等腰三角形经典例题
- 格式:docx
- 大小:60.69 KB
- 文档页数:2
专题3等腰(直角)三角形中动点问题【典型例题】1.(2021·黑龙江集贤·八年级期末)如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线分别交AC、AB边于点E、F.若点D为DC边的中点,点M为线段EF上一动点,则CDM周长的最小值为___.【答案】13.5【解析】【分析】连接MA、AD,易得MA=MC,则△CMD的周长为:MC+MD+CD=MA+MD+CD≥AD+CD,当M点在线段AD上时,△CMD的周长最小,再由面积可求得AD的长,从而可求得周长的最小值.【详解】如图,连接MA、AD∵EF垂直平分线段AC∴MA=MC∴△CMD的周长=MC+MD+CD=MA+MD+CD≥AD+CD∵点D为DC边的中点,BC=3∴1 1.52CD BC==∵AB=AC ∴AD⊥BC∴118 2BC AD⨯=即1318 2AD⨯=∴AD=12∴AD+CD=12+1.5=13.5即△MCD的周长的最小值为13.5故答案为:13.5【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质定理,三角形的面积,两点之间线段最短等知识,关键是利用线段的垂直平分线的性质定理作辅助线MA,把MC+MD的最小值问题转化为两点间线段最短来解决.【专题训练】一、填空题1.(2022·江苏昆山·八年级期末)如图,∠ABC=30°,AB=6,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是以AB为底的等腰三角形时,t的值为______秒.【答案】【解析】【分析】过点P作PD⊥AB于点D,根据等腰三角形有性质得到BD=3,再根据30度角的直角三角形的性质结合勾股定理即可求解.【详解】解:过点P作PD⊥AB于点D,∵△ABP是以AB为底的等腰三角形,即BP=PA,∴BD=DA=12AB=3,∵∠ABC=30°,∴BP=2PD,即12BP=PD,∵BP2-PD2=BD2,∴BP2-14BP2=32,解得:BP=∵点P的运动速度是每秒1个单位长度,∴t的值为故答案为:【点睛】本题考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理等知识点,解答本题的关键是明确题意,找出所求问题需要的条件.2.(2021·浙江·诸暨市暨阳初级中学八年级期中)如图∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=6,动点C从点A出发,以每秒1个单位沿射线AN运动,当运动时间t是_______秒时,△ABC是直角三角形.【答案】3或12【解析】【分析】分∠ACB=90°和∠ABC=90°两种情况,根据含30°角的直角三角形的性质求出AC,再求出答案即可.【详解】解:如图:当△ABC是以∠ACB=90°的直角三角形时,∵∠MAN=60°,∴∠ABC=30°,∴AC=13 2AB=,∴运动时间t=3311AC==秒,当△ABC是以∠ABC=90°的直角三角形时,∵∠MAN=60°,∴∠ACB=30°,∴AC=212AB=,∴运动时间t=121211AC==秒,当运动时间t是3或12秒时,△ABC是直角三角形.故答案为:3或12【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能熟记含30°角的直角三角形的性质是解此题的关键.3.(2022·新疆·乌鲁木齐市第四中学八年级期末)如图,在边长为6,面积为ABC中,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_______【答案】【解析】【分析】由等边三角形的对称性得到MC=BM,再利用垂线段最段解题.【详解】解:过点C 作CN AB ⊥于点N ,BD Q 平分∠BAC ,△ABC 为等边三角形,BM MC∴=∴BM +MN MC MN =+,当CN AB ⊥时,=MC MN CN +最小等边△ABC 面积为6,CN ∴故答案为:【点睛】本题考查轴对称—最短路径问题、等边三角形的性质等知识,是重要考点,掌握相关知识是解题关键.4.(2021·福建省罗源第二中学八年级期中)如图,在等腰△ABC 中,AB =AC ,∠BAC =120°,BC =30cm ,一动点P 从B 向C 以每秒2cm 的速度移动,当P 点移动____________秒时,PA 与△ABC 的腰垂直.【答案】5或10【解析】【分析】根据等腰三角形性质求出∠B =∠C =30°,分PA ⊥AC 和PA ⊥AB 两种情况分类讨论,得到BP =10cm 或BP =20cm ,即可求出点P 移动的时间.【详解】解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.如图①,当PA ⊥AC 时,∵∠C =30°.∴PC =2AP ,∠APC =60°,∴∠B =∠BAP =30°,∴AP =BP ,∴PC =2BP ,∴BP =13BC =13×30=10cm ,∴P 点移动了10÷2=5(秒);如图②当PA⊥AB时,∵∠B=30°.∴PB=2BP,∠APB=60°,∴∠C=∠CAP=30°,∴AP=CP,∴BP=2CP,∴BP=23BC=23×30=20cm,∴P点移动了20÷2=10(秒).故答案为:5或10【点睛】本题考查了等腰三角形的性质与判定,直角三角形性质等知识,熟知相关定理,根据条件分类讨论是解题关键5.(2022·福建省泉州实验中学八年级期末)如图,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,△PQR周长的最小值是______.【答案】423【解析】【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时△PQR周长最小,求出MQ,RQ,RN即可解决问题.【详解】过点P作AB,AC的对称点M,N,连接MN交AB于Q,交AC于R,设AP交MN于点D,则PQ MQ =,PR RN =,∴PQR 周长为PQ QR PR MQ QR EN MN ++=++≥,当,,,M Q R N 四点共线时,即当点P 是BC 的中点时,PQR 的周长最小,如图∵30BAC ∠=︒,∴75B C ∠=∠=︒,150MPN ∠=︒,∴15M N ∠=∠=︒,∴75MQB PQB B ∠=∠=∠=︒,∴MN BC ∥,2PQ PB ==,同理2PR PC ==,∵⊥AP BC ,∴AP MN ⊥.DP MN∴⊥PQ PR =DQ DR∴=∵180757530PQR ∠=︒-︒-︒=︒,∴Rt PDQ 中,112QD PQ ==∴==2QR DQ =⨯=,∴PQR 周长的最小值是22PQ QR PR ++=+=4+.故答案为:4+【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.6.(2022·辽宁铁西·八年级期末)同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt △ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB =.问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为_____.【答案】2或2【解析】【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,4BG ==,1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=【详解】解:如图1所示,设DF 与AB 交点为G ,∵∠ABC =30°,∠ACB =90°,∴2AB AC ==∴BC =,∵D 是BC 的中点,∴1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,∵DF ⊥AB ,∴∠DGB =∠FGB =90°,∴1324DG BD ==,1122EG EF BE ==,∴4BG ==,∴2332BE BG ==,∴AE AB BE =-=如图2所示,延长FD 与AB 交于点G ,同理可求出1324DG BD ==,4BG ==,1122EG EF BE ==,∴22BE BG GE BG =+==,∴2AE AB BE =-=,故答案为:2【点睛】本题主要考查了含30度角的直角三角形的性质,勾股定理,旋转的性质,熟练掌握含30度角的直角三角形的性质是解题的关键.7.(2021·全国·八年级专题练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.【答案】52或54或10【解析】【分析】根据POQ ∆是等腰三角形,分两种情况进行讨论:点P 在AO 上,或点P 在BO 上;根据POQ ∆是直角三角形,分两种情况进行讨论:PQ AB ⊥,或PQ OC ⊥,据此进行计算即可.【详解】解:如图,当PO QO =时,POQ ∆是等腰三角形,103PO AO AP t =-=-,OQ t =,∴当PO QO =时,103t t -=,解得52t =;如图,当PO QO =时,POQ ∆是等腰三角形,310PO AP AO t =-=-,OQ t =,∴当PO QO =时,310t t -=,解得5t =;如图,当PQ AB ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2(310)t t =⨯-,解得4t =;如图,当PQ OC ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2310t t =-,解得:t =10.故答案为:52或5;4或10.【点睛】本题主要考查了等腰三角形的性质以及直角三角形的性质,解决问题的关键是进行分类讨论,分类时注意不能遗漏,也不能重复.二、解答题8.(2021·浙江余杭·八年级期中)如图,已知在ABC 中,90B ∠=︒,10AC =,6BC =,若动点P 从点B 开始,按B A C B →→→的路径运动,且速度为每秒2个单位长度,设出发的时间为t 秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,CP 恰好平分ABC 的周长.(3)当t 为何值时,BCP 为等腰三角形?【答案】(1)PC 52(2)出发3秒钟后,CP 恰好平分△ABC 的周长(3)t =3或5.4或6或6.5时,△BCP 为等腰三角形【解析】【分析】(1)勾股定理求得AB 的长,进而根据速度求得出发2秒后BP 的长,Rt BCP △中勾股定理求解即可;(2)由于CP 恰好平分ABC 的周长,则P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意列出一元一次方程,解方程求解即可;(3)①当P 在AB 上时,若BP =BC 时,②当P 在AC 上时,若BP =BC 时,③当P 在AC 上时,若CB =CP 时,④当P 在AB 上时,若PC =PB 时,根据题意列出一元一次方程解方程求解即可(1)由∠B =90°,AC =10,BC =6,∴AB =8,∵P 从点B 开始,按B →A →C →B ,且速度为2,∴出发2秒后,则BP =4,AP =6,∵∠B =90°,∴在Rt BCP △中,由勾股定理得PC 22226452BP BC +=+=;(2)P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意可得,6+2t =10+8-2t ;解得t =3∴出发3秒钟后,CP 恰好平分△ABC 的周长(3)①当P 在AB 上时,若BP =BC 时,得到2t =6;则t =3,②当P 在AC 上时,若BP =BC 时,过点B 作BD AC ⊥,则68 4.810AB BC BD AB ⨯⨯===在Rt BDP △中,22226 4.8 3.6PD PD BD =-=-=在Rt ADB 中,22228 4.8 6.4AD AB BD =-=-=8 6.4 3.610.8BA AP BA AD PD ∴+=+-=+-=即210.8t =解得 5.4t =③当P 在AC 上时,若CB =CP 时,810612BA PA BA AC PC +=+-=+-=即212t =解得6t =④当P 在AC 上时,若PC =PB 时,15PA AB ==8513BA AP ∴+=+=得到2t=6;则t=6.5.综上可得t=3或5.4或6或6.5时,△BCP为等腰三角形.【点睛】本题考查了勾股定理,一元一次方程的应用,等腰三角形的性质与判定,分类讨论是解题的关键.9.(2022·吉林·八年级期末)如图,△ABC是等腰直角三角形,∠ACB=90°,AB=6.动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动.点P出发后,连接CP,以CP为直角边向右作等腰直角三角形CDP,使∠DCP=90°,连接PD,BD.设点P的运动时间为t秒.(1)△ABC的AB边上高为;(2)求BP的长(用含t的式子表示);(3)就图中情形求证:△ACP≌△BCD;(4)当BP:BD=1:2时,直接写出t的值.【答案】(1)3(2)当0<t≤3时,PB=6-2t;当t>3时,PB=2t-6;(3)见解析(4)t的值为2或6.【解析】【分析】(1)根据等腰直角三角形的性质解答即可;(2)根据两种情况,利用线段之间关系得出代数式即可;(3)根据SAS证明△ACP与△CBD全等即可;(4)利用全等三角形的性质解得即可.(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,AB=6,∴△ABC的AB边上高=12AB=3,故答案为:3;(2)解:∵AB=6,动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动,∴点P在线段AB上运动的时间为62=3(秒),当0<t≤3时,PB=6-2t,当t>3时,PB=2t-6;(3)证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵∠PCD=90°,CP=CD,∴∠ACP+∠PCB=90°,∠PCB+∠BCD=90°,∴∠ACP=∠BCD,在△ACP与△CBD中,AC BC ACP BCD CP CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△CBD (SAS );(4)解:∵△ACP ≌△CBD ,∴AP =BD ,当BP :BD =1:2,即BD =2BP 时,当0<t ≤3时,2t =2(6-2t ),解得:t =2;当BP :BD =1:2,即BD =2BP 时,当t >3时,2t =2(2t -6),解得:t =6,综上所述,t 的值为2或6.