基于WinCC的光伏发电监控系统的设计
- 格式:pdf
- 大小:280.33 KB
- 文档页数:4
基于Labview的光伏发电数据监测系统的设计①The Design of PV Data Monitoring System Based on Labview满春涛张鹏飞( 哈尔滨理工大学自动化学院黑龙江哈尔滨150080)摘要:基于Labview图形化编程软件开发了一种用于光伏发电特性及周围环境测试的实时监测系统。
该系统由传感器、变换器、FieldPoint模块及主监控PC组成。
利用温度、电压、电流、辐照度等多种传感器、变换器采集发电系统现场的信息,输入到FieldPoint模块进行信号的调理及数据采集,经RS485总线传输到计算机进行数据的显示、处理、转换和存储,系统模块化的特点使测试项目可以扩充。
利用DataSocket通信技术和Labview远程访问技术实现系统本地和远程监测的功能。
该系统可实时同步测量光伏发电系统的各种数据,存储的数据库信息可以为日后的科学研究提供依据,为光伏发电技术的改进与提高奠定了基础。
关键词:光伏发电数据监测Labview 远程监测1 引言光伏发电系统的能量输出因周围环境的变化而表现出较大的差异,对光伏发电系统进行实时监测,可以获得原始测量数据,为系统的改进与优化以及以后的科学研究提供有用数据,对系统环境参数及其系统本身的电气性能进行监测和分析是保证系统正常高效运行的前提。
光伏发电系统的运行一般是在无人职守的情况下进行,对地面上很分散的光伏系统进行监测维护是十分困难繁琐的,需要大量的时间和人力物力,因此在光伏发电系统中采用远程数据监测系统具有重要意义[1-3]。
Labview可以利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化应用。
灵活高效的软件可以创建自定义的光伏监测系统的用户界面并能提供强大的后续数据处理能力,可以方便的设置数据处理、转换、存储的方式[4]。
模块化的硬件能方便的提供全方位的系统集成,另外Labview还有网页发布、报告生成、数据管理以及软件连接等功能[5-6]。
基于 PLC的光伏发电系统集中控制摘要随着能源的枯竭,太阳能等各类新能源得到了大量应用,因其覆盖面积广且远离城市中心,故设备维护和监控成为了问题,随着网络工控等技术的发展,通讯网络迅速覆盖从现场设备到控制、管理的各个层次,覆盖从车间、工厂、企业乃至世界各地的中央控制室,该领域中现场总线(Fieldbus)有广泛应用。
本文介绍PLC现场总线技术,在太阳能发电中的应用。
一、光伏发电系统概述太阳能光伏发电系统分为两大类:一独立系统,二并网系统。
独立系统是由太阳能电池直接给负载提供电能,是太阳能发电系统的最基本的形式,这种系统多用于远离市区的海上灯塔、浮标、山顶的无线电台等,作为供电电源。
如果负荷是交流的,则还须通过逆变器将直流电转变成交流电,此外,输出的能量还同时供蓄电池充电。
蓄电池夜间和阴雨天输出电能向负载提供能量。
并网发电是太阳能发电的主要形式,并网发电的特点是通过逆变器,直接将太阳能电池阵列发出的直流电转换为交流电,输向电网。
并网发电系统有两种形式:一种是集中的大型联网光伏电站,这需要复杂的控制及输配电设备,并要占用大片土地,发电成本比市电贵,所以这类大型光伏电站发展缓慢;另一种是分散的小型光伏联网系统,特别是户用联网光伏系统,近年来发展迅速。
