三角函数基础练习1
- 格式:doc
- 大小:220.50 KB
- 文档页数:2
数学课程三角函数公式练习题及答案在学习数学的过程中,三角函数是一个非常重要的概念。
它们是研究三角形及各种周期现象的数学工具。
熟练掌握三角函数公式可以帮助我们解决很多实际问题。
本文将为大家提供一些三角函数公式的练习题及答案,以帮助大家巩固对这一知识点的掌握。
练习题一:正弦函数的基本关系式1. 已知角A的正弦值sin(A)=0.6,求角A的度数。
2. 已知角B的度数为45°,求sin(B)的值。
3. 已知角C的正弦值为√3/2,求角C的度数。
答案一:1. 根据正弦函数的定义,sin(A)=对边/斜边,可得对边=0.6×斜边。
由此可知,三角形中的角A的度数为arcsin(0.6)。
2. 对于一个45°的角度,根据特殊角的性质得知,sin(B)=cos(B)=1/√2。
3. 根据正弦函数的定义,sin(C)=√3/2,可得角C的度数为arcsin(√3/2)。
练习题二:余弦函数的基本关系式1. 已知角D的余弦值cos(D)=0.8,求角D的度数。
2. 已知角E的度数为60°,求cos(E)的值。
3. 已知角F的余弦值为1/2,求角F的度数。
答案二:1. 根据余弦函数的定义,cos(D)=邻边/斜边,可得邻边=0.8×斜边。
由此可知,三角形中的角D的度数为arccos(0.8)。
2. 对于一个60°的角度,根据特殊角的性质得知,cos(E)=1/2。
3. 根据余弦函数的定义,cos(F)=1/2,可得角F的度数为arccos(1/2)。
练习题三:正切函数的基本关系式1. 已知角G的正切值tan(G)=1.5,求角G的度数。
2. 已知角H的度数为30°,求tan(H)的值。
3. 已知角I的正切值为√3,求角I的度数。
答案三:1. 根据正切函数的定义,tan(G)=对边/邻边,可得对边=1.5×邻边。
由此可知,三角形中的角G的度数为arctan(1.5)。
三角函数的基础练习题在学习三角函数时,为了加深对其概念和性质的理解,我们经常进行许多练习题。
以下是一些基础的三角函数练习题,供大家参考。
1. 计算以下三角函数的值:(a) sin(0°)(b) cos(30°)(c) tan(45°)(d) cot(60°)(e) sec(90°)(f) csc(120°)2. 计算以下三角函数的值:(a) sin(π/4)(b) cos(π/3)(c) tan(π/6)(d) cot(π/2)(e) sec(5π/4)(f) csc(7π/6)3. 根据已知条件,求解下列三角方程的解集:(a) sin(x) = 0(b) cos(2x) = 1(c) tan(x) = 1(d) cot(2x) = -1(e) sec(x) = -1(f) csc(x) = 24. 利用三角函数的和差公式,化简以下表达式:(a) sin(α + β)(b) cos(2α - β)(c) tan(π/6 + π/4)(d) cot(3π/4 - π/3)(e) sec(2x + π/3)(f) csc(5x - π/6)5. 求解下列三角方程的解集:(a) sin^2(x) - 1 = 0(b) 4cos^2(2x) = 1(c) tan^2(x) + tan(x) = 0(d) 1 + cot^2(2x) = 0(e) 2 + sec^2(x) = 0(f) csc^2(x) - 4csc(x) + 3 = 06. 使用三角函数的复合函数添加条件,求解下列三角方程的解集:(a) sin(2x) = 1/2, 0 ≤ x ≤ 2π(b) cos(3x) = -1/2, -π/2 ≤ x ≤ π/2(c) tan^2(x) = 3, -π/2 < x < π/2(d) cot(2x) = -√3, π/3 < x < π/2(e) sec^2(x) = 2, 0 < x < 3π/2(f) csc(2x) = -2, -π < x < 0通过完成这些基础的三角函数练习题,可以帮助我们巩固对三角函数的掌握程度,提高解题的能力。
三角函数基础练习题三角函数是数学中重要的一部分,它在解决几何问题和物理问题中起着重要的作用。
为了巩固对三角函数的理解和运用,下面将提供一些基础练习题,帮助读者加深对三角函数的掌握。
题1:已知直角三角形的斜边长为10,其中一个锐角的正弦值为0.6,求这个锐角的余弦值。
解:设锐角为θ,根据正弦值的定义:sinθ = 对边 / 斜边则对边= sinθ * 斜边 = 0.6 * 10 = 6根据勾股定理,另一条直角边可表示为:√(斜边^2 - 对边^2) = √(10^2 - 6^2) = √(64) = 8根据余弦值的定义:cosθ = 邻边 / 斜边 = 8 / 10 = 0.8答案:0.8题2:已知直角三角形中,一个锐角的正切值为1.5,求这个锐角的角度。