【点睛】本题是三角形的综合题,关键是根据等腰直角三角形的性质和全等三角形的判定和性质解答.10.(2022·福建·厦门一中八年级期末)在锐角△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D.(1)如图1,过点B 作BG ⊥AC 于点G ,求证:AC =BF ;(2)动点P 从点D 出发,沿射线DB 运动,连接AP ,过点A 作AQ ⊥AP ,且满足AP AQ =.①如图2,当点P 在线线段BD 上时,连接PQ 分别交AD 、AC 于点M 、N .请问是否存在某一时刻使得△APM 和△AQN 成轴对称,若有,求此刻∠APD 的大小;若没有,请说明理由.②如图3,连接BQ ,交直线AD 与点F ,当点P 在线段BD 上时,试猜想BP 和DF 的数量关系并证明;当点P 在DB 的延长线上时,若27AD FD =,请直接写出PB BD 的值.【答案】(1)证明过程见解析.(2)①存在某一时刻使得△APM 和△AQN 成轴对称,∠APD =30°,理由见解析.②BP =2DF ,47PB BD =【解析】【分析】(1)根据已知条件,证明△BDF 和△ADC 全等,即可得出AC =BF .(2)①因为∠C =60°在Rt △ABC 中∠CAD =30°,∠PAQ =90°,由对称的性质可知∠PAD =∠QAC =30°,所以可以得出∠APD =60°;②过Q 作QE ⊥AD ,交AD 与点E ,可证△APD ≌△QAE ,得出AE =PD ,再证△APD ≌△QAE ,得出EF =DF ,再通过等量代换即可.(1)证明:∵AD ⊥BC∴∠ADB =∠ADC =90°又∵∠B =45°∴△ABD 是等腰直角三角形∴AD =BD∵BG ⊥AC∴∠BGC =90°又∵∠C =60°∴∠DAC =90°-∠C =90°-60°=30°∠FBD =90°-∠C =90°-60°=30°∴∠DAC =∠FBD在△BDF 和△ADC 中,FBD CDA BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC ∴AC =BF(2)①存在某一时刻使得△APM 和△AQN 成轴对称∵AQ ⊥AP∴∠QAP =90°由(1)的证明知∠DAC =30°,根据对称的性质,得∠PAD =∠QAC =2QAP CAD ∠-∠=90︒︒-302=30°∵∠ADP =90°∴∠APD =90°-∠PAD =90°-30°=60°②BP =2DF理由如下:如图4所示,过Q 作QE ⊥AD ,交AD 与点E ,那么∠AEQ =∠FEQ =90°∴∠AQE +∠QAE =90°又∵∠PAD +∠QAE =90°∴∠AQE =∠PAD在△APD 和△QAE 中,AQE PAD AEQ PDA AQ AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△QAE ∴AE =PD ;AD =QE∴DE =BP又∵AD =BD∴BD =QE在△QEF 和△BDF 中,QEF BDF EFQ DFB EQ DB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△QEF ≌△BDF∴EF =DF∴BP =2DF当点P 在DB 的延长线上时,如下图所示,由上述证明过程可知PB =2DF ,BD =AD又已知27AD FD∴DF =27AD∴PB =2×27BD =47BD ∴PB BD =47【点睛】本题考查了三角形全等的判定与性质,解题的关键是通过适当的作辅助线找等量关系从而得出三角形全等,再由全等的性质找出线段的关系,本题是一道压轴题,比较难.11.(2022·北京顺义·八年级期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC 中,AB =AC ,AB BC的值为△ABC 的正度.已知:在△ABC 中,AB =AC ,若D 是△ABC 边上的动点(D 与A ,B ,C 不重合).(1)若∠A =90°,则△ABC 的正度为;(2)在图1,当点D 在腰AB 上(D 与A 、B 不重合)时,请用尺规作出等腰△ACD ,保留作图痕迹;若△ACD的正度是2,求∠A 的度数.(3)若∠A 是钝角,如图2,△ABC 的正度为35,△ABC 的周长为22,是否存在点D ,使△ACD 具有正度?若存在,求出△ACD 的正度;若不存在,说明理由.【答案】(1)22(2)图见解析,∠A =45°(335.【解析】【分析】(1)当∠A=90°,△ABC是等腰直角三角形,故可求解;(2)根据△ACD的正度是22,可得△ACD是以AC为底的等腰直角三角形,故可作图;(3)由△ABC的正度为35,周长为22,求出△ABC的三条边的长,然后分两种情况作图讨论即可求解.【详解】(1)∵∠A=90°,则△ABC是等腰直角三角形∴AB=AC∵AB2+AC2=BC2∴BC∴△ABC2故答案为:2 2;(2)∵△ACD1)可得△ACD是以AC为底的等腰直角三角形故作CD⊥AB于D点,如图,△ACD即为所求;∵△ACD是以AC为底的等腰直角三角形∴∠A=45°;(3)存在∵△ABC的正度为3 5,∴ABBC=35,设:AB=3x,BC=5x,则AC=3x,∵△ABC的周长为22,∴AB+BC+AC=22,即:3x+5x+3x=22,∴x=2,∴AB=3x=6,BC=5x=10,AC=3x=6,分两种情况:①当AC=CD=6时,如图过点A 作AE ⊥BC 于点E ,∵AB =AC ,∴BE =CE =12BC =5,∵CD =6,∴DE =CD −CE =1,在Rt △ACE 中,由勾股定理得:AE =在Rt △AED 中,由勾股定理得:AD =∴△ACD 的正度=AC AD =②当AD =CD 时,如图由①可知:BE =5,AE ,∵AD =CD ,∴DE =CE −CD =5−AD ,在Rt △ADE 中,由勾股定理得:AD 2−DE 2=AE 2,即:AD 2−(5−AD )2=11,解得:AD =185,∴△ACD 的正度=185365AD AC ==.综上所述存在两个点D ,使△ABD 具有正度.△ABD 35.【点睛】此题考查了等腰三角形的性质,解题的关键是理解正度的含义、熟知勾股定理与等腰三角形的性质.12.(2022·北京西城·八年级期末)在ABC 中,120BAC ∠=︒,AB AC =,AD 为ABC 的中线,点E 是射线AD 上一动点,连接CE ,作60CEM ∠=︒,射线EM 与射线BA 交于点F .