) D(Y) 11 5D(X Y) D(X) D(Y) 2Cov( X,Y) .917. 设A, B 为随机事件 , 且 P(A) ,P(B|A)41, A 发生 , XY 0, A 不发生 ,Y1P(AB)1111 解由P(B| A)得 P(AB)P(A) , 进而由3P(A)334 121P(AB)1P(A|B)得 P(B) 2P(AB). 在此基础上可以求得2P(B)6(1) P{ X1,Y 1} P(AB)112111P{X 0,Y 1}P(AB) P(B)P(AB)6 12 121 11P{ X 1,Y 0}P(AB)P(A) P(AB)412 6P{X 0,Y 0} P(AB)1 P(AUB) 1 [P(A)P(B) P(AB)]求: (1) 二维随机变量 (X, Y)的概率分布 ; (2) X 与Y 的相关系数XY111 21[111]2.4 6 12 3故(X, Y)的概率分布为由对称性知E(Y)这样,11,P(A|B) , 令 321, B 发生 , 0, B 不发生 .21312111612(2) 由(1)易得关于X 和Y的边缘分布律X0131P{X=k}44Y0151P{Y=k}66因此E(X)1,E(X2)1,4422113D(X) E(X 2)[E(X)]241616E(Y) 1,E(Y2) 1,D(Y) E(Y2)2[E(Y)]2 1 1 566 6 36 36又由(X, Y)的分布律可得21111 E(XY) 0 0 0 1 1 011.3121212 12故111E(XY) E(X)E(Y) 12 4615XY D(X) D(Y)3515.16 3601X。
概率论与数理统计课后答案第第4章大数定律与中心极限定理4.1设D(x)为退化分布:讨论下列分布函数列的极限是否仍是分布函数?1 1 卄亠(1){D(x n)}; (2){D(x )};(3){D(x 0},其中n =1,2;n n解:(1) (2)不是;(3)是。
4.2设分布函数F n(x)如下定义:‘0x 兰-nl /、x + nF n (x)=」---- 一n c x 兰n2n1 x > n问F(x) =lim F n(x)是分布函数吗?n_)pC解:不是。
4.3设分布函数列{ F n(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{F n(x)}在(」:,::)上一致收敛于F(x)。
证:对任意的;.0,取M充分大,使有1 —F(x) ::;, —x _ M; F(x) ::;,—x^ -M对上述取定的M,因为F(x)在[-M,M]上一致连续,故可取它的k分点:捲- -M :: X2 :…X k4 ::X k = M ,使有F(X j .J - F(xJ ::;,1 一i ::k ,再令x° - - ::, X k 1 =::,则有F(X i J —FW) :::;,0 G ::k 1(1)这时存在N,使得当n • N时有| F n(X i) —F(X i)|::;,0 叮牛 1(2)成立,对任意的X •(-::,::),必存在某个i(0 _i 一k),使得x・(X i,X i 1),由(2) 知当n •N时有F n (X)— F n (X i i ) ::: F(X j .J ;F n (X)_ F n (X i ) . F(X i )-;(4) 由( 1), (3), (4)可得F n (x) -F(x)::: F(X i 1)-F(x) , F(X i i )-F(X i ); :::2;,F n (x) - F (x) F (X i ) - F (x) - ; _ F (X i ) - F (X i .1)- ; -2 ;,即有F n (x )-F (x ) 名成立,结论得证4.5设随机变量序列「鳥同时依概率收敛于随机变量 •与,证明这时必有P (二)二1。
习题四1.设)2,5(~2N X ,求下列概率(1))52(≤≤X P ;(2))2(≤X P ;(3))3(>X P ;(4))93(≤≤-X P .解:(1))0255.1()25525252()52(≤-≤-=-≤-≤-=≤≤X P X P X P 4332.019332.05.01)5.1()0()5.1()0(=-+=-Φ+Φ=-Φ-Φ=(2))25225252()22()2(-≤-≤--=≤≤-=≤X P X P X P )5.3()5.1()5.1255.3(-Φ--Φ=-≤-≤-=X P 0666.09332.099977.0)5.1()5.3(=-=Φ-Φ=(3)8413.0)1()1(1)125()25325()3(=Φ=-Φ-=->-=->-=>X P X P X P (4))2254()25925253()93(≤-≤-=-≤-≤--=≤≤-X P X P X P 9772.01999968.09772.01)4()2()4()2(=-+=-Φ+Φ=-Φ-Φ=2.已知某次测试的成绩),73(~2σN X ,95分以上的同学占2.28%.求 (1)介于80分与90分之间的同学的比例; (2)小于60分的同学的比例.