解:设锐角为θ,根据正切值的定义:tanθ = 对边 / 邻边则对边 / 邻边 = 1.5化简得:对边 = 1.5 * 邻边根据勾股定理,将直角三角形两条直角边的长度表示为:邻边 = a,对边 = 1.5 * a根据勾股定理,斜边可表示为:√(邻边^2 + 对边^2) = √(a^2 + (1.5a)^2) =√(a^2 + 2.25a^2) = √(3.25a^2) = 1.8a(√3.25 ≈ 1.8),即斜边 = 1.8a在直角三角形中,斜边为最长边,所以斜边的长度等于10。
1.8a = 10a ≈ 10 / 1.8 ≈ 5.56由此可得,邻边≈ 5.56,对边≈ 1.5 * 5.56 ≈ 8.34sinθ = 对边 / 斜边= 8.34 / 10 ≈ 0.834θ ≈ arcsin(0.834)使用计算器或查表可得:θ ≈ 57.1°答案:约为57.1°题3:已知角A的余弦值为0.8,求角A的正切值和余切值。
解:设角A为θ,根据余弦值的定义:cosθ = 邻边 / 斜边由题可知邻边为已知边值,并且斜边长度未知,设斜边长度为a,邻边长度为b,则根据勾股定理可得:a^2 = b^2 + 斜边^2斜边= √(a^2 - b^2)cosθ = b / √(a^2 - b^2)0.8 = b / √(a^2 - b^2)化简得:b = 0.8 * √(a^2 - b^2)根据勾股定理,tanθ = 对边 / 邻边对边/ b = tanθ化简得:对边= b * tanθ = 0.8 * √(a^2 - b^2) * tanθ由此可以求得角A的正切值:tanA = 对边 / 邻边= (0.8 * √(a^2 - b^2) * tanθ) / b = 0.8 * √(a^2 - b^2) * tanθ / (0.8 * √(a^2 - b^2)) = tanθ所以,角A的正切值等于角A本身的切线值。
三角函数分类汇编一.选择题1、函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .2、关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③3、tan255°=A .B .C .D .4、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .35、下列函数中,以2π为周期且在区间(4π,2π)单调递增的是2sin cos ++x xx xC .f (x )=cos│x │D .f (x )= sin │x │6、已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B .55 C .33 D .255 7、若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .128、曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=9、设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④ 10、函数()2sin sin2f x x x =-在[0,2π]的零点个数为11、设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件12、已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫=⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A.2-B.D.213、已知ω∈R ,函数2()(6)sin()f x x x ω=-⋅,存在常数a ∈R ,使得()f x a +为偶函数,则ω的值可能为( )A.2π B. 3π C. 4πD. 5π14、若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足,且C=60°,则ab 的值为A .B .C . 1D .15、若,,,,则A .B .C .D .16、在ABC 中..则A 的取值范围是A .(0,]B .[ ,)C .(0,] D .