(1)如图1,当点E 与点D 重合时,求证:2AB AF =;(2)如图2,当点E 在线段AD 上,且与点A ,D 不重合时,①依题意,补全图形;②用等式表示线段AB ,AF ,AE 之间的数量关系,并证明.(3)当点E 在线段AD 的延长线上,且ED AD ≠时,直接写出用等式表示的线段AB ,AF ,AE 之间的数量关系.【答案】(1)见解析;(2)AB AF AE =+,证明见解析;(3)当AD ED >时,AB AF AE =+,当AD ED <时,AB AE AF=-【解析】【分析】(1)根据等腰三角形三线合一的性质得60BAD CAD ∠=∠=︒,90ADC ∠=︒,从而可得在Rt ADB 中,30B ∠=︒,进而即可求解;(2)画出图形,在线段AB 上取点G ,使EG EA =,再证明()BGE FAE ASA ≅,进而即可得到结论;(3)分两种情况:当AD ED >时,当AD ED <时,分别画出图形,证明()BHE FAE ASA ≅或()NEF AEC ASA ≅,进而即可得到结论.【详解】(1)∵AB AC =,∴ABC 是等腰三角形,∵120BAC ∠=︒,∴30B C ∠=∠=︒,18012060FAC ∠=︒-︒=︒,∵AD 为ABC 的中线,∴60BAD CAD ∠=∠=︒,90ADC ∠=︒,∴6060120DAF CAD FAC ∠=∠+∠=︒+︒=︒,∵60CEM ∠=︒,∴906030ADF ∠=︒-︒=︒,∴180(12030)30AFD ∠=︒-︒+︒=︒,∴AD AF =,在Rt ADB 中,30B ∠=︒,∴22AB AD AF ==;(2)AB AF AE =+,证明如下:如图2,在线段AB 上取点G ,使EG EA =,∵60BAC ∠=︒,∴AEG △是等边三角形,∴60AEG ∠=︒,120BGE FAE ∠=∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴EB EC =,BED CED ∠=∠,∴AEB AEC ∠=∠,即AEG GEB CEF AEF ∠+∠=∠+∠,∵60CEF AEG ∠=∠=︒,∴GEB AEF ∠=∠,在BGE △与FAE 中,GEB AEF EG EA BGE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BGE FAE ASA ≅,∴GB AF =,∴AB GB AG AF AE =+=+;(3)当AD ED >时,如图3所示:与(2)同理:在线段AB 上取点H ,使EH EA =,∵60BAD ∠=︒,∴AEH △是等边三角形,∴120BHE FAE ∠=∠=︒,60AEH ∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴BED CED ∠=∠,∵60CEF AEH ∠=∠=︒,∴HEB AEF ∠=∠,∴()BHE FAE ASA ≅,∴HB AF =,∴AB HB AH AF AE =+=+,当AD ED <时,如图4所示:在线段AB 的延长线上取点N ,使EN EA =,∵60BAD ∠=︒,∴AEN △是等边三角形,∴60AEN FNE ∠=∠=︒,∵60CEF AEN ∠=∠=︒∴NEF AEC ∠=∠,在NEF 与AEC △中,60FNE CAE EN EA NEF AEC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()NEF AEC ASA ≅,∴NF AC AB ==,=,∴BN AF=-=-,∴AB AN BN AE AF∴AB AE AF=-.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.。
备考2024中考二轮数学《高频考点冲刺》(全国通用)专题17 等腰(等边)三角形问题考点扫描☆聚焦中考等腰(等边)三角形问题近几年各地中考主要以填空题或选择题考查,也有解答题出现,难度系数小,较简单,属于低档题;考查的知识点主要有:等腰三角形的性质与判定、等边三角形的性质与判定、线段的垂直平分线的性质;考查热点主要有:等腰三角形性质与判定、等边三角形性质与判定、线段垂直平分线的性质.考点剖析☆典型例题(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°2020•青海)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x ﹣4|=2的解,则△ABC的形状为三角形.2023•益阳)如图,AB∥CD,直线MN与AB,CD分别交于点E,F,CD上有一点G且GE =GF,∠1=122°,求∠2的度数.例4(2023•绵阳)如图,在等边△ABC中,BD是AC边上的中线,延长BC至点E,使CE=CD,若DE=,则AB=()A.B.6C.8D.例5(2021•宁夏)如图,在▱ABCD中,AD=4,对角线BD=8,分别以点A、B为圆心,以大于AB 的长为半径画弧,两弧相交于点E和点F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A.2B.3C.4D.5考点过关☆专项突破类型一等腰三角形的性质与判定1.(2023•南京)若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.202.(2023•眉山)如图,△ABC中,AB=AC,∠A=40°,则∠ACD的度数为()A.70°B.100°C.110°D.140°3.(2023•内蒙古)如图,直线a∥b,直线l与直线a,b分别相交于点A,B,点C在直线b上,且CA=CB.若∠1=32°,则∠2的度数为()A.32°B.58°C.74°D.75°4.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形5.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.46.(2023•重庆)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.7.(2023•西宁)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADB的度数是.8.(2023•山西)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.9.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.10.(2023•烟台)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.类型二等边三角形的性质与判定1.(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC 的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°2.(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合3.