解:因0228.0%28.2)7395(1)739573()95(==-Φ-=->-=>σσσX P X P即9772.0)22(=Φσ,查表得222=σ,则11=σ,故).11,73(~2N X(1))11171173117()1173901173117380()9080(<-<=-<-<-=<<X P X P X P 2005.07389.09394.0)64.0()55.1(=-=Φ-Φ=(2))18.1()11131173()1173601173()60(-Φ=-<-=-<-=<X P X P X P 119.0881.01)18.1(1=-=Φ-=3.已知随机变量),2(~2σN X ,且44.0)13(=≤-X P ,求)22(≥-X P .解:因)24222()42()13(σσσ-≤-≤-=≤≤=≤-X P X P X P44.0)0()2(=Φ-Φ=σ即94.0)0(44.0)2(=Φ+=Φσ,则12.094.022)2(22)22()22(=⨯-=Φ-=≥-=≥-σσσX P X P4. 已知随机变量),(~2σμN X ,且)1()3()1(-Φ=≥=-<X P X P 求σμ,.解:依题有)1()1()1()1(-Φ=--Φ=--<-=-<σμσμσμX P X P)1()3()3(1)3()3(-Φ=--Φ=-Φ-=-≥-=≥σμσμσμσμX P X P由此可得,⎪⎩⎪⎨⎧=-=+1311σμσμ,解得.2,1==σμ6.设随机变量)1,0(~N X ,求)(2X E .解:因1)(,0)(==X D X E ,则.1)]([)()(22=+=X E X D X E 11.一加法器同时收到48个噪声电压(1,2,,48)i X i =,设它们是相互独立的随机变量,且都在区间[0,10]上服从均匀分布,记481i i X X ==∑,求(180)P X >.解:依题可知,32512)010()(,52100)(22=-===+==i i X D X E σμ,由独立同分布中心极限定理得48481(180)(180)ii i Xn P X P X P μ=->=>=>∑∑11(3)(3)0.99865=-Φ=-Φ-=Φ=12. 一部件包括100个部分,每部分的长度是一个随机变量,它们相互独立,且服从同一分布,其数学期望为2mm ,均方差为0.05mm.规定总长度200mm 误差在1mm 内算合格品,试求产品合格的概率.解:设随机变量i X 表示“第i 个部分的长度”,1,2,,100.i =则12100,,,X X X 相互独立,05.0)(,2)(====i i X D X E σμ且1001ii X X ==∑表示“该部件的总长度”, 由独立同分布中心极限定理得(0.1)21P X n P μ-<=<=Φ- 2(2)120.977210.9554=Φ-=⨯-=13. 掷硬币900次,试求: (1)至少出现正面480次的概率;(2)出现正面在420次到480次之间的概率.解:设随机变量X 表示“掷900次硬币中出现正面的次数”,则15)1(,450),21,900(~=-=p np np B X ,由棣莫弗—拉普拉斯中心极限定理得(1)0228.09772.01)2(1)1545048015450()480(=-=Φ-≈-≥-=≥X P X P (2)9544.019772.021)2(2)153015450()480420(=-⨯=-Φ≈<-=<<X P X P 14. 一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于 3的概率31=p ,若船舶遭受了90000次波浪冲击,问其中有30500~29500次纵摇角度大于 3的概率是多少?解:设随机变量X 表示“在90000次波浪冲击中纵摇角大于 3的次数”,则2100)1(,30000),31,90000(~=-=p np np B X ,由棣莫弗—拉普拉斯中心极限定理得1)54.3(2)2100500210030000()3050029500(-Φ≈<-=<<X P X P9996.019998.02=-⨯=16.设有30个电子器件3021,,,D D D ,它们的使用情况如下:1D 损坏,2D 接着使用;2D 损坏,3D 接着使用等等.设器件i D 的使用寿命服从参数1.0=λ(单位:1-h )的指数分布.令T 为30个器件使用的总时数,问T 超过350h 的概率是多少?解:设随机变量i T 表示“第i 个电子器件的使用寿命”,.30,,2,1 =i 依题可知,3021,,,T T T 相互独立,1001)(,101)(),1.0(~22======λσλμi i i T D T E e T ,且∑==301i i T T ,由独立同分布中心极限定理得)30101030350(1)350()350()350(301301⨯-Φ-≈->-=>=>∑∑==σμσμn n n n TP T P T P i ii i。
概率论第四章习题解答1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。
“THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y(3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。
解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为所以 151115()234988884E X =⨯+⨯+⨯+⨯=。
