第二篇1章 能量系统的火用分析方法讲解
- 格式:ppt
- 大小:1003.00 KB
- 文档页数:32
火用分析摘要:火力发电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成为蒸汽,在这过程中燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。
本文主要在分析了火力发电厂热动力装置的工作原理后,提出系统火用分析数学模型及火用分析法,通过分析每个单元的火用损失,并由此建立简单蒸汽动力循环的火用平衡方程。
关键词:数学模型 火用分析 火用损 火用平衡方程火用分析的研究现状长期以来人们在不断探求能量系统的分析方法,近几年来人们对节能关注度很高,特别地人类能源面临着匮乏的危机,加大了各个国家在各个领域节能技术的研究,为此,火用分析理论对过程的热力学分析、工艺过程节能降耗和新工艺的开发设计有着十分重要的作用而得到迅速的发展。
人们通过对生产工艺系统的火用分析,可以展示系统用火用的状况。
揭示火用损分布规律,由此得到对系统能量的科学评价目前,国内外在石化、动力、冶金、制冷等技术领域以及以火用方法评价和指导用能实践,已获得日益广泛的应用。
目前,美国已经将火用分析方法用于热力系统的经济分析中,而我国在实际火电机组热力系统的分析方法都是依据热力学第一定律,依然还是建立在能量量的守恒上。
也有一些学者做出了基于热力学第二定律的分析研究,但这些优化方法多是理论指导只是单一的因素,还缺乏应用实践。
所以,我们的研究水平与发达国家还有很大的差距,为了热力系统的经济性、安全性以及更准确可靠地评价热力系统,这些方面的研究有待进一步的完善和发展火用分析的基本知识(一) 火用的定义和意义热力学定义:在环境条件下任意形式的能量中理论上能够转变为有用功的那部分能量称为该能量的火用,而不能转变为用用功的那部分能量称为火无。
于是,我们可以将任何一种形式的能量都看成是由火用和火无组成的 : 能量=火用+火无 即:n x A E E +=用火用的概念将热力学第一定律可以描述为:任何能量转换的过程,火用和火无的总和保持不变。
第二章燃烧系统第一节燃烧概况一概述燃烧方式采用从美国阿尔斯通能源公司引进的摆动式四角切圆燃烧技术。
本燃烧设备燃煤为神府东胜煤,采用中速磨煤机、冷一次风机、正压直吹式制粉系统设计,煤粉燃烧器为四角布置、切向燃烧、摆动式燃烧器。
燃烧器共设置六层煤粉喷嘴,锅炉配置6台HP1003型中速磨煤机,每台磨的出口由四根煤粉管接至炉膛四角的同一层煤粉喷嘴,锅炉MCR和ECR负荷时均投5层,另一层备用,煤粉细度R75=25%。
燃烧方式采用低NOx同轴燃烧系统(LNCFS)。
通过分析煤粉燃烧时NOx的生成机理,低NOx煤粉燃烧系统设计的主要任务是减少挥发份氮转化成NOx,其主要方法是建立早期着火和使用控制氧量的燃料/空气分段燃烧技术。
LNCFS的主要组件为:a.紧凑燃尽风(CCOFA);b.可水平摆动的分离燃尽风(SOFA);c.预置水平偏角的辅助风喷嘴(CFS);d.强化着火(EI)煤粉喷嘴。
LNCFS在降低NOx排放的同时,着重考虑提高锅炉不投油低负荷稳燃能力和燃烧效率。
通过技术的不断更新,LNCFS在防止炉内结渣、高温腐蚀和降低炉膛出口烟温偏差等方面,同样具有独特的效果。
主风箱设有6层强化着火煤粉喷嘴,在煤粉喷嘴四周布置有燃料风(周界风)。
在每相邻2层煤粉喷嘴之间布置有1层辅助风喷嘴,其中包括上下2只偏置的CFS喷嘴,1只直吹风喷嘴。
在主风箱上部设有2层CCOFA(Closed-coupled OFA,紧凑燃尽风)喷嘴,在主风箱下部设有1层UFA (Underfire Air,火下风)喷嘴。
参见图1:煤粉燃烧器布置图。
在主风箱上部布置有SOFA(Separated OFA,分离燃尽风)燃烧器,包括5层可水平摆动的分离燃尽风(SOFA)喷嘴。
参见图2:SOFA燃烧器布置图。
连同煤粉喷嘴的周界风,每角主燃烧器和SOFA燃烧器各有二次风挡板25组,均由电动执行器单独操作。
为满足锅炉汽温调节的需要,主燃烧器喷嘴采用摆动结构,由内外连杆组成一个摆动系统,由一台气动执行器集中带动作上下摆动。