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°4.(2023•滨州)已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°5.(2019•铜仁市)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.6.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB 与△BOC的面积之和为()A.B.C.D.7.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.8.(2023•雅安)如图,四边形ABCD中,AB=AD,BC=DC,∠C=60°,AE∥CD交BC于点E,BC=8,AE=6,则AB的长为.9.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.10.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF 相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.类型三线段垂直平分线的性质1.(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=10°,则∠C的度数是.4.(2021•淮安)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.2B.4C.6D.85.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.186.(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC 的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4B.3C.2D.17.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.78.(2021•长沙)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.。
典型例题例题1 如图,P、Q是边BC上的两点,且,求的度数.分析由已知为等边三角形,故可求得它的外角的度数,又由等腰三角形的性质求得底角的度数.解(已知)∴(等边三角形三个角都为60°)∴(等边对等角)又(三角形的一个外角等于它不相邻的两个内角和)∴同理∴说明几何计算的目的通常是找量与量的关系,等腰三角形的两底角相等,等边三角形三内角均为60°,等腰三角形三线合一的性质等都是建立量与量的关系的依据.例题2 如图,在中,在CA的延长线上,是高.试说明EF与BC的位置关系.并说明理由.分析画出准确的图形,能看出,三角尺也能显示出有这样的关系,但这并不能作为理由.真正的理由应该用我们所学的知识去推理.结论是,从图中看EF、BC没有联系,但AD与BC是垂直的,只要说明,问题就解决了.解∴又为的一个外角∴∴∴∴∴说明(1)在同一三角形中,有边相等,要联想到角相等.(2)在这里AD起到“桥梁”的作用,有的题题目中没有现成的“桥梁”,还可以自己“制造”“桥梁”.拿本题来说,过点A画BC的平行线与EF相交,或者,过点E作BC的平行线与BA的延长线相交,也都可以作为“桥梁”.有兴趣的同学可以试一试.例题3 如图是我们最为熟悉的图形之一,这个图形可以看做是按照一定规则连结正五边形的顶点得到的,被称为正五角形.这个图形有几条对称轴?在这个图形中有哪些个等腰三角形?分析由这个图形与正五边形的关系知过点和B的直线,以及有类似特点的直线都是这个图形的对称轴.由于直线是图形的对称轴,所以图形沿直线进行翻折后,点与点重合,这使得线段与重合,线段与重合,可见与都是等腰三角形,利用同样的思路可以发现图中的其他等腰三角形.解这个图形有五条对称轴.在这个图形中共有十个等腰三角形,可以视为两组:;,以及说明如果你只发现了图中的五个三角形,请不要以“粗心”原谅自己,而应该感到自己从多角度观察、思考问题的意识不强,基本功还差.例题4 一个等腰三角形的周长为18cm,一边长为4cm,求其他两边的长.分析题目中给出“一边长为4”,究竟是腰长为4,还是底边长为4呢?都无法确定,也许这两种情况都有可能,所以应该分两种情况进行讨论.解若以4cm长的边为底边,设腰长为x cm,则 cm.若以4cm长的边为腰,设底边长为x,则 cm.,出现二边之和小于第三边的情况,所以以4cm长为腰不能组成三角形.故其他两边的长为7cm、7cm.说明(1)涉及等腰三角形的边的问题,在未指明腰和底的情况下,要分情况予以讨论.(2)凡涉及三角形三边的长时,一定要检查三边能否构成一个三角形。
第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。
经典例题透析类型一:探究型题目1.如图1,在直角△ABC中,∠ACB=90°,∠CAB=30°,请你设计三种不同的分法,把△ABC分割成两个三角形,且要求其中有一个是等腰三角形。
(在等腰三角形的两个底角处标明度数)思路点拨:在三角形中,“等边对等角”与“等角对等边”,本题应从角度入手进行考虑。
下面提供四种分割方法供大家参考。
解析:总结升华:对图形进行分割是近年来新出现的一类新题型,主要考查对基础知识的掌握情况以及动手实践能力,本类题目的答案有时不唯一。
举一反三:【变式1】如图3,D是△ABC中BC边上的一点,E是AD上的一点,EB=EC,∠1=∠2,求证:AD⊥BC。
请你先阅读下面的证明过程。
证明:在△AEB和△AEC中,所以△ABE≌△AEC(第一步),所以AB=AC,∠3=∠4(第二步),所以AD⊥BC(等腰三角形的“三线合一”)。
上面的证明过程是否正确?如果正确,请写出每一步的推理依据;如果不正确,请指出关键错在哪一步,写出你认为正确的证明过程。
【答案】第一步错误。
因为在△ABE和△AEC中有两边和其中一边的对角对应相等,不能判定它们全等。
正确的证明过程是:因为EB=EC,所以∠EBD=∠ECD,所以∠EBD+∠1=∠ECD+∠2,即:∠ABC=∠ACB,所以AB=AC。
在△AEB和△AEC中,所以△ABE≌△AEC,所以∠3=∠4,所以AD⊥BC(等腰三角形的“三线合一”)。
【变式2】已知△ABC为等边三角形,在图4中,点M是线段BC上任意一点,点N 是线段CA上任意一点,且BM=CN,直线BN与AM相交于Q点。
(1)请猜一猜:图4中∠BQM等于多少度?(2)若M、N两点分别在线段BC、CA的延长线上,其它条件下不变,如图5所示,(1)中的结论是否仍然成立?如果成立,请加以证明;如果不成立,请说明理由。
【答案】(1)题通常猜想、测量或证明等方法不难发现∠BQM=60°,而且这一结论在图形发生变化后仍然成立。
本次课课堂教学内容知识梳理:线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等。
线段垂直平分线的判定定理:到线段两端点距离相等的点在线段的垂直平分线上。
