市场风险测度:VaR方法
- 格式:ppt
- 大小:281.00 KB
- 文档页数:36
VaR与CVaR的估计方法以及在风险管理中的应用共3篇VaR与CVaR的估计方法以及在风险管理中的应用1VaR与CVaR的估计方法以及在风险管理中的应用风险是商业活动中难以避免的一个关键因素。
为了保护投资者利益和企业的稳定性,需要对风险进行评估、量化和管理。
VaR (Value at Risk )与 CVaR(Conditional Value at Risk)是目前被广泛使用的风险管理工具。
本文将介绍VaR与CVaR的估计方法以及在风险管理中的应用。
VaR是指在一定置信水平下,某一金融产品在未来某一时间内的最大可能亏损额。
VaR的计算有三种方法:历史模拟法、蒙特卡洛模拟法和分布法。
历史模拟法是从历史数据中寻找与现实情况相似的数据,计算亏损额的百分位数。
历史模拟法的优点在于简单易行,但是对于极端事件的处理能力较弱。
蒙特卡洛模拟法是通过模拟大量随机事件来计算VaR,能够应对各种非线性关系,但是计算耗时长。
分布法是通过假定亏损额的分布概率分布,从而计算VaR,它是计算VaR最常用的方法之一。
CVaR是指在VaR达到一定值时,超过这个值亏损额的平均值。
CVaR是对VaR方法的补充,因为VaR无法提供亏损超过VaR的期望值。
CVaR的计算就是在求VaR的基础上,计算亏损额大于VaR的次数与实际亏损的平均值。
CVaR的计算需要VaR的基础上再做进一步计算,因此比VaR的计算更加复杂。
VaR和CVaR对风险管理有着广泛的应用。
比如在投资组合中,VaR的计算可以帮助投资者衡量风险,制定投资策略。
例如,他们可以计算某种股票收益在未来一个月内可能产生的最大损失,决定是否买入或卖出股票。
CVaR可以帮助投资者在执行投资策略时更好地应对风险管理,尽可能减少损失。
例如,在使用CVaR管理投资组合时,投资者会优先选择那些CVaR较小的证券,并避免遭受过大的亏损。
除了投资组合外,VaR和CVaR也广泛应用于保险、金融、商品和能源等领域。
市场风险测度之VaR方法VaR方法是一种基于统计学和概率论的市场风险测度方法,其核心思想是通过测量投资组合或资产的价格变动范围,来估计在一定置信水平下的最大可能损失。
VaR方法通过考虑价格波动、相关性和分布假设等因素,将市场风险以单一的数值表示,为投资者提供了一个快速且直观的衡量标准。
VaR方法的测算过程相对简单,通常可以通过历史数据、模拟分析和风险度量模型等多种方式来完成。
其中,历史数据法是最常用的方法之一,它通过分析过去一段时间的市场价格变动情况,计算得出投资组合或资产的VaR值。
模拟分析法则是基于随机模拟的方法,通过生成大量随机价格路径,从中计算得出VaR值。
风险度量模型则是建立在统计学和数理金融理论的基础上,通过建立适当的数学模型,计算得出VaR值。
VaR方法的测度结果可以为投资者提供一定的参考信息,帮助他们更好地识别和管理市场风险。
通过测算VaR值,投资者可以了解到在特定置信水平下的最大可能损失,从而对投资组合或资产的风险水平进行评估和控制。
例如,当VaR值较高时,投资者可以采取适当的对冲或风险管理策略来降低风险暴露;反之,当VaR值较低时,投资者可以考虑适度增加投资组合的风险敞口以追求更高的回报。
然而,需要注意的是,VaR方法存在一定的局限性。
首先,VaR方法是基于历史数据和假设的,对于极端市场事件的预测能力有限。
其次,VaR方法只提供了风险的下限,并不能绝对保证投资组合或资产的损失不会超过VaR值。
因此,在使用VaR方法进行风险测度时,投资者应该结合其他市场风险测度方法和风险管理工具,综合分析和评估风险暴露。
总之,VaR方法作为一种常用的市场风险测度方法,在金融领域发挥着重要的作用。
它通过测算最大可能损失来衡量投资组合或资产的市场风险,为投资者提供了一个快速且直观的风险度量标准。
然而,需要注意的是,VaR方法有其局限性,投资者应该在使用过程中综合考虑其他因素,并采取适当的风险管理策略。
