高考文科数学解答题专题训练(一)三角函数
- 格式:docx
- 大小:71.59 KB
- 文档页数:8
α是第二象限角,因此23.(2013后得到函数5A.47 [,] 34B.12[,]43C.47[,]34D.13[,]34f(x-1)=f(|x-1|)|x-1|=t;f(t)≤,得到1/3≤;代入x解得选天津文)将函数f(x)=sin xω(其中)的图象向右平移个单位长度,所得图象经过点),则ω的最小值是35.(2014江苏)函数)42sin(3π+=x y 的最小正周期为π。
36.(2014江苏)已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是6π.37、(2017年新课标Ⅱ文)函数f (x )=2cos x +sin x 的最大值为.【解析】f (x )=2cos x +sin x ≤=,∴f (x )的最大值为.38、(2017?新课标Ⅰ理)已知曲线C 1:y=cosx ,C 2:y=sin (2x+),则下面结论正确的是( D )A 、把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B 、把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C 、把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D 、把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 239、(2017年新课标Ⅱ卷理)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是.【答案】1【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,那么[]cos 0,1x ∈,当3cos 2x =时,函数取得最大值1. 40.(2014大纲)若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是.【简解】()f x '=cosx(a-4sinx)≤0在x ∈(,)62ππ恒成立;a ≤4sinx 。
1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
(完整)高三文科数学三角函数专题测试题(后附答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高三文科数学三角函数专题测试题(后附答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高三文科数学三角函数专题测试题(后附答案)(word版可编辑修改)的全部内容。
高三文科数学三角函数专题测试题1.在△ABC中,已知错误!=错误!,则B的大小为()A.30°B.45°C.60°D.90°2.在△ABC中,已知A=75°,B=45°,b=4,则c=()A。
错误!B.2错误!C.4错误!D.23.在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=()A.4 3 B.2错误!C。
错误!D。
错误!在△ABC中,错误!=错误!,∴AC=错误!=错误!=2错误!。
4.在△ABC中,若∠A=30°,∠B=60°,则a∶b∶c=()A.1∶错误!∶2 B.1∶2∶4 C.2∶3∶4 D.1∶错误!∶2 5.在△ABC中,若sin A>sin B,则A与B的大小关系为() A.A〉B B.A〈B C.A≥B D.A、B的大小关系不能确定6.在△ABC中,∠ABC=错误!,AB=错误!,BC=3,则sin∠BAC=() A。
错误!B.错误!C.错误!D。
错误! 7.在△ABC中,a=1,b=错误!,c=2,则B等于()A.30°B.45°C.60°D.120°8.边长为5,7,8的三角形的最大角与最小角的和是()A.90°B.120°C.135°D.150°9.在△ABC中,b2+c2-a2=-bc,则A等于()A.60°B.135°C.120°D.90°10.在△ABC中,∠B=60°,b2=ac,则△ABC一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为()A.52 B.213C.16 D.412.在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2-b2)tan B=3ac,则∠B =()A.错误!B。
2021-2021 高考全国卷三角函数、解三角形真题汇编(文科)2021-2021 高考全国卷三角函数、解三角形真题汇编(文科)学校:姓名:班级:考号:评卷人得分一、选择题1. [2021・全国新课标卷I(文)]函数y=的部分图象大致为 ( ) -A. B. C.D.2. [2021・全国新课标卷I(文)]△ABC的内角A,B,C的对边分别为a,b,c.已知sinB+sin A(sin C-cos C)=0,a=2,c= ,则C= ( )A. B. C. D.3. [2021・全国新课标卷II(文)]函数f(x)=sin 的最小正周期为( ) A. 4πB. 2πC. πD.4. [2021・全国新课标卷III (文)]已知sin α-cos α=,则sin 2α= ( ) A. -B. -C.D.5. [2021・全国新课标卷III (文)]函数f(x)=sin +cos - 的最大值为 ( )A. B. 1 C. D. 6. [2021・全国新课标卷III (文)]函数y=1+x+的部分图象大致为( )第1页共4页A. B.C.D.7. [2021・高考全国新课标卷Ⅰ(文),4]△ABC的内角A,B,C的对边分别为a,b,c.