➢ 一维束缚态本征函数的图象
§2.6 一维薛定谔方程的普遍性质
➢ 能量本征函数性质,以x趋近正无穷大为例
§2.6 一维薛定谔方程的普遍性质
➢ 能量本征谱性质
•
振荡解,连续谱,二度简并,散射态
•
指数衰减解
振荡解
本征谱连续,无简并,非束缚态解
§2.6 一维薛定谔方程的普遍性质
• 简并
两端均指数衰减,束缚态解,分立谱,无
➢ 多粒子体系的推广
§2.1 波函数的统计解释
▪ 动量几率分布函数 =>Fourier变换频谱 展开
§2.1 波函数的统计解释
➢
可描写体系状态,
也可描写体系状态
是同一个态,不同自变量
§2.1 波函数的统计解释
➢
代表在
出现单色平面波
态中,
的几率
§2.1 波函数的统计解释
➢ 处在
的粒子,动量无确定值
2 2
2n 1
n 0,1,2,
H
n
2
n
nn
12
n2
nn
1n
2!
2n
3
2
n4
n
1 2
n!
2 n2
n 2
n 2
!
{ n
2
n/2
n 1/ 2
(n为偶数)
n为奇数
En
n
1 2
n 0,1,2,
En1 En
E0
1 2
1 2x2
n x Nne 2 Hn x
§2.3 薛定谔方程
➢ 力学量用算符表示 ➢ 两个惯例
1)只在直角坐标中适用,因为微商不协变 例:二维极坐标下的薛定谔方程