目前的资源综合利用分析与评价主要是基于统计数据的指标评价。
较早出现并具有影响力的评价指标有联合国可持续发展委员会建立的可持续发展指标,蔡邦成等基于生态环境和经济可持续发展理念建立了区域可持续发展评价指标。
但是,指标评价存在数据统计工作繁多、指标计算过程复杂、不能给出量化的评价结果等问题。
在能源利用效率研究中,一直困扰人们的也是如何将非同质的能源投入要素、不同产出进行加总和成本分摊等问题,火用概念的提出解决了这个问题。
火用指能量、物质系统在只有环境作用的条件下,经历可逆过程达到与周围环境状态平衡时能产生的最大可用功。
火用为正确评价不同形态的能量、不同状态的物质的价值提供了统一的标尺[1]。
火用分析是根据进出系统火用的不平衡发现不可逆火用损失,对系统物质、能量利用状况给出全面评价的分析方法。
火用分析不仅已被广泛应用于冶金、电力、水泥等高耗能生产过程和设备的能量系统的分析和评价,火用理论也成为了评价地球和国家资源环境状况的重要工具。
建设资源节约、环境友好两型社会要求的是节约原材料、能源、资金、劳动力以及环境资源等的广义节能。
广义节能必须要有新的科学有效的分析和评价方法对经济系统进行评价和监督。
将火用理论与微观经济学结合,形成了交叉学科—火用(热)经济学。
火用(热)经济学在生产系统的综合经济性分析方面得到了应用。
张超等在单位火用成本基础上,分析了电厂热力系统在设计工况以及变工况下火用成本的分布规律,并且定量研究了各种运行参数对设备火用成本的影响。
而运用火用(热)经济学对运行机组各设备的火用成本变化进行在线监督,已经是热力系统故障诊断的主要方法之一。
但是,火用经济学分析中总是存在热力学参数火用与经济学量货币资金的分别衡算问题,衡算方程多,计算过程复杂。
目前,火用经济学分析的应用研究主要集中在只有单一火用流输入的火电厂或者供热系统的火用成本分析、经济性优化和故障诊断等方面。
生产资料(土地、原材料和能源等)、资金和劳动力是生产系统的3 个要素资源,随着环境恶化,生产的环境成本越来越高,环境资源也成为了生产要素资源之一。
2 能量系统的火用分析火用,exergy ,可以定义为热力系统在只与环境(自然界)发生作用而不受外界其它影响的前提下,可逆地变化到环境状态时所能作出的最大有用功。
火用表征了热力系统所具有的能量转变为机械能的能力,因此可以用来评价能量的质量、或品位、能级。
数量相同而形式不同的能量,火用大者其能的品位高或能质高;火用少的能的品位低或能质差。
机械能、电能的能质高,而热能则是低品质的能量,热能之中,温度高的热能比温度低的热能品位高。
根据热力学第二定律,高品质的能量总是能够自发地转变为低品质的能量,而低品质的能量永远不可能转变成为高品质的能量。
因此按品位用能是进行能量系统的火用分析所得到的第一个结论,也是能源工作者的基本守则之一。
在动力系统中(动力与动力系统,这里是指power 和power system ,而不是dynamics 和dynamic system ),火用分析正确地给出了可用能损失情况,为人们正确地改进动力循环,提高其热效率指明了途径。
在仅考虑热能直接利用的情况下,虽然不存在热能与机械能转换的问题,但火用分析仍然具有重要的意义,它可以指明如何充分地利用热能,典型的例子就是燃煤供热系统的火用分析结果:如果采用“热电联产+热泵系统”来代替燃煤直接供热的话,理论上可以获得比煤的热值多0.5~1倍的供热量,甚至更多(图2.1)。
但是火用分析忽视了火无的使用。
火无虽然不能用来作功以获得动力,却可以用来加热、取暖,而在火用分析中不能得到所供应能量中的火无有多少得到了利用的信息。
[1]对于复杂系统进行火用分析,可能得到重要的、不寻常的结论。
借鉴中国工程院院士陆钟武教授所提出的系统节能和载能体[2]的概念,对全工序、全流程、全行业或全地区进行比较仔细的火用分析,可能在能源利用方面提出新的见解1。
能源的利用与环境污染是密不可分的,系统节能理论也好,能源技术经济学也好,都提倡从全系统的角度综合评价能源的利用,而从经济性角度考虑,节能的经济性不一定好(实际上大部分都不好),如果把能源利用对环境造成的污染也折算成经济性指标与节能一同考虑,结论一定会大相径庭。