已知a= ,c=2,cos A=,则b= ( )A. B. C. 2 D. 38. [2021・高考全国新课标卷Ⅰ(文),6]将函数y=2sin 的图象向右平移个周期后,所得图象对应的函数为 ( )A. y=2sinB. y=2sinC. y=2sin -D.y=2sin -9. [2021・高考全国新课标卷Ⅰ(文),12]若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是 ( )A. [-1,1]B. -C. -D. - -10. [2021・高考全国新课标卷Ⅱ(文),3]函数y=Asin(ωx+φ)的部分图象如图所示,则 ( )A. y=2sin -B. y=2sin -C. y=2sinD. y=2sin11. [2021・高考全国新课标卷Ⅱ(文),11]函数f(x)=cos2x+6cos - 的最大值为( )A. 4B. 5C. 6D. 712. [2021・高考全国新课标卷Ⅲ(文),6]若tan θ=-,则cos 2θ= ( )第2页共4页A. -B. -C.D.13. [2021・高考全国新课标卷Ⅲ(文),9]在△ABC中,B=,BC边上的高等于BC,则sin A= ( ) A. B. C. D.14. [2021・高考全国新课标卷Ⅰ(文),8]函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )A. - ,k∈ZB. - ,k∈ZC. - ,k∈ZD. - ,k∈Z15. [2021�q高考全国新课标卷Ⅰ(文),7]在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+),④y=tan(2x-)中,最小正周期为π的所有函数为( )A. ②④B. ①③④C. ①②③D. ①③16. [2021・高考全国新课标卷I(文),9]函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为( )A. B.C. D.17. [2021・高考全国新课标卷I(文),10]已知锐角△ABC的内角A,B,C的对边分别为2a,b,c,23cosA+cos2A=0,a=7,c=6,则b=( ) A. 10 B. 9 C.8 D. 5第3页共4页18. [2021・高考全国新课标卷II(文),4]△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为( )A. 2 +2B. +1C. 2 -2D. -119. [2021・高考全国新课标卷II(文),6]已知sin2α=,则cos(α+)=( ) A.B. C. D. 评卷人得分二、填空题220. [2021・全国新课标卷I(文)]已知α∈ ,tan α=2,则cos - = . 21. [2021・全国新课标卷II(文)]函数f(x)=2cos x+sin x的最大值为 . 22. [2021・全国新课标卷II(文)]△ABC的内角A,B,C的对边分别为a,b,c,若2bcos B=acos C+ccos A,则B= .23. [2021・全国新课标卷III (文)]△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b= ,c=3,则A= .24. [2021・高考全国新课标卷Ⅰ(文),14]已知θ是第四象限角,且sin ,则tan - = .25. [2021・高考全国新课标卷Ⅱ(文),15]△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .26. [2021・高考全国新课标卷Ⅲ(文),14]函数y=sin x- cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.27. [2021�q高考全国新课标卷Ⅰ(文),16]如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.28. [2021�q高考全国新课标Ⅱ(文),14]函数f(x)=sin(x+φ)-2sin φcos x的最大值为________. 29. [2021・高考全国新课标卷I(文),16]设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ= .30. [2021・高考全国新课标卷II(文),16]函数y=cos(2x+φ)(-π≤φ函数y=sin(2x+)的图象重合,则φ= .第4页共4页感谢您的阅读,祝您生活愉快。
三角函数【1】1、 已知函数x x x f cos sin )(-=,R x ∈.(1)求函数)(x f 的最小正周期;(2)若函数)(x f 在0x x =处取得最大值,求)3()2()(000x f x f x f ++ 的值.解:(1))4sin(2cos sin )(π-=-=x x x x f ,()f x ∴的最小正周期为2π(2)依题意,4320ππ+=k x (Z k ∈),由周期性,)3()2()(000x f x f x f ++12)49cos 49(sin )23cos 23(sin )43cos 43(sin-=-+-+-=ππππππ 2、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1) 由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64. 故a =b ×sinA sinB =2+62=1+3,c =b ×sinC sinB =2×sin60°sin45°= 6.3、设ABC ∆的内角,,A B C 所对的边长分别为,,,a b c且()2cos cos b A C =(1) 求角A 的大小。