(2)因为Y 的取值为2,3,4,9当2Y =时,包含的字母为“O ”,“N ”,故121{2}3015C P Y ===; 当3Y =时,包含的3个字母的单词共有5个,故135151{3}30302C P Y ==== 当4Y =时,包含的4个字母的单词只有1个,故1442{4}303015C P Y ==== 当9Y =时,包含的9个字母的单词只有1个,故 993{9}303010P Y ====112314673()234915215103015E Y =⨯+⨯+⨯+⨯==。
(3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12;若第一次得到的不是6点,则他的得分为1,2,3,4,5。
由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。
1(1)(2)(3)(4)(5)6P X P X P X P X P X ==========(7)(8)(9)(10)P X P X P X P X =======(11)(12)P X P X ==== 111=⨯= 6121711215759()63663612i i E X i i ===+=+=∑∑2 某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。
《概率论与数理统计》习题及答案第 四 章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为其中(1,1)(1)(1|1)0P X Y P X P Y X =======余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为01013818i p ⋅其中(0,1)(0)(1|0)0P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。
3.设(,)X Y 的概率密度为又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。
求{(,)}P X Y D ∈ 解(1)1321{(,)}(6)8P x y D x y dxdxy ∈=--⎰=321(6)8x x y dxdy --- =)落在圆222()x y r r R +≤<内的概率. 解(1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦, ∴33C R π=.(2)设222{(,)|}D x y x y r =+≤,所求概率为322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。
第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。
概率论与数理统计答案第四章第四章 大数定律与中心极限定理4.1 设)(x D 为退化分布:⎩⎨⎧≤>=0001)(x x x D讨论下列分布函数列的极限是否仍是分布函数?,2,1},01({)3()};1({)2()};({)1(=-++n n x D n x D n x D 其中解:(1)(2)不是;(3)是。
4.2 设分布函数)(x F n 如下定义:⎪⎩⎪⎨⎧>≤<-+-≤=nx nx n n nx n x x F n 120)(问)(lim )(x F x F n n ∞→=是分布函数吗?解:不是。
4.3设分布函数列)}({x F n 弱收敛于分布函数)(x F ,且)(x F 为连续函数,则)}({x F n 在),(∞-∞上一致收敛于)(x F 。
证:对任意的0>ε,取M 充分大,使有M x x F M x x F -≤∀<≥∀<-,)(;,)(1εε对上述取定的M ,因为)(x F 在],[M M -上一致连续,故可取它的k 分点:Mx x x M x k k =<<<<-=-121 ,使有ki x F x F i i <≤<-+1,)()(1ε,再令∞=-∞=+10,k x x ,则有10,)()(1+<≤<-+k i x F x F i i ε (1)这时存在N ,使得当N n >时有10,|)()(|+≤≤<-k i x F x F i i n ε (2)成立,对任意的),(∞-∞∈x ,必存在某个)0(k i i ≤≤,使得),(1+∈i i x x x ,由(2)知当N n >时有ε+<≤++)()()(11i i n n x F x F x F (3)ε->≥)()()(i i n n x F x F x F (4)由(1),(3),(4)可得εεε2)()()()()()(11<+-≤+-<-++i i i n x F x F x F x F x F x F , εεε2)()()()()()(1->--≥-->-+i i i n x F x F x F x F x F x F ,即有ε2)()(<-x F x F n 成立,结论得证。
概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。