并网发电系统中的太阳能电池阵列,可以始终工作在最大功率点上,由大电网接纳来自太阳能电池板所发出的全部能量,提高了太阳能发电的效率,另一大优点是可以取消蓄电池,降低了蓄电池充放电的能量的损耗,免除了对蓄电池的维护,以及由此带来的污染,使系统成本降低,加强了供电的稳定性和可靠性。
从能量变换的结构来看,并网发电系统依照级数分为单级式能量变换和双级式能量变换。
单级式太阳能并网发电系统,是太阳能电池通过储能电容与并网逆变器相连,通过检测太阳能电池板的输出电压和输出电流,以及逆变器输出的并网电流,将这些检测信号输入到控制器中,通过调节并网电流的幅值,能够控制太阳能电池的输出功率,来实现最大功率跟踪和并网发电。
基于PLC的太阳能光伏系统设计简介本文档旨在介绍基于PLC(可编程逻辑控制器)的太阳能光伏系统设计。
太阳能光伏系统是一种利用太阳光进行能源转换的系统,通过光伏电池板将太阳光转化为电能。
PLC作为控制器,在太阳能光伏系统中起到关键作用,实现对系统的自动化控制和监测。
系统架构基于PLC的太阳能光伏系统主要包括以下组成部分:1. 光伏电池板:负责将太阳光转化为电能。
根据实际需求,可使用单晶硅、多晶硅或薄膜太阳能电池板。
2. 光伏逆变器:将光伏电池板产生的直流电转换为交流电,以供给电网或直接供电给负载。
3. PLC控制器:作为系统的中枢控制器,接收传感器数据、监测系统状态,控制光伏逆变器和其他关键设备的运行。
4. 电池储能系统:可选的组件,用于存储多余的电能,以备不时之需。
系统设计基于PLC的太阳能光伏系统设计需要考虑以下几个关键方面:1. 传感器选择:选择适合光伏系统监测的传感器,如温度传感器、光照传感器、电流传感器等,以获取系统的实时数据。
2. PLC编程:使用PLC编程软件,根据系统需求设计逻辑控制程序,实现对光伏逆变器和其他设备的控制。
3. 安全保护:设计系统的安全保护措施,如过压保护、过流保护等,以确保系统的可靠运行和人身安全。
4. 通信接口:设计PLC与其他设备之间的通信接口,实现数据的传输和监测,可以采用常见的通信协议如Modbus、Ethernet等。
5. 可视化界面:设计人机界面,通过监测和控制界面直观显示系统状态,方便操作员进行系统管理和故障排除。
总结基于PLC的太阳能光伏系统设计充分利用PLC的控制和监测功能,实现对太阳能光伏系统的自动化控制和优化。
通过合理选择传感器、编写逻辑程序、配置通信接口和设计人机界面,可以使系统更加安全可靠,并提高光伏系统的发电效率。
分布式光伏电站的监控系统及监控方法在全球能源转型的大背景下,分布式光伏电站作为一种清洁、可再生的能源供应方式,正得到越来越广泛的应用。
为了确保分布式光伏电站的稳定运行、提高发电效率和保障安全性,一套完善的监控系统和有效的监控方法至关重要。
一、分布式光伏电站监控系统的组成分布式光伏电站的监控系统通常由以下几个主要部分组成:1、传感器与数据采集单元传感器负责采集光伏电站的各种运行参数,如光伏组件的电压、电流、功率,环境温度、光照强度等。
数据采集单元则将传感器采集到的数据进行汇总和初步处理,然后传输给监控中心。
2、通信网络用于将采集到的数据从现场传输到监控中心。
常见的通信方式包括有线通信(如以太网)和无线通信(如 WiFi、GPRS 等)。
通信网络的稳定性和数据传输速度直接影响监控系统的实时性和可靠性。
3、监控中心监控中心是整个监控系统的核心,负责接收、存储、分析和展示数据。
它通常包括服务器、数据库、监控软件等。
监控人员可以通过监控软件实时查看电站的运行状态,并对异常情况进行报警和处理。
4、远程终端除了监控中心,相关人员还可以通过手机、平板电脑等远程终端随时随地访问监控系统,获取电站的运行信息。