(2) 若角6B π=,BC 边上的中线AM ,求ABC ∆的面积。
解:1)6π=A (7)2)3=S (7)4、如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=,3cos 5ADC ∠=.(Ⅰ)求sin ABD ∠的值; (Ⅱ)求ABD ∆的面积.解:(I )由3cos 5ADC ∠=,得24sin 1cos 5ADC ADC ∠=-∠=……………2分又5sin 13BAD ∠=,则212cos 1sin 13BAD BAD ∠=-∠=…………4分故()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠412353351351365=⨯-⨯=……………………7分(Ⅱ)在△ABD 中,由正弦定理知,sin sin BD ADBAD ABD =∠∠,则533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠……………………………………11分故ABD ∆的面积为1sin 3302S AD BD ADB =⋅∠=……………………14分5、设函数0)R,(x )4 x sin((x) f >∈+=ωπω的部分图象如右图所示。
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
高考文科三角函数 专训(一)选择题1、(重庆文)8.若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =A .4B .34C .16D .11162、(山东文)6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A)23 (B)32(C) 2 (D)33、(四川文)8.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π (B )[,)6ππ (C )(0,]3π (D )[,)3ππ4、(浙江文)(5)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)-12 (B) 12(C) -1 (D) 1 5、(天津文)7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数6、(湖南文).曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .2-D .2(二)填空题1、(全国新课标文)(15) ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为________.2、(全国大纲文)14.已知a ∈(3,2ππ),t a n 2,c o s αα=则=3、(上海文)4.函数2sin cos y x x =-的最大值为 。
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
三角函数(04年)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且31cos =A 。
(Ⅰ)求A CB 2cos 2sin 2++的值;(Ⅱ)若3=a ,求bc 的最大值。
(05年)已知函数x x x x f 2cos cos sin 2)(+=。
(Ⅰ)求)4(πf 的值;(Ⅱ)设)0(πα,∈,22)2(=αf ,求αsin 的值。
(06年)如图,函数)sin(2ϕπ+=x y ,R x ∈,(其中20πϕ≤≤)的图象与y 轴交于点)10(,。
(Ⅰ)求ϕ的值;(Ⅱ)设P 是图象上的最高点,N M ,是图象与x 轴的交点,求与的夹角。
(07年)已知ABC ∆的周长为12+,且C B A sin 2sin sin =+。
(Ⅰ)求边AB 的长;(Ⅱ)若ABC ∆的面积为C sin 61,求角C 的度数。
(09年)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且满足5522cos =A ,3=⋅AC AB 。
(Ⅰ)求ABC ∆的面积;(Ⅱ)若1=c ,求a 的值。
(10年)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,设S 为ABC ∆的面积,满足)(43222c b a S -+=。
(Ⅰ)求角C 的大小;(Ⅱ)求B A sin sin +的最大值。
(11年)已知函数)3sin()(ϕπ+=x A x f ,R x ∈,0>A ,20πϕ<<。
)(x f y =的部分图象如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为)1(A ,。
(Ⅰ)求)(x f 的最小正周期及ϕ的值;(Ⅱ)若点R 的坐标为)01(,,32π=∠PRQ ,求A 的值。
Q2004年第18题(满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且31cos =A 。
(Ⅰ)求A CB 2cos 2sin2++的值; (Ⅱ)若3=a ,求bc 的最大值。