等腰三角形性质:等腰三角形底角相等等腰三角形两腰相等等腰三角形“三线合一”垂直平分线的性质与判定1.如图,在△ABC中,直线DE垂直平分线段AB,垂足为点E,交BC于点D,连接AD. 已知∠B=60°,∠C=50°,∠CAD的度数为.2.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E. 求证:DE=EC.3.如图,在△ABC中,DE,FG分别是边AB,AC的垂直平分线.(1)若BC=13,求△AEG的周长;(2)若∠BAC=120°,求∠EAG的度数.4.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15 cm,△BCE的周长等于25 cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BE=BC.5.如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC,连接CD,过点D作AB 的垂线,交AC于点E,连接BE,交CD于点F.求证:BE垂直平分CD.6. 如图,在△ABC中,∠ACB=90°,D是BC的延长线上一点,EH是BD的垂直平分线,DE 交AC于点F.求证:点E在AF的垂直平分线上.7.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O. 已知∠ACB=45°,DE=3,BD=CE+1.(1)求边BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为28 cm,求OA的长.8. 如图,已知锐角三角形ABC中,AB,AC边的中垂线交于点O,∠A=α(0°<α<90°). (1)求∠BOC的度数;(2)试判断∠ABO+∠ACB是否为定值.若是,求出定值;若不是,请说明理由.9.如图1,在△ABC中,若AD是∠BAC的平分线,过D点分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE=DF.探究发现:如图2,在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E,F分别在AB和AC上”.若∠AED+∠AFD=180°,则DE与DF是否仍相等?若相等,请证明之;若不相等,请举反例说明.10.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.11.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=6,BC=7,求△ABC的周长.12.如图,AD是△ABC的角平分线,AD的中垂线分别交AB、BC的延长线于点F、E,求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.等腰三角形的分类讨论方法指导:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分类讨论,可以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.应用1:当顶角或底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为( )A.40° B.100°C.40°或70° D.40°或100°2.如果等腰三角形的两个内角的度数之比为1:4,那么这个三角形三个内角各是多少度?应用2:当底和腰不确定时,分类讨论3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10 B.8C.10 D.6或124.等腰三角形的两边长分别为7和9,则其周长为________.5.若x,y满足|x-4|+(y-8)2=0,则以x,y的值为边长的等腰三角形的周长为________.应用3:当高的位置不确定时,分类讨论6.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.应用4:由腰的垂直平分线引起的分类讨论7.在△AB C中,AB=AC,AB边的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角∠B的度数.应用5:由腰上的中线引起的分类讨论8.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分,求腰长.本次课课后练习1.如图,在△ABC中,D是BC边的中点,DE⊥BC,交AC于点E,AD交BE于点F,若已知AD=AB.(1)求证:∠CAD=∠ABE;(2)求证:AF=DF.2.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.3.【定义】数学课上,陈老师对我们说:如果1条线段将一个三角形分成2个等腰三角形,那么这条线段就称为这个三角形的“好线”;如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】(1)如图①,在△ABC中,∠A=27°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数;(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形中最大内角的所有可能值为____________________________________________;(4)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在边BC上,点E 在边AB上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.。
等腰三角形典型例题
哎呀呀,啥是等腰三角形啊?让我来给你好好讲讲!
我们在数学课上,老师经常提到等腰三角形。
就好像我们班的同学一样,有的高,有的矮,有的胖,有的瘦,可等腰三角形就特别有特点。
比如说,有这么一道题:一个等腰三角形的两条边分别是5 厘米和10 厘米,那它的周长是多少呢?
这可难不倒我!我就想啊,如果5 厘米是腰长,那另一条腰也是5 厘米,可两条腰加起来才10 厘米,这怎么能围成三角形呢?这就好像用两根短木棍和一根长木棍,根本拼不成三角形嘛!所以啊,腰长只能是10 厘米,那周长不就是10 + 10 + 5 = 25 厘米嘛!
还有一道题,一个等腰三角形顶角是80 度,那底角是多少度呢?我马上就想到,等腰三角形两个底角相等,三角形内角和是180 度,那不就是(180 - 80)÷ 2 = 50 度嘛!这多简单!
我同桌还跟我争论,说他觉得不是这样算的。
我就跟他说:“你好好想想,三角形内角和是不变的呀,这不是明摆着的嘛!”
还有一次,老师在黑板上画了一个大大的等腰三角形,问我们:“如果这个等腰三角形的底边长是12 厘米,高是8 厘米,面积是多少?”我马上举手回答:“面积就是12×8÷2 = 48 平方厘米呀!”老师还表扬我了呢!
你说,这等腰三角形是不是很有趣?它就像一个神秘的小宝藏,等着我们去挖掘里面的秘密!