二、分布式光伏电站监控系统的功能1、实时监测能够实时采集和显示光伏电站的各项运行参数,让运维人员及时了解电站的工作状态。
2、数据分析对采集到的数据进行分析,例如计算发电量、功率曲线、设备效率等,为电站的优化运行提供依据。
3、故障报警当电站出现故障或异常情况时,如组件短路、逆变器故障等,监控系统能够及时发出报警信号,并定位故障位置,以便运维人员快速处理。
4、能源管理帮助用户对能源的生产和消耗进行管理,实现节能减排的目标。
5、报表生成能够自动生成各种报表,如日报表、月报表、年报表等,方便用户对电站的运行情况进行总结和评估。
三、分布式光伏电站的监控方法1、基于数据采集与分析的监控通过定期采集电站的运行数据,并对这些数据进行分析,来判断电站的运行状况。
光伏电站综合监控系统的设计孟伟君 张文华 朱占利 王君燕(内蒙古神舟光伏电力有限公司)摘要 本文在光伏电站远程监控系统的基础上,引入光伏电站综合监控系统(PV-ISCS)的概念。
光伏电站综合监控系统是通过深度集成和互联的方式,将光伏电站设备监控系统、运营管理系统、电力监控系统、功率预测系统、视频监控系统、火灾报警系统、时钟系统等各系统集成到统一的平台,从而实现光伏电站一体化管理与无人值守的目标。
关键词 自动控制技术 光伏电站 综合监控 集成 互联1引言当今世界能源危机和环境污染不断加剧,太阳能资源丰富、分布广泛,是最具发展潜力的可再生能源。
随着各国对可再生能源发展的重视,近年来全球光伏产业增长迅猛,产业规模不断扩大,产品成本持续下降,太阳能光伏产业呈现出快速发展的势头。
据SEMI近期发布的《2013中国光伏产业发展报告》显示,截至2012年底,全球光伏新增装机容量达到31GW,相对于2011年的27.9GW增长11%,累计装机量达到98.5GW。
光伏市场的中心正从欧洲的德国、意大利、法国、西班牙向中国、美国和日本等新兴市场转移。
德国光伏进入稳定发展阶段,连续三年维持在7.5GW左右,意大利、西班牙等国深受经济危机的影响,2012年光伏装机量大幅减少。
以中国、美国和日本为代表的新兴市场成为新的增长点,2012年三国装机合计占全球的31%。
随着光伏装机容量的不断增加,如何进行光伏电站的有效管理越来越受到人们的重视。
光伏电站综合监控系统(Photovoltaic - Integrated Supervisory Control System,PV-ISCS)是基于光伏电站远程监控系统而设计,它深度集成了电站设备监控系统、电力监控系统、运营管理系统,互联了视频监控系统、火灾报警系统、时钟系统、功率预测系统等,将电站各独立、分散的系统集成到统一的平台,真正实现光伏电站的一体化管理。
2PV-ISCS架构PV-ISCS采用分布式、分层式、开放式的结构,应用集中管理、分散控制的模式,自上而下分为中央层、站控层和设备层。
光伏站电力监控系统介绍光伏(太阳能光伏发电)站电力监控系统是指对光伏站的发电设备、电网连接设备以及运行状态进行实时监控、数据采集和分析,并对光伏站的发电效率、运行状态和故障情况进行预警和管理的一种监控系统。
通过光伏站电力监控系统,可以实现对光伏站的智能化管理,提高光伏站的发电效率和运行稳定性。
1.数据采集与监测设备:包括光伏组件电流电压检测装置、逆变器电流电压检测装置、电池组电流电压检测装置以及气象站、温度传感器等,用于采集光伏站各个设备的电流、电压、温度、光照等运行数据。
2.数据通信模块:用于将采集到的数据通过网络传输到监控中心,实现实时监测和数据分析。