20XX 届文科数学三角函数专题训练一、选择题1 .(20XX 年高考大纲卷(文))已知a 是第二象限角,5sin ,cos 13a a ==则A .1213-B .513-C .513D .12132 .(20XX年高考江西卷sincos 2αα==若 ( )A .23-B .13-C . 13D .233.(20XX 年高考课标Ⅱ卷(文))已知sin2α=,则cos 2(α+)=( )A .B .C .D .4.(20XX 年高考广东卷(文))已知51sin()25πα+=,那么cos α=( ) A .25- B .15- C .15 D .255.(20XX 年高考北京卷(文))在△ABC 中,3,5a b ==,1sin 3A =,则sinB =( )A .15B .59C.3D .16.(20XX 年高考陕西卷(文))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定7 .(20XX 年高考辽宁卷(文))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3πC .23πD .56π8 .(20XX 年高考课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC 的面积为( ) A .2+2B .+1C .2-2D .-19.(20XX 年高考山东卷(文))ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =,则c =( ) A.B .2CD .110.要得到函数y =sin ⎝⎛⎭⎫2x +π3的图象,只要把函数f (x )=sin2x 的图象( ) A .向右平移π3个单位 B .向左平移π3个单位C .向右平移π6个单位 D .向左平移π6个单位11.(20XX 年高考大纲卷(文))若函数()()sin0=y x ωϕωω=+>的部分图像如下图(左),则( )A .5B .4C .3D .212 .(20XX 年高考四川卷(文))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如上图(右)所示,则,ωϕ的值分别是 ( ) A .2,3π-B .2,6π-C .4,6π-D .4,3π13.(20XX 年高考安徽(文))设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( )A .3πB .23πC .34π D .56π14.(20XX 年高考课标Ⅰ卷(文))已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .515.(20XX 年浙江卷(文))函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是( )A .π,1B .π,2C .2π,1D .2π,2二、填空题1.(20XX 年高考四川卷(文))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.2.(20XX 年上海高考数学试题(文科))已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是________3.(20XX 年上海高考数学试题(文科))若1cos cos sin sin 3x y x y +=,则()cos 22x y -=________.4.(20XX 年高考课标Ⅰ卷(文))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.三、解答题1.(20XX 年高考辽宁卷(文))设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =⋅求的最大值2.(20XX 年高考陕西卷(文))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(20XX年高考大纲卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若1sin sin 4A C =,求C .4.(20XX 年高考天津卷(文))在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =,a = 3, 2cos 3B =.(Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值..5.(20XX 年高考浙江卷(文))在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 若a=6,b+c=8,求△ABC 的面积.6.(20XX 年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =++. (Ⅰ)求A ;(Ⅱ)设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.7.(20XX 年高考四川卷(文))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.8.(20XX 年高考江西卷(文))在△ABC 中,角A,B,C 的对边分别为a,b,c,sinAsinB+sinBsinC+cos2B=1.(1) 求证:a,b,c 成等差数列;(2) 若C=23π,求ab的值.9.(20XX 年高考安徽(文))设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.10.(20XX 年高考北京卷(文))已知函数21(2cos 1)sin 2cos 42f x x x x =-+().(I)求f x ()的最小正周期及最大值; (II)若(,)2παπ∈,且2f α=()求α的值.三家函数及解三角形部分复习要点 3. 