概率论第四章习题解答1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。
“THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y(3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。
解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为所以 151115()234988884E X =⨯+⨯+⨯+⨯=。
(2)因为Y 的取值为2,3,4,9当2Y =时,包含的字母为“O ”,“N ”,故121{2}3015C P Y ===; 当3Y =时,包含的3个字母的单词共有5个,故135151{3}30302C P Y ==== 当4Y =时,包含的4个字母的单词只有1个,故1442{4}303015C P Y ==== 当9Y =时,包含的9个字母的单词只有1个,故 993{9}303010P Y ====112314673()234915215103015E Y =⨯+⨯+⨯+⨯==。
(3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12;若第一次得到的不是6点,则他的得分为1,2,3,4,5。
由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。
1(1)(2)(3)(4)(5)6P X P X P X P X P X ==========(7)(8)(9)(10)P X P X P X P X =======(11)(12)P X P X ==== 111=⨯= 6121711215759()63663612i i E X i i ===+=+=∑∑2 某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。
以X 表示一天中调整设备的次数,试求()E X 。
(设诸产品是否为次品是相互独立的。
)解 (1)求每次检验时产品出现次品的概率因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为0.1,设出现次品的件数为Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)kk k P Y k C -== (2)一次检验中不需要调整设备的概率{1}{0}{1}P Y P Y P Y ≤==+=101191010(0.1)(0.9)(0.1)(0.9)k k k C C -=+ 109(0.9)(0.9)34860.38740.7361=+=+=则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律由于X 取值为0,1,2,3,4。
0.2369p =,则(4,0.2369)X B :于是 0044{0}(0.2639)(0.7361)0.2936P X C ===134{1}(0.2639)(0.7361)40.26390.39890.4211P X C ===⨯⨯= 2224{2}(0.2639)(0.7361)60.06960.54180.2263P X C ===⨯⨯=334{3}(0.2639)(0.7361)40.01840.73610.0542P X C ===⨯⨯= 444{4}(0.2639)0.0049P X C ===(4)求数学期望()00.293610.421120.226330.054240.0049E X =⨯+⨯+⨯+⨯+⨯1.0556=。
3 有3只球4个盒子的编号为1,2,3,4。
将球逐个独立地随机地放入4个盒子中去,以X 表示其中至少有一只球的盒子的最小号码(例如X =3,表示第1号、第2号盒子是空的,第3个盒子至少有一只球。
)试求()E X 。
解 (1)求X 的分布律由于每只球都有4种方法,由乘法定理共有3464= 种放法。
其中3只球都放到第4号盒子中的放法仅有1种,从而 1{4}64P X ==; 又{3}X = “3X=”表示事件:“第1号、第2号盒子是空的,第3号盒子不空”,从而3只球只能放在第3、4号两个盒子中,共有328=种放法,但其中有一种是3只坏都放在第4号盒子中,即3号盒子是空的,这不符合3X=这一要求,需要除去,故有3217{3}6464P X -===“2X=”表示事件:“第1号是空的,第2号盒子不空”,从而3只球只能放在第2、3、4号三个盒子中,共有3327=种放法,但其中有一种是3只球都放在第3、或4号盒子中,共有328=种放法,即2号盒子是空的,这不符合2X=这一要求,需要除去,故有333219{2}6464P X -===171937{1}1{1}164646464P X P X ==-≠=---= 即(2)求()E X37197110025()1234 1.5625646464646416E X =⨯+⨯+⨯+⨯===。
4(1)设随机变量X 的分布律为132{(1)}3j j j P X j +=-=,(1,2,3,j =L ),说明X 的数学期望不存在。