3.数据分析与管理软件:通过对采集到的数据进行分析和管理,实现对光伏站的效率、功率、发电量、故障等数据的监控和分析,并生成报表和图表供运维人员参考。
4.远程监控与控制装置:通过远程监控与控制装置,可以实现对光伏站设备的远程监控和控制,包括对逆变器的开关机控制、货架的旋转控制、电池组的充放电控制等。
首先,数据采集与监测设备会实时采集光伏站各个设备的运行数据,包括光伏组件的温度、电流、电压,逆变器的温度、电流、电压,电池组的温度、电流、电压等。
然后,采集到的数据会通过数据通信模块传输到监控中心,实现实时监测和数据分析。
监控中心的数据分析与管理软件会对采集到的数据进行分析和管理,包括对发电效率、发电量、功率曲线、故障情况等数据进行监控和分析。
最后,通过远程监控与控制装置,运维人员可以通过监控中心对光伏站设备进行远程监控和控制,包括对逆变器的开关机控制、货架的旋转控制、电池组的充放电控制等。
通过光伏站电力监控系统,可以实现以下几个功能:1.实时监测:通过对光伏站各个设备的运行数据进行实时采集和监测,可以及时发现设备的故障和异常情况,保障光伏站的正常运行。
2.故障预警:通过对光伏站各个设备的运行数据进行分析,可以及时发现故障的迹象,提前预警和处理,减少故障造成的损失。
光伏电站监控系统基本架构及构成一、光伏电站计算机监控系统架构光伏电站计算机监控系统的主要任务是对电站的运行状态进行监视和控制,向调度机构传送有关数据,并接受、执行其下达的命令。
站控层设备按电站远景规模配置,间隔层设备按工程实际建设规模配置。
各部分设备组成如下:1.站控层设备由主机兼操作员站、远动通信设备、公用接口装置、网络设备、打印机等组成,其中主机兼操作员站、远动通信设备按双套冗余配置,远动通信设备优先采用无硬盘专用装置。
2.间隔层设备包括光伏逆变器、汇流箱、太阳跟踪系统、气象监测系统及辅助系统的通信控制单元,光伏发电单元规约转换器,保护和测控装置等设备。
3.网络层设备包括网络交换机、光/电转换器、接口设备和网络连接线、电缆、光缆及网络安全设备等。
站控层与间隔层通常采用以太网连接,110kV及以上电站采用双重化网络,35kV电站采用单网结构。
站控层、间隔层网络交换机采用具备网络管理能力的交换机,站控层交换机的容量根据电站远景建设规模配置,间隔层交换机的容量根据远景出线规模配置,网络媒介在室内采用五类以上屏蔽双绞线,室外的通信媒介采用光缆。
二、光伏电站计算机监控系统站控层(一)数据采集通信子系统数据采集通信子系统一般由两套前置机及其通信接口装置、网络设备等组成。
其中。
前置机负责与各间隔层设备进行数据通信,完成数据采集与通信功能;通信接口装置负责与直流系统、UPS、电能量采集装置等其他智能设备进行数据通信。
前置机通过站控层网络与主机、工作站。
远动工作站等站控层设备连接,实现站控层内部通信功能。
间隔层设备直接接入站控层网络,站控层网络一般采用快速交换式以太网,以实现站控层与间隔层之间数据的快速交换。
数据采集和通信功能由主机、人机工作站、远动工作站等站控层设备的通信软件模块完成,一般要求站控层和远动工作站直接读取间隔层设备的信息,即信息采集遵循"直采直送"的原则。
光伏电站计算机监控系统一般采用双主机兼操作员站模式,主机是站控层数据收集、处理、存储及发送中心。
光伏发电系统的通信与监控设计光伏发电是一种利用太阳能光照发电的技术,以其环保、可再生、无噪音等优点,越来越受到人们的关注和广泛应用。
然而,在光伏发电系统的运行过程中,由于长期使用、环境因素、设备故障等原因,系统的稳定性和可靠性可能受到影响。
因此,为了保证光伏发电系统的正常运行和有效监控,通信与监控系统的设计则变得尤为重要。