同角三角函数基本关系(1)平方关系 (2)商数关系 4.和差角公式、二倍角公式、诱导公式、辅助角公式⑴()cosαβ-= ;⑵()cos αβ+= ;⑶()sin αβ-= ;⑷()sin αβ+= ; ⑸()tanαβ-= ⑹()tan αβ+=5、二倍角的正弦、余弦和正切公式: ⑴sin 2α= .⑵cos2α=(3)tan 2α=6. 函数()()sin 0,0y x ωϕω=A +A >>的性质:(1)周期 (2)最值 (3)单调区间(4)取得最值时X 的集合解三角形:1、正弦定理:2、正弦定理的变形公式;3、三角形面积公式:.4、余弦定理:5、推论:江川二中20XX 届文科数学回归基础练习3(3月20、21日周四、五)答案一、选择题ACACB AABBD BABDA二、填空题1.【答案】3 2.【答案】23π 3. 【答案】79- 4.【答案】;三、解答题1.(20XX 年高考辽宁卷(文))设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =⋅求的最大值【答案】2.(20XX 年高考陕西卷(文))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ) 上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈. ]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.3.(20XX年高考大纲卷(文))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若sin sin A C =,求C . 【答案】(Ⅰ)因为()()a b c a b c ac ++-+=,所以222a cb ac +-=-.由余弦定理得,2221cos 22a cb B ac +-==-, 因此,0120B =.(Ⅱ)由(Ⅰ)知060A C +=,所以cos()cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C =++122=+=故030A C -=或030A C -=-, 因此,015C =或045C =.4.(20XX 年高考天津卷(文))在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =,a = 3, 2cos 3B =.(Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.【答案】.5.(20XX 年高考浙江卷(文))在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=3b .(Ⅰ)求角A 的大小;(Ⅱ) 若a=6,b+c=8,求△ABC 的面积.【答案】解:(Ⅰ)由已知得到:2sin sin A B B=,且(0,)sin 0sin 22B B A π∈∴≠∴=,且(0,)23A A ππ∈∴=;(Ⅱ)由(1)知1cos 2A =,由已知得到:222128362()3366433623b c bc b c bc bc bc =+-⨯⇒+-=⇒-=⇒=,所以128232ABCS =⨯⨯= 11.(20XX 年高考重庆卷(文))(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c =+. (Ⅰ)求A ;(Ⅱ)设a =S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.12.(20XX 年高考四川卷(文))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.【答案】解:(Ⅰ)由3cos()cos sin()sin()5A B B A B A c ---+=- 得53sin )sin(cos )cos(-=---B B A B B A ,则 53)cos(-=+-B B A ,即 53cos -=A又π<<A 0,则 54sin =A (Ⅱ)由正弦定理,有BbA a sin sin =,所以22sin sin ==a A b B , 由题知b a >,则 B A >,故4π=B .根据余弦定理,有 )53(525)24(222-⨯⨯-+=c c , 解得 1=c 或 7-=c (负值舍去), 向量BA 在BC=B 22 13.(20XX 年高考江西卷(文))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c 成等差数列;(2) 若C=23π,求ab的值. 【答案】解:(1)由已知得sinAsinB+sinBsinC+1-2sin 2B=1.故sinAsinB+sinBsinC=2sin 2B因为sinB 不为0,所以sinA+sinC=2sinB 再由正弦定理得a+c=2b,所以a,b,c 成等差数列 (2)由余弦定理知2222cos c a b ac C =+-得2222(2)2cos3b a a b ac π-=+-化简得35a b = 14.(20XX 年高考安徽(文))设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.【答案】解:(1)3sincos 3cossin sin )(ππx x x x f ++=x x x x x cos 23sin 23cos 23sin 21sin +=++=)6sin(3)6sin()23()23(22ππ+=++=x x当1)6sin(-=+πx 时,3)(min -=x f ,此时)(,234,2236Z k k x k x ∈+=∴+=+πππππ所以,)(x f 的最小值为3-,此时x 的集合},234|{Z k k x x ∈+=ππ.