[ ,)17、若函数 (ω>0)在区间上单调递增,在区间上单调递减,则ω= 22a b 4c +-=()438-2302πα<<02πβ-<<1cos()43πα+=cos()423πβ-=cos()2βα+=-∆222sin sin sin sin sin A B C B C ≤+-6π6ππ3π3ππ()sin f x x ω=0,3π⎡⎤⎢⎥⎣⎦,32ππ⎡⎤⎢⎥⎣⎦322318、已知角的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线上,则=(A )(B ) (C ) (D )19、设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于A .B .C .D .20、已知函数,若,则x 的取值范围为A .B .C .D .21、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos2A=,则(A )(B) (C(D22、设sin ,则 (A )(B ) (C ) (D )23、若tan =3,则的值等于A .2B .3C .4D .6θ2y x =cos2θ45-35-3545()cos (0)f x x ωω=>()y f x =3πω13369()cos ,f x x x x R =-∈()1f x ≥|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭5{|,}66x k x k k Z ππππ+≤≤+∈5{|22,}66x k x k k Z ππππ+≤≤+∈a 2=a b1+=43πθ()sin2θ=79-19-1979α2sin 2cos a α()sin()cos()f x x x ωϕωϕ=+++(0,||)πωϕ><()()f x f x -=(A )在单调递减 (B )在单调递减 (C )在单调递增 (D )在单调递增 25、已知函数,其中为实数,若对恒成立,且 ,则的单调递增区间是(A ) (B )(C ) (D )二.填空题1、在相距2千米的.两点处测量目标,若,则.两点之间的距离是( )千米。
三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
2.三角函数的概念一、基本概念及相关知识点:1、三角函数:设 是一个任意角,在 的终边上任取(异于原点的)一点 P (x,y ) P 与原点的距离为 r22x 2 y 20 ,则 siny;cosy ;xyx ;tan2、三rrx角函数在各象限的符号: (一全二正弦,三切四余弦)yyy+ + - +- +o x -o +xo x --+ -正弦、余割 余弦、正割正切、余切 3、三角函数线正弦线: MP;余弦线: OM;正切线: AT.16. 几个重要结论:(1) y(2) y|sinx|>|cosx|ysinx>cosx|cosx|>|sinx| |cosx|>|sinx|TPOxOxO M A xcosx>sinx|sinx|>|cosx|(3) 若 o<x<2 ,则sinx<x<tanx4 、 同 角 三 角 函 数 的 基 本 关 系 式 : 22sin α /cos α =tan αsin α +cos α =1tan α cot α =1 5、诱导公式:把k的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”2二、重点难点同角三角函数的基本关系式、诱导公式三、课前预习1:把下列各角从度换成弧度:⑴ 18, ⑵ 120 , ⑶ 735 ,⑷ 22 30',⑸ 57 18',⑹ 1200 24'。
2 :把下列各角从弧度换成度: ⑴7 , ⑵5,⑶ 23,(把 换成 180 )61210⑷ 5,⑸ 1.4,⑹2。
( 57.3 即得近似值)3⒊一些特殊角的度数与弧度数的对应表度0 30456090120135 150180270 360弧度4 终边落在坐标轴上的角的集合是( ).A 、 2k , k ZB 、(2k 1) , k ZC 、k , k ZD 、k, k Z25 已知半径为 的扇形面积为 3 ,则扇形的中心角为【】1 8A 、3B 、3C 、3D 、3168426 弧度数为 2 的圆心角所对的弦长也是 2,则这个圆心角所对的弧长是( ) .A 、2B 、2C 、 2sin1D 、 sin 2sin17 如果弓形的弧所对的圆心角为,弓形的弦长为 2 ㎝,则弓形的面积为() .3A 、3)2、2(3cmB (3) cm9C 、 (23) cm2D 、 (23) cm 23328 半径为 2 的圆中, 60 的圆周角所对的弧长是。
三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=___________ sin(π+α)= ___________cos(π-α)=___________ cos(π+α)=___________tan(π-α)=___________ tan(π+α)=___________sin(2π-α)=___________ sin(2π+α)=___________cos(2π-α)=___________ cos(2π+α)=___________tan(2π-α)=___________ tan(2π+α)=___________(二) sin(π2 -α)=____________ sin(π2+α)=____________ cos(π2 -α)=____________ cos(π2+α)=_____________ tan(π2 -α)=____________ tan(π2+α)=_____________ sin(3π2 -α)=____________ sin(3π2+α)=____________ cos(3π2 -α)=____________ cos(3π2+α)=____________ tan(3π2 -α)=____________ tan(3π2+α)=____________ sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α公式的配套练习sin(7π-α)=___________ cos(5π2-α)=___________ cos(11π-α)=__________ sin(9π2+α)=____________ 3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βsin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β 4. 二倍角公式sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2αtan2α=2tan α1-tan 2α5. 公式的变形(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α(2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α2(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)tan α-tan β=tan(α-β)(1+tan αtan β)(4) 万能公式(用tan α表示其他三角函数值)sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α1-tan 2α6. 插入辅助角公式asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b a) 特殊地:sinx ±cosx = 2 sin(x ±π4) 7. 熟悉形式的变形(如何变形)1±sinx ±cosx 1±sinx 1±cosx tanx +cotx1-tan α1+tan α 1+tan α1-tan α若A 、B 是锐角,A+B =π4 ,则(1+tanA )(1+tanB)=2 cos αcos2αcos22α…cos2 n α= sin2 n+1α 2 n+1sin α8. 在三角形中的结论(如何证明)若:A +B +C=π A+B+C 2 =π2tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A 2=19.求值问题(1)已知角求值题如:sin555°(2)已知值求值问题常用拼角、凑角如:1)已知若cos(π4 -α)=35 ,sin(3π4 +β)=513, 又π4 <α<3π4 ,0<β<π4,求sin(α+β)。
(完整版)三角函数的运算经典习题以下是一些关于三角函数运算的经典题,希望能对大家的研究有所帮助。
题一:正弦函数的运算1. 求解 $\sin \left(x + \frac{\pi}{6}\right) = \frac{1}{2}$ 的解集。
2. 计算 $\sin \left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)$ 的值。
3. 简化表达式 $\sin \left(\frac{\pi}{2} - x\right)$。
4. 计算 $\sin \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right)$ 的值。
题二:余弦函数的运算1. 求解 $\cos \left(2x - \frac{\pi}{3}\right) = 0$ 的解集。
2. 计算 $\cos \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{3}\right)$ 的值。
3. 简化表达式 $\cos \left(\frac{\pi}{2} + x\right)$。
4. 计算 $\cos \left(\frac{3\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)$ 的值。
题三:正切函数的运算1. 求解 $\tan \left(\frac{x}{2}\right) = \sqrt{3}$ 的解集。
2. 计算 $\tan \left(\frac{\pi}{4}\right) \cdot \tan\left(\frac{\pi}{6}\right)$ 的值。