总之,通过这些典型例题,我发现只要认真思考,等腰三角形也没那么难嘛!。
专题16 等腰三角形的性质例题与求解【例1】如图,在△ABC 中,D 在AC 上,E 在AB 上,且AB =AC ,BC =BD ,AD =DE =BE , 则∠A =___________.(五城市联赛试题)解题思路:图中有很多相关的角,用∠A 的代数式表示这些角,建立关于∠A 的等式.【例2】如图,在△ABC 中,已知∠BAC =900,AB =AC ,D 为AC 中点,AE ⊥BD 于E ,延长AE 交BC 于F ,求证:∠ADB =∠CDF .(安徽省竞赛试题)解题思路:∠ADB 与∠CDF 对应的三角形不全等,因此,需构造全等三角形,而在等腰三角形中,作顶角的平分线或底边上的高(中线)是一条常用的辅助线.【例3】如图,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE =12BD ,求证:BD 是∠ABC 的角平分线. (北京市竞赛试题)解题思路:∠ABC 的角平分线与AE 边上的高重合,故应作辅助线补全图形,构造全等三角形、等腰三角形.【例4】如图,在△ABC 中,∠BAC =∠BCA =440,M 为△ABC 内一点,使∠MCA =300,∠MAC =160,求∠BMC 度数.(北京市竞赛试题)A EBCDA BCD E A BCD EF解题思路:作等腰△ABC 的对称轴(如图1),通过计算,证明全等三角形,又440+160=600;可以AB 为一边,向点C 所在的一侧作等边△ABN ,连结CN ,MN (如图2);或以AC 为一边,向点B 所在的一侧作等边△ACN ,连结BN (如图3).【例5】如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =1200的等腰三角形,以D 为顶点作一个600角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形.求证:△AMN 的周长等于2.(天津市竞赛试题)解题思路:欲证△AMN 的周长等于2,只需证明MN =BM +CN ,考虑用补短法证明.能力训练A 级1.如果等腰三角形一腰上的高另一腰的夹角为450,那么这个等腰三角形的底角为_____________. 2.如图,已知∠A =150,AB =BC =CD =DE =EF ,则∠FEM =_____________.3.如图,在等边△ABC 的AC ,BC 边上各取一点P 、Q ,使AP =CQ ,AQ ,BP 相交于点O ,则 ∠BOQ =____________.4.如图,在△ABC 中,∠BCA =900,∠BAC =600,BC =4,在CA 的延长线取点D ,使AD =AB ,则D ,B 两点之间的距离是____________.BACDN M BCMAB C M A 图 1 DO BC M A 图 2NBC MA 图 3 N5.如图,在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A .900-12∠A B .900-∠AC .1800-∠AD .450-12∠A 6.如图,在△ABC 中,∠ACB =900,AC =AE ,BC =BF ,则∠ECF =()A .600B .450C .300D .不确定(安徽省竞赛试题)B第5题图 第6题图7.△ABC 的一个内角的大小是400,且∠A =∠B ,那么∠C 的外角的大小是( )A .1400B .800或1000C .1000或1400D .800或1400(“希望杯”邀请赛试题) 8.三角形三边长a ,b ,c 满足1111a b c a b c -+=-+,则三角形一定是( ) A .等边三角形 B .以a 为底边的等腰三角形C .以c 为底边的等腰三角形D .等腰三角形(北京市竞赛试题)9.如图,在△ABC 中,AB =AC ,D ,E 分别是腰AB ,AC 延长线上的点,且BD =CE ,连结DE 交BC 于G ,求证:DG =EG .(湖北省竞赛试题)(第2题)BACDEFM NABC QPO(第3题)ABC D(第4题)ACBEF10.如图,在△ABC 中,∠BAC =900,AB =AC ,BE 平分∠ABC ,CE ⊥BE ,求证:CE =12BD . (江苏省竞赛试题)11.已知Rt △ABC 中,AC =BC ,∠C =900,D 为AB 边中点,∠EDF =900,将∠EDF 绕D 点旋转,它的两边分别交AC ,BC (或它们的延长线)于E 、F ,当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证:S △DEF +S △CEF =12S △ABC ,当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S △DEF ,S △CEF ,S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.(牡丹江市中考试题)12.如图,在△ABC 中,AB =AC ,∠BAC =800,O 为△ABC 内一点,且∠OBC =100,∠OCA =200,求∠BAO 的度数.(天津市竞赛试题)A B CAB CAB CE D FE DF DF图1图2图3ABC D GE A B C D EBB 级1.如图,在△ABC 中,∠ABC =1000,AM =AN ,CN =CP ,则∠MNP =_________.2.如图,在△ABC 中,AB =AC ,∠BAC =900,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下4个结论:①AE =CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC;④EF =AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合).上述结论正确的是____________.(苏州市中考试题)3.如图,在△ABC 中,AB =BC ,M ,N 为BC 边上两点,并且∠BAM =∠CAN ,MN =AN ,则∠MAC 的度数是____________.4.如图,在△ABC 中,AB =AC ,∠BAC 与∠ACB 的平分线相交于D ,∠ADC =1300,那么∠CAB 的大小是( )A .800B .500C .400D .2005.如图,在△ABC 中,∠BAC =1200,AD ⊥BC 于D ,且AB +BD =DC ,则∠C 的大小是( )A .200B .250C .300D .450 6.如图,在△ABC 中,AC =BC ,∠ACB =900,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连CD ,下列四个结论:①∠ADC =450;②BD =12AE ;③AC +CE =AB ;④AB -BC =2MC .其中正确结论的个数为( )A .1个B .2个C .3个D .4个7.如图,已知△ABC 为等边三角形,延长BC 至D ,延长BA 至E ,并且使AE =BD ,连结CE 、DE ,求证:CE =DE .ABCNM P (第1题)ABC PEF(第2题)AB CN M(第3题)A(第4题)B CD(第5题)ABCD ABD ECM(第6题)8.如图,△ABC 中,已知∠C =600,AC >BC ,又△ABC ′、△A ′BC 、△AB ′C 都是△ABC 外的等边三角形,而点D 在AC 上,且BC =DC .⑴ 证明:△C ′BD ≌△B ′DC ; ⑵ 证明:△AC ′D ≌△DB ′A ;⑶ 对△ABC 、△ABC ′、△A ′BC 、△AB ′C ,从面积大小关系上,你能得出什么结论?(江苏省竞赛试题)9.在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.(江苏省扬州中学测试题)10.如图,在△ABC 中,∠C =900,∠CAD =300,AC =BC =AD ,求证:CD =BD .A BCDEAB CDA ′B ′C ′ABC D。
等腰三角形典型例题【例1】如图所示,△ABC中,AB=AC,D在BC上,且BD=AD,DC=AC,求∠B的度数。
ACB D思路点拨:只要把“等边对等角”这一性质用在三个不同的等腰三角形中,然后用方程思想解题,列方程的依据是三角形的内角和定理。