(2)x y sin =横坐标不变,纵坐标变为原来的3倍,得x y sin 3=; 然后x y sin 3=向左平移6π个单位,得)6sin(3)(π+=x x f 15.(20XX 年高考北京卷(文))已知函数21(2cos 1)sin 2cos 42f x x x x =-+().(I)求f x ()的最小正周期及最大值;(II)若(,)2παπ∈,且f α=()求α的值. 【答案】解:(I)因为21(2cos 1)sin 2cos 42f x x x x =-+()=1cos 2sin 2cos 42x x x +=1(sin 4cos 4)2x x +)4x π+,所以()f x 的最小正周期为2π,最大值为2.(II)因为2f α=()所以sin(4)14πα+=. 因为(,)2παπ∈, 所以9174(,)444πππα+∈,所以5442ππα+=,故916πα=.。
大题专项练(一)三角函数A组基础通关1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0.(1)求角C的大小;(2)若c=2,求△ABC的面积S的最大值.因为c cos B+(b-2a)cos C=0,所以sin C cos B+(sin B-2sin A)cos C=0,所以sin C cos B+sin B cos C=2sin A cos C,所以sin(B+C)=2sin A cos C.又因为A+B+C=π,所以sin A=2sin A cos C.又因为A∈(0,π),所以sin A≠0,所以cos C=12.又C∈(0,π),所以C=π3.(2)由(1)知,C=π3,所以c2=a2+b2-2ab cos C=a2+b2-ab.又c=2,所以4=a2+b2-ab.又a2+b2≥2ab,当且仅当a=b时等号成立,所以ab≤4.所以△ABC面积的最大值(S△ABC)max=(12absinC)max=12×4×sinπ3=√3.2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC ;(2)设∠DCM=θ,若MB=4MC ,求tan θ.由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt △ABM 中,MB=2AM=4;在Rt △CDM 中,MC=2MD=2.在△MBC 中,由余弦定理,得BC 2=BM 2+MC 2-2BM ·MC ·cos ∠BMC=12,BC=2√3. (2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt △MCD 中,MC=1; 在Rt △MAB 中,MB=2sin (60°-θ),由MB=4MC ,得2sin(60°-θ)=sin θ, 所以√3cos θ-sin θ=sin θ, 即2sin θ=√3cos θ,整理可得tan θ=√32.3.已知向量m =(2a cos x ,sin x ),n =(cos x ,b cos x ),函数f (x )=m ·n -√32,函数f (x )在y 轴上的截距为√32,与y轴最近的最高点的坐标是(π12,1). (1)求函数f (x )的解析式;(2)将函数f (x )的图象向左平移φ(φ>0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin x 的图象,求φ的最小值.f (x )=m ·n -√32=2a cos 2x+b sin x cos x-√32,由f (0)=2a-√32=√32,得a=√32,此时,f (x )=√3cos 2x+bsin 2x ,由f (x )≤√34+b24=1,得b=1或b=-1,当b=1时,f (x )=sin (2x +π3),经检验(π12,1)为最高点;当b=-1时,f (x )=sin (2x +2π3),经检验(π12,1)不是最高点.故函数的解析式为f (x )=sin (2x +π3).(2)函数f (x )的图象向左平移φ个单位后得到函数y=sin 2x+2φ+π3的图象,横坐标伸长到原来的2倍后得到函数y=sin x+2φ+π3的图象,所以2φ+π3=2k π(k ∈Z ),φ=-π6+k π(k ∈Z ),因为φ>0,所以φ的最小值为5π6.4.函数f (x )=A sin (ωx +π6)(A>0,ω>0)的最大值为2,它的最小正周期为2π.(1)求函数f (x )的解析式;(2)若g (x )=cos x ·f (x ),求g (x )在区间[-π6,π4]上的最大值和最小值.由已知f (x )最小正周期为2π,所以2πω=2π,解得ω=1. 因为f (x )的最大值为2,所以A=2,所以f (x )的解析式为f (x )=2sin (x +π6).(2)因为f (x )=2sin (x +π6)=2sin x cos π6+2cos x sin π6=√3sin x+cos x ,所以g (x )=cos x ·f (x )=√3sin x cos x+cos 2x=√32sin 2x+1+cos2x2=sin (2x +π6)+12.因为-π6≤x ≤π4,所以-π6≤2x+π6≤2π3,于是,当2x+π6=π2,即x=π6时,g (x )取得最大值32;当2x+π6=-π6,即x=-π6时,g (x )取得最小值0. 5.已知函数f (x )=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如表:(1)求f (x )的解析式;(2)若在△ABC 中,AC=2,BC=3,f (A )=-12(A 为锐角),求△ABC 的面积.