一、通信系统设计光伏发电系统的通信系统是指将各个组件和设备连接在一起,实现数据采集、传输和控制的系统。
在通信系统设计中,要考虑以下几个方面:1. 网络拓扑结构:根据系统的规模和布置情况,选择合适的网络拓扑结构,包括单级、双级、星型、环形等拓扑结构。
同时,还需考虑网络的可扩展性和冗余性,以确保通信网络的稳定性和可靠性。
2. 通信协议:选择适合光伏发电系统的通信协议,常用的有Modbus、CAN、Ethernet、RS485等。
根据系统的需求,选择合适的通信协议,并确保各个设备可以兼容该协议,以实现数据的准确采集和传输。
3. 通信设备:选择合适的通信设备,包括数据采集器、路由器、交换机等。
通信设备的选择应考虑其性能、稳定性和可靠性,以满足系统的实际需求。
4. 数据安全:在通信系统设计中,要考虑数据的安全性,确保数据不被非法获取和篡改。
可以采用数据加密、身份认证、防火墙等措施,增强系统的安全性。
二、监控系统设计光伏发电系统的监控系统是指对系统进行实时监测和状态分析的系统。
通过监控系统,可以及时发现设备故障、异常情况和性能下降,并进行相应的处理。
在监控系统设计中,要考虑以下几个方面:1. 监测点布置:根据光伏发电系统的结构和布置情况,合理选择监测点的位置和数量。
监测点应覆盖到光伏组件、逆变器、电池组等重要组件和设备,以实现对系统各个方面的全面监测。
2. 数据采集:选择合适的数据采集方式,包括传感器、仪表、数据采集器等。
数据采集设备要能够准确采集各个监测点的数据,并进行实时传输和存储。
3. 数据分析与处理:通过对监测数据的分析和处理,可以识别设备故障、性能下降和异常情况,并生成相应的报警信息。
wincc应用案例WinCC是一个功能强大的监控和数据采集(SCADA)系统,广泛应用于各种工业自动化领域。
以下是一个应用案例,描述了如何使用WinCC实现一个简单的设备监控系统。
案例:设备监控系统1. 需求分析我们需要设计一个设备监控系统,能够实时监控设备的运行状态、电量消耗以及生产数量,并通过图形界面展示这些信息。
此外,我们还需要能够触发警报,以便在设备出现故障时及时通知操作员。
2. 解决方案考虑到WinCC的功能和我们的需求,决定采用WinCC来实现这个系统。
具体步骤如下:创建WinCC变量首先,我们需要创建与设备运行数据相关的WinCC变量。
这些变量包括运行状态、电能表数据和生产数量等。
我们将使用结构变量来存储这些数据,其中每个设备的变量名称只有编号不同。
设计图形界面接下来,我们需要设计一个图形界面,用于实时显示设备的运行状态、电量消耗和生产数量。
我们将使用WinCC的图形编辑器来创建界面,包括趋势图、数值显示和警报触发器等元素。
配置数据连接为了实时获取设备的运行数据,我们需要配置数据连接。
我们将使用WinCC的通讯驱动程序与设备进行通信,并确保数据能够实时传输到WinCC系统中。
编写脚本为了实现更复杂的功能,例如警报触发和数据处理,我们需要编写脚本。
我们将使用WinCC的脚本编辑器来编写这些脚本,并在需要时自动执行。
3. 实施与测试完成以上步骤后,我们将开始实施系统并进行测试。
测试内容包括数据采集、图形界面显示、警报触发等功能的验证。
如果一切正常,系统将投入使用。
4. 结论通过使用WinCC,我们成功地设计并实现了一个功能强大的设备监控系统。
该系统能够实时监控设备的运行状态、电量消耗和生产数量,并提供图形界面显示和警报功能。
这将有助于提高设备的可靠性和生产效率,并为操作员提供更好的监控体验。