V a R方法原理及应用-CAL-FENGHAI.-(YICAI)-Company One1VaR方法原理及应用随着经济全球化及投资自由化的日益加剧,金融市场风险导致各金融机构之间的竞争从原来的资源竞争逐渐转变为内部管理、业务创新、企业文化等方面的竞争,使金融机构的风险管理成为现代金融企业管理的基础和发展的基石。
在这样的背景下,国外各金融机构格外注重金融风险的测定和管理。
VaR 方法就是近年来在国外发展起来并被广泛应用的测度风险的一种重要的方法。
一、VaR的基本原理VaR,在险价值或风险价值是指市场正常波动下,某一金融资产或证券组合的最大可能损失。
更确切地说是在一定概率水平(置信度)下,某一金融资产或证券组合在未来特定时期内的最大可能损失。
用公式表示为:Prob(ΔPΔP:某一金融资产在一定持有期Δt的价值损失额。
VaR:置信水平σ下的风险价值——可能的最大损失。
σ:给定的概率——置信水平。
这一方法由JP摩根公司首次提出,以其对风险测度的科学、实用、准确和综合的特点受到包括监管部门在内的国际金融界的普遍欢迎,迅速发展成为风险管理的一种标准,并且与压力测试、情景分析和返回检验等一系列方法形成了风险管理的VaR体系。
VaR方法主要是对历史数据进行模拟运算,求出在不同置信度下的VaR值,为此需要建立一个假设交易组合值变化的分布。
该假设是以每日观察到的市场重要指标或其他组合有影响的市场因素(市场风险因素)的变化率为基础的,据此算出来的公司某日VaR值与当日组合可能的损失值相对应。
选择的置信水平应该反映金融资产管理者的风险厌恶程度,可以根据不同的投资者对风险的厌恶程度和对风险的承受能力来确定。
置信水平过低,损失超过VaR 值的极端事件发生的概率过高,使得VaR值失去意义;置信水平过高,超过VaR值的极端事件发生的概率可以降低,但统计样本中反映极端事件的数据也越来越少,这就使VaR值估计的准确性下降,现实中置信水平一般选择在95%到99%之间。
VaR的定义及算法当前应用广泛的VaR技术(V alue-at-risk)是1993年J·P·Morgon,G30集团在考察衍生产品的基础上提出的一种风险测度方法。
VaR方法一经提出便受到广泛欢迎:巴塞尔银行监管委员会于1996年推出的巴塞尔协议的补充规定中,明确提出基于银行内部VaR 值的内部模型法,并要求作为金融机构计量风险的基本方法之一;美国证券交易委员会(SEC)1997年1月规定上市公司必须及时披露其金融衍生工具交易所面临风险的量化信息,指出VaR方法是可以采用的三种方法之一;目前美国一些较著名的大商业银行和投资银行,甚至一些非金融机构已经采用VaR方法。
V AR之所以具有吸引力是因为它把银行的全部资产组合风险概括为一个简单的数字,并以美元计量单位来表示风险管理的核心——潜在亏损。
VaR的基本含义是在某一特定的持有期内,在给定的置信水平下,给定的资产或资产组合可能遭受的最大损失值。
这一含义体现了VaR 度量技术的综合性。
JP.Morgan定义为:V aR 是在既定头寸被冲销(be neutraliged)或重估前可能发生的市场价值最大损失的估计值;而Jorion则把VaR定义为:“给定置信区间的一个持有期内的最坏的预期损失”。
其数学定义式为:Prob(△p≥-VaR)=1-α其中:△p 表示在△t时间内,某资产或资产组合的损失;α为给定的置信水平。
对某资产或资产组合,在给定的持有期和给定的置信水平下,VaR给出了其最大可能的预期损失。
VaR计算主要涉及两个因素:目标时段和置信水平。
目标时段是指我们计算的是未来多长时间内的VaR,它的确定主要依赖于投资组合中资产的流动性而定,一般取为1天,1周,10天或1月;置信水平的确定主要取决于风险管理者的风险态度,一般取90%一99.9%。
为了更好的理解VaR的概念,可举例说明,例如J.P .M organ公司1994年年报披露,1994年该公司一天的95%VaR值为1500万美元。
VaR计算的不同方法及其比较随着金融领域不断发展,风险和风险管理已成为现代金融的核心,其中风险管理更成为现代金融学三大支柱之一。