由题中表格给出的信息可知,函数f (x )的周期为T=3π4−(-π4)=π,所以ω=2ππ=2.注意到sin(2×0+φ)=1,也即φ=π2+2k π(k ∈Z ), 由0<φ<π,所以φ=π.所以函数的解析式为f (x )=sin (2x +π2)=cos 2x.(2)∵f (A )=cos 2A=-12,且A 为锐角,∴A=π3.在△ABC 中,由正弦定理得,BC sinA=ACsinB, ∴sin B=AC ·sinABC=2×√323=√33,∵BC>AC ,∴B<A=π3,∴cos B=√63,∴sin C=sin(A+B )=sin A cos B+cos A sin B=√3×√6+1×√3=3√2+√3, ∴S △ABC =12·AC ·BC ·sin C=12×2×3×3√2+√36=3√2+√32. 6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,C=π4,b=4,△ABC 的面积为6. (1)求c 的值; (2)求cos(B-C )的值.已知C=π4,b=4,因为S △ABC =1ab sin C ,即6=12×4a ×√22,解得a=3√2,由余弦定理,得c 2=b 2+a 2-2ab cos C=10,解得c=√10.(2)由(1)得cos B=a 2+c 2-b22ac=√55,由于B 是三角形的内角,得sin B=√1-cos 2B =2√55,所以cos(B-C )=cos B cos C+sin B sin C=√55×√22+2√55×√22=3√1010.B 组 能力提升7.如图,在凸四边形ABCD 中,C ,D 为定点,CD=√3,A ,B 为动点,满足AB=BC=DA=1.(1)写出cos C 与cos A 的关系式;(2)设△BCD 和△ABD 的面积分别为S 和T ,求S 2+T 2的最大值.在△BCD 中,由余弦定理,得BD 2=BC 2+CD 2-2·BC ·CD cos C=4-2√3cos C ,在△ABD 中,BD 2=2-2cos A ,所以4-2√3cos C=2-2cos A ,即cos A=√3cos C-1.(2)S=12·BC ·CD ·sin C=√3·sinC2,T=12AB ·AD sin A=12sin A ,所以S 2+T 2=34sin 2C+14sin 2A=34(1-cos 2C )+14(1-cos 2A )=-32cos 2C+√32cos C+34=-32(cosC -√36)2+78.由题意易知,C ∈(30°,90°),所以cos C ∈(0,√32),当cos C=√36时,S 2+T 2有最大值78.8.某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收,园林公司进行如下设计,安排圆内接四边形ABCD 作为绿化区域,其余作为市民活动区域.其中△ABD 区域种植花木后出售,△BCD 区域种植草皮后出售,已知草皮每平方米售价为a 元,花木每平方米的售价是草皮每平方米售价的三倍.若BC=6 km,AD=CD=4 km .(1)若BD=2√7 km,求绿化区域的面积;(2)设∠BCD=θ,当θ取何值时,园林公司的总销售金额最大.在△BCD 中,BD=2√7,BC=6,CD=4,由余弦定理,得cos ∠BCD=BC 2+CD 2-BD 22BC ·CD=62+42-(2√7)22×6×4=12.因为∠BCD ∈(0°,180°),所以∠BCD=60°, 又因为A ,B ,C ,D 四点共圆, 所以∠BAD=120°.在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , 将AD=4,BD=2√7代入化简,得AB 2+4AB-12=0, 解得AB=2(AB=-6舍去).所以S 四边形ABCD =S △ABD +S △BCD =12×2×4sin 120°+12×4×6sin 60°=8√3(km 2), 即绿化空间的面积为8√3 km 2.(2)在△BCD 、△ABD 中分别利用余弦定理得 BD 2=62+42-2×6×4cos θ, ① BD 2=AB 2+42-2×4AB cos(π-θ),②联立①②消去BD ,得AB 2+8AB cos θ+48cos θ-36=0, 得(AB+6)(AB+8cos θ-6)=0, 解得AB=6-8cos θ(AB=-6舍去).因为AB>0,所以6-8cos θ>0,即cos θ<34.S △ABD =12AB ·AD sin(π-θ)=12(6-8cos θ)×4sin θ=12sin θ-16sin θcos θ,S △BCD =12BC ·CD sinθ=12×6×4sin θ=12sin θ.因为草皮每平方米售价为a 元,则花木每平方米售价为3a 元,设销售金额为y 百万元. y=f (θ)=3a (12sin θ-16sin θcos θ)+12a sin θ=48a (sin θ-sin θcos θ),f'(θ)=48a (cos θ-cos 2θ+sin 2θ)=48a (-2cos 2θ+cos θ+1)=-48a (2cos θ+1)(cos θ-1),令f'(θ)>0,解得-12<cos θ<1,又cos θ<34,不妨设cos θ0=34,则函数f (θ)在(θ0,2π3)上为增函数; 令f'(θ)<0,解得cos θ<-12,则函数f (θ)在(2π3,π)上为减函数,所以当θ=2π3时,f (θ)max =36√3a.答:(1)绿化区域的面积为8√3 km 2;(2)当θ=2π3时,园林公司的销售金额最大,最大为36√3a 百万元.。