3. 简化表达式 $\tan \left(\frac{\pi}{2} - x\right)$。
4. 计算 $\tan \left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{6}\right)$ 的值。
三角函数基础练习题1.如果,那么与终边相同的角可以表示为21α=-αA . B .{}36021,k k ββ=⋅+∈Z {}36021,k k ββ=⋅-∈Z C .D .{}18021,k k ββ=⋅+∈Z {}18021,k k ββ=⋅-∈Z 参考答案:B考查内容:任意角的概念,集合语言(列举法或描述法)认知层次:b 难易程度:易2.一个角的度数是,化为弧度数是405A .B .C .D .π3683π47π613π49解:由,得,所以180π=1180π=94054051804ππ=⨯=参考答案:D考查内容:弧度制的概念,弧度与角度的互化认知层次:b 难易程度:易3.下列各数中,与cos1030°相等的是A .cos50°B .-cos50°C .sin50°D .- sin50°解:,1030336050=⨯- cos1030cos(336050)cos(50)cos50=⨯-=-=参考答案:A考查内容:任意角的概念,的正弦、余弦、正切的诱导公式(借助单位圆)πα±认知层次:c 难易程度:易4.已知x ∈[0,2π],如果y = cos x 是增函数,且y = sin x 是减函数,那么A .B .02x π≤≤xππ≤≤2C .D .32x ππ≤≤23x ππ≤≤2解:画出与的图象sin y x =cos y x =参考答案:C考查内容:的图象,的图象,正弦函数在区间上的性质,余弦sin y x =cos y x =[0,2π]函数在区间上的性质[0,2π]认知层次:b难易程度:易5.cos1,cos2,cos3的大小关系是( ).A .cos1>cos2>cos3B .cos1>cos3>cos2C .cos3>cos2>cos1D .cos2>cos1>cos3解:,而在上递减,01232ππ<<<<<cos y x =[0,]π参考答案:A考查内容:弧度制的概念,的图象,余弦函数在区间上的性质cos y x =[0,2π]认知层次:b 难易程度:易6.下列函数中,最小正周期为的是().πA . B .cos 4y x =sin 2y x =C . D . sin2xy =cos4xy =解:与的周期为sin y x ω=cos y x ω=2T πω=参考答案:B考查内容:三角函数的周期性认知层次:a 难易程度:易7.,,的大小关系是( ).)( 40tan -38tan56tan A . B .>-)( 40tan > 38tan56tan >38tan >-)(40tan56tan C . D .>56tan >38tan )(40tan ->56tan >-)(40tan38tan 解:在上递增,而tan y x =(,22ππ-9040<38<56<90-<-参考答案:C考查内容:的图象,正切函数在区间上的性质tan y x =ππ,22⎛⎫-⎪⎝⎭认知层次:b 难易程度:易8.如果,,那么等于( ).135sin =α),2(ππα∈tan αrA .B .C .D .125-125512-512解:由,得,135sin =α),2(ππα∈12cos 13α==-sin 5tan cos 12ααα==-参考答案:A考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=sin tan cos xx x=认知层次:b 难易程度:中9.函数图象的一条对称轴方程是)62sin(5π+=x y A . B . C . D .12x π=-0x =6x π=3x π=解:函数图象的对称轴方程是,即(),)62sin(5π+=x y 262x k πππ+=+26k x ππ=+Z k ∈令得0k =6x π=参考答案:C考查内容:正弦函数在区间上的性质[0,2π]认知层次:b 难易程度:易10.函数y = sin 的图象是中心对称图形,它的一个对称中心是34x π⎛⎫-⎪⎝⎭A .B ., 012π⎛⎫-⎪⎝⎭7, 012π⎛⎫- ⎪⎝⎭C .D . 7, 012π⎛⎫⎪⎝⎭11, 012π⎛⎫⎪⎝⎭解:设得函数图象的对称中心是(),34x k ππ-=sin(3)4y x π=-(,0)312k ππ+Z k ∈ 令得,2k =-7, 012π⎛⎫- ⎪⎝⎭参考答案:B考查内容:正弦函数在区间上的性质[0,2π]难易程度:中11.要得到函数y = sin 的图象,只要将函数y = sin2x 的图象( ).23x π⎛⎫+⎪⎝⎭A .向左平移个单位 B .向右平移个单位3π3πC .