现代风险管理全过程包括三个环节,在这当中风险度量又成为最重要的一环:只有将资产或投资组合面临的风险尽量准确地量化出来,才能让风险管理者对风险有一个清晰认识,从而做出进一步决策。
在险值(VaR)作为一种常用的风险度量方法,因其方便、准确的优势获得了认可和接受。
一、风险管理的环节现代风险管理已形成一套相对完善的体系,整个过程可分为三个主要环节:风险识别、风险度量和风险管理与控制。
1、风险识别风险管理首要步骤,即要对面临的风险形成一个清楚的认识。
根据不同分类标准,风险可分成以下几种:根据发生范围不同,分为系统性风险和非系统性风险;根据风险性质不同,分为经济风险、政治风险、社会风险等;根据风险原因不同可将金融风险分为市场风险、流动性风险、信用风险、操作风险等。
风险识别是风险管理的基础。
完成了对风险的认识和分类后,才可根据风险种类的不同在下一步风险度量中采用不同方法对风险进行测度。
2、风险度量风险管理重要环节。
为有效进行风险管理,管理者需将风险量化,进而找到适合的管理方案。
市场风险作为常见的金融风险之一,下面着重介绍针对市场风险的度量体系。
一个较完整的市场风险度量体系主要包括:敏感性分析、在险值(VaR)和情景分析与压力测试。
敏感性分析用以衡量当其它条件不变时,资产组合对市场上某单个市场风险因子变化的敏感程度。
在险值(VaR)指在某一确定置信水平α%下资产组合在未来特定时期内的最大可能损失。
目前VaR已成为金融市场风险管理中的主流方法,得到广泛应用。
情景分析与压力测试是对VaR的补充。
因为仅通过VaR,管理者不能知道当(1-α)%的小概率事件发生时,实际损失是多少,情景分析与压力测试可弥补这一不足。
3、风险管理与控制风险管理第三个环节,也是风险管理的目标。
主要风险控制策略包括风险分散、风险对冲、风险转移、风险规避和风险补偿与准备。
var在商业银行风险管理中的应用《var在商业银行风险管理中的应用》在商业银行的经营中,风险管理是至关重要的环节。
而在风险管理中,价值-at-risk(VaR)是一个重要的指标,它在商业银行的风险管理中起着至关重要的作用。
本文将深入探讨Var在商业银行风险管理中的应用,帮助读者更好地理解这一概念。
1. Var的概念在探讨Var在商业银行风险管理中的应用之前,我们首先需要了解Var的概念。
Var是一种衡量风险的方法,可以帮助我们估计在一定置信水平下的最大可能损失。
它通过对投资组合的价值进行统计分析,得出在未来一段时间内可能出现的最大亏损额。
这对于商业银行来说尤为重要,因为它们需要在风险可控的范围内开展业务。
2. Var在商业银行中的应用Var在商业银行中有着广泛的应用。
它可以帮助银行更好地衡量市场风险。
通过对各种金融工具和投资组合进行VaR计算,银行可以更好地了解自己的市场风险敞口,从而采取相应的对冲措施。
Var还可以用于信用风险的管理。
商业银行在放贷和信用担保中都存在着一定的信用风险,而Var可以帮助银行更好地评估和管理这一风险。
Var还可以应用于操作风险和流动性风险的管理,帮助银行更好地防范各种风险,保障自身的稳健经营。
3. Var的局限性然而,需要指出的是,Var作为一种风险测度方法并不是没有局限性的。
Var是基于历史数据和统计假设得出的,所以在某些情况下可能无法准确地反映风险的真实情况。
Var只能衡量投资组合的潜在亏损,而不能给出亏损发生的概率。
在实际应用中,商业银行还需要结合其他方法和工具,综合考虑各种风险因素,来全面评估和管理风险。
4. 个人观点和理解作为我的个人观点,我认为Var在商业银行风险管理中的应用是非常重要的。
它可以帮助银行更好地了解自身的风险敞口,从而及时采取有效的风险对冲和管理措施。
然而,我们也不能过分依赖Var,需要结合其他风险管理工具,来全面、深入地评估和管理风险。
只有在多种风险管理方法和工具的综合应用下,商业银行才能更好地应对各种风险挑战,保障自身的稳健经营。
风险度量中的VaR模型概述一、来源及定义自20世纪七十年代布雷顿森林体系崩溃以来,世界经济格局发生了重大变革。
金融市场得到了迅猛地发展,同时也带来了市场波动性的加剧和市场风险的复杂化。