解:∵AB=CD(已知)∴∠B=∠C(等边对等角)同理:∠B=∠BAD,∠CAD=∠CDA设∠B为X0,则∠C=X0,∠BAD=X0∴∠ADC=2X0,∠CAD=2X0在△ADC中,∵∠C+∠CAD+∠ADC=1800∴X+2X+2X=180∴X=36答:∠B的度数为360注:用代数方法解几何计算题常可使我们换翻为简。
练习1:如图所示,在△ABC中,D是AC上一点,并且AB=AD,DB=DC,若∠C=290,则∠A=___练习2:如图在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求△ABC 各角的度数?【例2】如图所示,在△ABC 中,AB=AC ,O 是△ABC 内一点,且OB=OC 。
求证:AO ⊥BC思路点拨:要证AO ⊥BC ,即证AO是等腰三角形底边上的高,根据三线合一定理,只要先证AO 是顶角的平分线即可。
B证明:延长AO 交BC 于DAB=AC (已知) 在△ABO 和△ACO 中 OB=OC (已知) AO=AO(公共边) ∴△ABO ≌△ACO (SSS ) ∴∠BAO=∠CAO即∠BAD=∠CAD (全等三角形的对应角相等)∴AD ⊥BC ,即AO ⊥BC (等腰三角形顶角的平分线与底边上的高互相重合)评注:本题用两次全等也可达到目的.。
练习:如图所示,点D 、E 在△ABC 的边BC 上,AB=AC ,AD=AE 求证:BD=CE【例3】求证等腰三角形底边上任一点到两腰的距离之和等于一腰上C的高。
思路点拨:本题为文字题,文字题必须按下列步骤进行:(1)根据题意画出图形;(2)根据图形写出“已知”、“求证”;(3)写出证明过程。
1.等腰三角形的性质性质1:等腰三角形的两个底角__________(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互__________(简写成“三线合一”).等腰三角形的其他性质:(1)等腰三角形两腰上的中线、高分别相等.(2)等腰三角形两底角的平分线相等.(3)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.(4)当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定判定等腰三角形的方法:(1)定义法:有两边__________的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对__________”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).【注意】(1)“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.(2)“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.3.等边三角形及其性质等边三角形的概念:三边都相等的三角形是__________三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.【注意】(1)等边三角形是轴对称图形,它有三条对称轴;(2)等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质.4.等边三角形的判定判定等边三角形的方法:(1)定义法:三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的__________三角形是等边三角形.5.含30°角的直角三角形的性质一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的__________.【注意】(1)该性质是含30°角的特殊直角三角形的性质,一般的直角三角形或非直角三角形没有这个性质,更不能应用.(2)这个性质主要应用于计算或证明线段的倍分关系.(3)该性质的证明出自于等边三角形,所以它与等边三角形联系密切.(4)在有些题目中,若给出的角是15°时,往往运用一个外角等于和它不相邻的两个内角的和将15°的角转化后,再利用这个性质解决问题.6.最短路径问题1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.K知识参考答案:1.相等,重合2.相等,等边3.等边,60°4.等腰5.一半K—重点等腰三角形的判定和性质,等边三角形的判定和性质K—难点等腰三角形中的分类讨论问题K—易错等腰三角形“三线合一”性质的应用一、等腰三角形的性质和判定1.应用“三线合一”性质的前提条件是在等腰三角形中,且必须是底边上的中线、底边上的高和顶角平分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.【例1】如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【答案】D【解析】因为AD⊥BC,D是BC的中点,所以△ABD与△ACD关于直线AD对称,由轴对称的性质可知△ABD ≌△ACD,∠B=∠C,△ABC是等腰三角形,但不能得到△ABC是等边三角形,故选D.【例2】已知等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角是A.30︒B.60︒C.150︒D.30︒或150︒【答案】D【例3】如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.二、等边三角形的性质和判定判定等边三角形时常用的选择方法:若已知三边关系,一般选用(1);若已知三角关系,一般选用(2);若已知该三角形是等腰三角形,一般选用(3).【例4】下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B【例5】如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.【答案】5【解析】已知∠AON=60°,当OP=OA=5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5.三、含30°角的直角三角形的性质含30°角的直角三角形的性质是求线段长度和证明线段倍分关系的重要依据.【例6】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm【答案】C四、最短路径问题通常利用轴对称变换将不在一条直线上的两条或多条线段转化到一条直线上,从而作出最短路径的选择. 【例7】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【解析】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.。
1、(2013年武汉)如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数
2、已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE=CD=1,连接DE ,则DE=
3、如图,梯形ABCD 中,AD ∥BC ,AB=2,BC=4,连结BD ,∠BAD 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为
4、如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为.
5、如图1,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E .
(1)求证:AE=BC ;
(2)如图(2),过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转角α(0°<α<144°)得到△AE ′F ′,连结CE ′,BF ′,求证:CE ′=BF ′;
第6题图D C B A
6、如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
7、如图,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ACD和△CBE设CD交AE于M,CE交BD于N, 求证:
(1)AE=BD;
(2)CM=CN;
(3)MN∥AB;
(4)△MCN是等边三角形。