向左平移个单位 D .向右平移个单位6π6π解:,sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6x x π→+参考答案:C考查内容:参数,,对函数图象变化的影响A ωϕsin()y A x ωϕ=+认知层次:a 难易程度:易12.已知tan ( 0 << 2),那么角等于( ).ααπαA .B .或C .或D .6π6π76π3π43π3π解:,,令或可得tan α=6k παπ⇒=+Z k ∈0k =1k =参考答案:B考查内容:任意角的正切的定义(借助单位圆)认知层次:b 难易程度:易13.已知圆的半径为100cm ,是圆周上的两点,且弧的长为112cm ,那么O ,A B AB 的度数约是( ).(精确到1)AOB ∠︒A . B .C .D .646886110解:11211218064100100απ==⨯≈参考答案:A考查内容:弧度与角度的互化认知层次:b14.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为米(P 在水面下则为负数)d d ,如果(米)与时间(秒)之间满足关系式:d t ,且当P 点()sin 0,0,22d A t k A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭从水面上浮现时开始计算时间,那么以下结论中错误的是A .B .C .D .10=A 152πω=6πϕ=5=k 解:周期(秒),角速度,振幅,上移60154T ==215πω=10A =5k =参考答案:C考查内容:用三角函数解决一些简单实际问题,函数的实际意义,三角sin()y A x ωϕ=+函数是描绘周期变化现象的重要函数模型认知层次:b 难易程度:难15.sin(-)的值等于__________.196π解:,19534666πππππ-=--=-+1951sin(sin(4)662πππ-=-+=参考答案:12考查内容:的正弦、余弦、正切的诱导公式πα±认知层次:c 难易程度:易16.如果< θ < π,且cos θ = -,那么sin 等于__________.2π353πθ⎛⎫+ ⎪⎝⎭不做考查内容:同角三角函数的基本关系式:,两角和的正弦公式22sin cos 1x x +=认知层次:c 难易程度:中17.已知角的终边过点,那么的值为__________.α(4, 3)P -2sin cos αα+10m d5mP解: , 5r OP ===3422sin cos 2()555αα+=⨯-+=-参考答案:52-考查内容:任意角的正弦的定义(借助单位圆),任意角的余弦的定义(借助单位圆)认知层次:b 难易程度:中18.的值等于__________.75tan 175tan 1-+不做参考答案:3-考查内容:两角和的正切公式认知层次:c 难易程度:易19.函数y = sin(x +)在[-2π,2π]内的单调递增区间是__________.124π解:令,解得,令得1222242k x+k πππππ-≤≤+34422k x k ππππ-≤≤+0k =参考答案:[-,]32π2π考查内容:正弦函数在区间上的性质,不等关系,子集[0,2π]认知层次:b 难易程度:中20.已知sin +cos =,那么sin 的值是__________.αα532α参考答案:-1625考查内容:同角三角函数的基本关系式:22sin cos 1x x +=认知层次:b 难易程度:易21.函数y = sin x cos x 的最小正周期是__________.参考答案:2π考查内容:两角和的正弦公式,三角函数的周期性认知层次:c 难易程度:易22.已知,,那么tan2x 等于__________.(, 0)2x π∈-4cos 5x =参考答案:247-考查内容:同角三角函数的基本关系式:,二倍角的正切公式22sin cos 1x x +=认知层次:c 难易程度:易23.已知 ,.π02α<<4sin 5α=(1)求的值;tan α(2)求的值.(不做)πcos 2sin 2αα⎛⎫++⎪⎝⎭参考答案:(1)因为,, 故,所以.π02α<<4sin 5α=3cos 5α=34tan =α(2).πcos 2sin 2αα⎛⎫+-=⎪⎝⎭212sin cos αα-+=3231255-+=825考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=,的正弦的诱导公式,二倍角的余弦公式sin tan cos x x x =π2α+认知层次:c难易程度:中24.某港口海水的深度(米)是时间(时)()的函数,记为:.y t 024t ≤≤)(t f y =已知某日海水深度的数据如下:(时)t 03691215182124(米)y 10.013.09.97.010.013.010.17.010.0经长期观察,的曲线可近似地看成函数的图象.)