金融机构和企业暴露在日益复杂的风险中,这在客观上对风险管理技术,尤其是对市场风险管理提出了更高的要求。
金融市场风险管理的基础和关键在于测量风险,即将风险定量化。
经过近三十多年的发展,国外投资组合风险管理的理论与方法已相当成熟,其主要包括三种思路:一是Markowitz资产组合理论框架下的投资组合风险管理;二是建立在Black scholes模型上的衍生工具风险管理理论及方法;三是研究的VaR及其拓展模型的风险管理理论及方法。
VaR最初在1993年被提出,是一种对在市场不利情况下潜在损失的测度。
而VaR的最大优点在于:不管金融风险的根源在哪个市场,V AR模型都可用一个数值表示未来某个时期的潜在损失,这样不同的市场、交易者和金融工具间就可进行风险的比较。
VaR(value at risk),按字面意思解释就是“按风险估价”,就是指在某一特定的时期内,对给定的置信度、给定的资产或资产组合可能遭受的最大损失值。
其数学定义为:P(ΔPΔt≤VaR)=1-δ,其中ΔPΔt表示在Δt时间内,某资产的市场值的变化,δ为给定的概率。
即:对某资产或资产组合,在市场条件下,对给定的时间区间和置信水平,VaR给出了其最大可能的预期损失。
也就是说,我们可以1-δ的概率保证,损失不会超过VaR。
VaR方法把一种资产或资产组合的风险归纳起来用一个单一的指标来衡量,把风险管理中所涉及的主要方面组合价值的潜在损失用具体的货币单位来表达。
资产组合价值波动的统计测量,其核心在于构造组合价值变化的概率分布,基本思想仍然是利用资产价值的历史波动信息来推断未来情形,只是对未来价值波动的推断不是一个确定值,而是一个概率分布。
令一种资产或一个投资组合的初始价值为P0,收益率为R,则期末的价值为P=P0(1+R)。
VaR得计算方法VaR(Value at Risk)按字面得解释就就是“处于风险状态得价值”,即在市场正常情况下,在一定置信水平下与一定期间内,某一金融工具或投资组合在未来资产价格波动下所面临得最大潜在损失值。
按J、P、Morgan得定义,VaR所测度得就是在一定得概率保证下,在一定时间内某种金融投资组合得潜在最大损失值。
(Value-at-risk ismeasure oftheMaximum potential change in the value of financial inst ruments with a givenprobabilityoverapre—sethorizon、)。
而按Philippe Jorion得定义,VaR就是在给定置信区间,在一个持有期内得最坏得预期损失。
VaR得计算方法很多,最简单得方法就用1、65乘以各股票或其组合得方差,但就是该方法就是以股票或组合得对数收益服从正态分布为假设前提得,而在现实中,该假设就是不成立得。
因此我们以RiskMetrics所提供得方法,用EWMA法(指数平滑法,ExponentiallyWeighedMoving Average)来估计各股票或其组合得方差,然后计算各股票或其组合得VaR值.具体算法如下:(1)计算各股票或其组合得对数收益:其中:表示指数在第t天得收盘价.(2)计算第一期得收益方差。
令第一期得收益方差等于当期收益得平方,即:2=R12σ1(3)采用EWMA方法计算其余各期得收益方差.2+(1—λ)R t2σt2=λσt-1其中λ=0、941为衰减因子。
(4)根据各期方差求出标准差σt1对于每日数据λ取0.94,月度数据λ取0.97。
取0.94与0.97是Riskmetrics运用“RMSE(Root mean squared error)最小准则”根据全球不同国家的480个实际的金融序列计算得出的,具体计算方法与步骤可参见J.P. Morgan, RiskMetrics TM—Technical Document 1996,P90~101。
商业银行市场风险的VaR度量方法的概述摘要:商业银行市场风险的度量一般采取标准法和内部模型法(即var模型)。
《巴塞尔新资本协议》之后,var模型逐渐成为商业银行主要的风险评价和管理工具。
然而var模型存在缺陷。