(2)一个盒中装有1只黑球,一只白球,作摸球游戏,规则如下:一次随机地从盒中摸出一只球,若摸到白球,则游戏结束;若摸到黑球,放回再放入一只黑球,然后再从盒中随机地摸取一只球。
试说明要游戏结束的摸球次数X 的数学期望不存在。
解 (1)因为级数111113332(1){(1)}(1)3j j j j j j j j j P j j j ∞∞+++==--=-⋅∑∑11(1)2j j j +∞=-=∑, 这是一个莱布尼茨交错级数,收敛而非绝对收敛。
所以其数学期望不存在。
(2)以k A 记事件“第k 次摸到黑球”,以k A 记事件“第k 次摸到白球”,以k C 表示事件“游戏在k 次摸球时结束”,1,2,3,k =L 。
按题意,121k k k C A A A A -=L ,由乘法公式得1211122211()(|)(|)(|)()k k k k k P C P A A A A P A A A A P A A P A ---=L L L 而 11{1}()2P X P A ===2211111{2}()(|)()32P X P A A P A A P A ====⨯ 21221112111(|)(|)()43243P A A A P A A P A =⨯⨯=⨯,一般地,若当X k =时,盒中共有1k +只球,其中只有一只白球,故1211211122211()()(|)(|)(|)()k k k k k k P X k P A A A A P A A A A P A A A A P A A P A ----===L L L L1121211111432k k k k k k k--=⨯⨯⨯⨯=⨯+-+L 若()E X 存在,则根据数学期望的定义,就有111111()()11k k k E X kP X k k k k k ∞∞∞======⨯=++∑∑∑,而调和级数111k k ∞=+∑却是发散的,此即表明数学期望()E X 不存在。
5设在某一规定的时间间隔里,某电气设备用于最大负荷的时间X (以min 计)是一个随机变量,其概率密度为221,01500,15001()(3000),15003000,15000,x x f x x x ⎧≤≤⎪⎪-⎪=-<≤⎨⎪⎪⎪⎩其它 求()E X解 按连续型随机变量的数学期望的定义有01500()()()()E X xf x dx xf x dx xf x dx ∞-∞-∞==+⎰⎰⎰300015003000()()xf x dx xf x dx ∞++⎰⎰201500201500x dx dx -∞=⋅+⎰⎰300022150030001(3000)01500x x dx dx ∞-+-+⋅⎰⎰ 315000231500x =⨯323000150021(1500)15003x x -+-6 设随机变量X 的分布律为求()E X ,2()E X ,2(35)E X + (2)设()X πλ:,求11E X ⎛⎫⎪+⎝⎭解 ()20.400.320.302E X =-⨯+⨯+⨯=-; 2222()(2)0.4(0)0.3(2)0.3 2.8E X =-⨯+⨯+⨯= 或 所以 2()00.340.7 2.8E X =⨯+⨯=。
222(31)(3)(5)3()53 2.8113.4E X E X E E X +=+=+=⨯+=(2)因为 !k k e p k λλ-=,0,1,2,k =L所以 001111!(1)!k k k k e E e X k k k λλλλ-∞∞-==⎛⎫=⋅= ⎪+++⎝⎭∑∑ 1011(1)(1)!!k kk k ee e k k λλλλλλλ+∞∞--=====-+∑∑11(1)(1)e e e λλλλλ-=-=-(注 在公式0()k k k E X x p ∞==∑中现在的11k x k =+,!k k e p k λλ-=,0!k k e k λλ∞==∑) 7 (1)设随机变量X 的概率密度为,0()0,0x e x f x x -⎧>=⎨≤⎩求(ⅰ)2Y X =,(ⅱ)2XY e-=的数学期望;(2)设随机变量1X ,2X ,…,n X 相互独立,且都服从(0,1)上的均匀分布(ⅰ)求12max{,,,}n U X X X =L 的数学期望, (ⅱ)求12min{,,,}n V X X X =L 的数学期望。
解 (1)0()(2)2()2x E Y E X xf x dx xe dx ∞∞--∞===⎰⎰02()x x xee dx ∞-∞-=-+⎰022xe -∞=-=2220()()()Xx x x E Y E e e f x dx e e dx ∞∞-----∞===⎰⎰3301133x xe dx e ∞--∞==-=⎰。
(2)因为(ⅰ)因为随机变量1X ,2X ,…,n X 相互独立,且都服从(0,1)上的均匀分布,其概率密度为1,01()0,i X x f x <⎧=⎨⎩<其它其分布函数为0,0(),011,1i X x F x x x x <⎧⎪=≤<⎨⎪≥⎩1,2,,i n =L而 12max{,,,}n U X X X =L 的分布函数为即max 0,0(),011,0nz F z z z z <⎧⎪=≤<⎨⎪>⎩,于是1max ,01()0,n nz z f z -⎧≤<=⎨⎩其它111max 00()()11n n n nE Z zf z dz nz dz z n n ∞+-∞====++⎰⎰。