(t f y =sin y A t b ω=+(1)试根据以上数据,求出函数的振幅、最小正周期和表达式;()sin y f t A t b ω==+(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的55(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为米,5.6如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?参考答案:(1)依题意,最小正周期为:,振幅:,,12=T 3A =10=b .2ππ6T ω==所以.π()3sin 106y f t t ⎛⎫==⋅+⎪⎝⎭(2)该船安全进出港,需满足:.即:.6.55y ≥+π3sin 1011.56t ⎛⎫⋅+≥⎪⎝⎭所以.π1sin 62t ⎛⎫⋅≥⎪⎝⎭所以.ππ5π2π2π()666k t k k +≤⋅≤+∈Z 所以.121125()k t k k +≤≤+∈Z 又 ,024t ≤≤所以或.15t ≤≤1317t ≤≤所以,该船至多能在港内停留:(小时).16117=-考查内容:三角函数是描绘周期变化现象的重要函数模型,正弦函数在区间上的性[0,2π]质,用三角函数解决一些简单实际问题认知层次:b 难易程度:难。
三角函数练习题一、单选题(共0分)1.已知角=563°,那么的终边在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知角的终边经过点(8,6),则cos的值为()A.34B.43C.45D.−35 3.已知扇形的周长为12,半径为4,则该扇形的面积是()A.8πB.16πC.8D.16 4.已知扇形的面积为1,扇形的圆心角的弧度数为2,则扇形的周长为()A.1B.2C.3D.4 5.已知角在第二象限,则()A.sin>0,cos>0B.sin>0,cos<0C.sin<0,cos>0D.sin<0,cos<06.下列四个命题中,可能成立的是()A.sin=12,且cos=12;B.sin=0,且cos=−1;C.tan=1,且cos=−1;D.tan=−1,且sin=12.7.若sin=−为第四象限角,则cos的值为()A B.−12C.−D.12 8.已知cos=−513,且为第二象限角,则tan=()A.−125B.−512C.−1213D.−1312 9.已知cos=35,∈0,π,则tan=()A.34B.−34C.43D.−43 10.已知tan=−2,则sinrcos sin=()A.-1B.-3C.−12D.1211.已知tan=2,则cosKsinsinrcos的值为()A.−13B.13C.−3D.3 12.若tan (π+p=3,则cos2+sin vos =()A.−25B.−35C.35D.2513).A.−cos B.−cotC.−tan D.−sin 14.若sinπ−=−45,cos>0,则tan=()A.34B.−34C.43D.−43 15.cos198°cos132°+cos42°sin18°=()A.−B.−12C D.1 16.cos15∘cos45∘−sin15∘等于()A.−B C.12D.−12 17.sin10°cos50°+cos40°cos10°=()A.12B C D.18.若0<I2,0<I2,cosJ13,sin r=()A B C D19.若sinvos+cosLin=cos+的值等于()A.−B C.±D.±1220.已知∈0,,∈,π,sin=+=79,则sin的值为()A.2327B.−2327C.13D.−1321.已知2,p则tan(4+p=()A.13B.3C.−3D.−1322.若3sinr2cos2sinKcos=83,则tan+=()A.3B.13C.-3D.−1323.已知∈0,π,且3cos2−8cos=5,则sin2=()A.−459B.52C.−49D.−452724.若∈,sinπ+=45,则cos2=()A.−35B.−725C D.−2425 25.已知tan=2,则tan2=()A.−34B.3C.43D.−4326.已知sin=45,∈,则cos2的值为()A.725B.2425C.−2425D.−725 27.若sin(−p=35,则cos2=()A.1825B.−1825C.−725D.72528.函数=sin−3cos的值域是()A.0,1B.−1+3,1+3C.−2,2D.−1−3,1+3 29.23sin75∘cos75∘的值是()A B.12C D.3 30.该函数=sin+3cos的最大值是()A.1B.6C.2D.−231.为了得到函数=sin(+4)的图象,只需要=sin将的图象()A.向上平移4个单位B.