本文论述了实际应用中的var度量方法及其不足之处。
关键词:商业银行;市场风险;var1.引言市场风险是因股市价格、利率变动、汇率变动等引起的价值未预料到的潜在损失的风险。
市场风险包括权益风险、汇率风险、利率风险以及商品风险。
目前,商业银行市场风险的度量主要采取两种方法算风险,即标准法和内部模型法。
标准法将市场风险分类,首先分别确定利率、权益资产、外汇和商品的资本要求,然后对各类风险进行加权汇总,得出银行总的市场风险。
内部模型法即指var模型。
var(valueatrisk)指“风险资产的价值”,在合理的市场外部环境、给定的固定是时间段内和置信水平下金融产品或者是组合在今后面临波动情况下的最大损失。
巴塞尔委员会运用了三个量化指标来对var模型进行设置:十天内的潜在损失、99%的置信区间和一年以上的数据观测结果。
2.var度量原理和方法2.1var的计算原理var模型有零值var和均值var两种不同的类型。
零值var模型测度的是银行资产价值可能遭受的绝对损失,以初始价值作为风险测度的基准。
而均值var是表现的是资产价值偏离均值的相对损失,以均值作为风险测度的基准。
我们假定w为资产组合的期末价值,r为计算期投资回报率,为初始投资额。
假设r服从均值为u,方差为的正态分布,为资产组合在置信水平c下的价值下限,对应的投资回报率为r*。
则:为得到资产组合价值的概率分布情况,可假设w服从标准正态分布f(w),则可得置信水平c,和其概率分布f(w)存在如下关系:dw。
将f (w)标准化,以得到标准正态变量,并由此得到均值var和零值var的表达式:va=其中△t为时间间隔。
2.2 var的度量方法var的度量方法,包括全值估值法和局部估值法两种大的类型,全值估值法包括历史模拟法、蒙特卡罗模拟法和压力测试法等;局部估值法包括一个典型的代表德尔塔正态法。
VaR 的计算方法VaR (Value at Risk )按字面的解释就是“处于风险状态的价值”,即在市场正常情况下,在一定置信水平下和一定期间内,某一金融工具或投资组合在未来资产价格波动下所面临的最大潜在损失值。
按J.P. Morgan 的定义,VaR 所测度的是在一定的概率保证下,在一定时间内某种金融投资组合的潜在最大损失值。
(Value-at-risk is measure of the Maximum potential change in the value of financial instruments with a given probability over a pre-set horizon.)。
而按Philippe Jorion 的定义,VaR 是在给定置信区间,在一个持有期内的最坏的预期损失。
VaR 的计算方法很多,最简单的方法就用1.65乘以各股票或其组合的方差,但是该方法是以股票或组合的对数收益服从正态分布为假设前提的,而在现实中,该假设是不成立的。
因此我们以RiskMetrics 所提供的方法,用EWMA 法(指数平滑法,Exponentially Weighed Moving Average )来估计各股票或其组合的方差,然后计算各股票或其组合的VaR 值。
具体算法如下:(1)计算各股票或其组合的对数收益:1--=t t t LnP LnP R其中:t P 表示指数在第t 天的收盘价。
(2)计算第一期的收益方差。
令第一期的收益方差等于当期收益的平方,即:σ12=R 12(3)采用EWMA 方法计算其余各期的收益方差。
σt 2=λσt-12+(1-λ)R t 2其中λ=0.941为衰减因子。
(4)根据各期方差求出标准差σt(5)计算出各期的VaR 值1对于每日数据λ取0.94,月度数据λ取0.97。
取0.94与0.97是Riskmetrics 运用“RMSE (Root mean squared error )最小准则”根据全球不同国家的480个实际的金融序列计算得出的,具体计算方法与步骤可参见J.P. Morgan, RiskMetrics TM —Technical Document 1996,P90~101。