向左平移4个单位C.向下平移4个单位D.向右平移4个单位32.为得到函数=14cos的图像,只需把余弦曲线上的所有的点()A.横坐标伸长到原来的4倍,纵坐标不变B.横坐标缩短到原来的14,纵坐标不变C.纵坐标伸长到原来的4倍,横坐标不变D.纵坐标缩短到原来的14,横坐标不变33.为了得到函数=sin2−只要将=sin∈R的图象上所有的点()A.向右平移π3个单位长度,再把所得图像各点的横坐标缩短到原来的12倍.B.向右平移π3个单位长度,再把所得图像各点的横坐标伸长到原来的2倍.C.向右平移π6个单位长度,再把所得图像各点的横坐标缩短到原来的12倍.D.向右平移π6个单位长度,再把所得图像各点的横坐标伸长到原来的2倍.34.函数=2sin2+)A.2,1,4B.2,12,4C.2,1,8D.2,12,−8二、解答题(共0分)35.已知函数op=cos(2+p(0<<p是奇函数.(1)求的值;(2)若将函数op的图象向右平移6个单位长度,再将所得图象上所有点的横坐标扩大到原来的4倍,得到函数op的图象,求op.36.已知函数op=2sin2+(1)求函数op的单调递减区间及其图象的对称中心;(2)已知函数op的图象经过先平移后伸缩得到=sin的图象,试写出其变换过程.37.求函数=sin+cos,∈−5π12x的值.38.已知函数op=Lin(B+p>0,>0,|U<.(1)求函数op的解析式;(2)将函数op的图象向右平移3个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数op的图象,当∈op的值域.39.(1)利用“五点法”画出函数op==sin(12+6)在长度为一个周期的闭区间的简图.列表:12+6xy作图:(2)并说明该函数图象可由=sino∈R)的图象经过怎么变换得到的.(3)求函数op图象的对称轴方程.40.已知函数=23sinBcosB+2cos2B且函数图像中相邻两条对称轴间的距离为π2.(1)求的值及函数的单调递增区间;(2)当∈−π2,0时,求函数的最值,并写出相应的自变量的取值.。
三角函数测试题
一、选择题
1、
600sin 的值是( ) A.12
B.2
C.2-
D. 12- 2、已知tan 2α=,则
sin 3cos sin cos αααα
-+的值为 ( ) A .53- B. 13- C .53 D. 13
3、设0ω>,0ϕπ<<,直线4x π=和直线54
x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ为( )
A .3π
B .4π
C .34π
D .2
π 4、设1sin()43
πθ+=,则sin 2θ等于( ) A .79- B .19- C .19 D .79 5、已知3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 3365- B 6365 C 5665 D 1665
- 6、函数55sin(2)6y x π=+图象的一条对称轴方程是( ) A.12x π
=- B. 3x π
= C.6x π
= D. 0x =
7、函数)sin(ϕω+=x y 的部分图象如右图,则ϕ、ω可以取的一组值是( )
A. ,24ππωϕ==
B. ,36ππωϕ==
C. ,44ππωϕ==
D. 5,44ππωϕ== 8、已知51sin()25
πα+=,那么cos α= A .25- B .15- C .15 D .25
二、填空题
1、函数2sin 2y x x =+的最小正周期为T 为 ;
2、已知tan()2,tan 3αββ+==,则3sin(2)2
πα+= ; 3、函数2sin (09)6
3x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为 ; 三、解答题
1、已知函数()2cos (sin cos )1f x x x x =-+,x ∈R .
(1)求函数()f x 的最小正周期;
(2)求函数()f x 在区间]4
π3,
8π[上的最小值和最大值. 2、已知1cos 7α=,13cos()14αβ-=,且02
πβα<<<, (1)求tan 2α的值; (2)求β。
3、已知函数22()sin cos 2cos f x x x x x =+,
(1)求()f x 的最小正周期
(2)求()f x 的单调区间。
4、已知函数()12f x x π⎛⎫=
- ⎪⎝⎭,x ∈R . (Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝
⎭. 5、已知函数=
)(x f )0(212sin sin 232>+-ωωωx x 的最小正周期为.π
(1)求ω的值及函数)(x f 的单调递增区间;
(2)当]2,0[π∈x 时,求函数)(x f 的值域。