当前位置:文档之家› 柴油机电控共轨技术

柴油机电控共轨技术

柴油机电控共轨技术
柴油机电控共轨技术

第二节柴油机电控共轨技术

一、柴油机电控共轨系统简介

图8-44是博世公司生产的第一代高压电控共轨燃油系统。

图8-4 BOSCH 第一代高压电控共轨燃油系统

该系统的主要特点:

共轨压力为135 MPa;2、可实现预喷射;3、可实现闭环控制;

4、可用于3-8缸轿车柴油机;

5、排放可达欧3排放标准。

图8-45是日本电装公司开发的适用于轿车柴油机的高压电控共轨系统。

第一代电控共轨系统基本上是采用高速电磁阀作为执行器,承受的最高油压及系统的效率受到了限制,为了解决这一难题,许多公司正在开发采用压电晶体的电控共轨燃油系统。

图8-46是ECD-U2共轨系统在汽车上的实际布置图

电控共轨系统的特点可以概括如下:

(1)自由调节喷油压力(共轨压力):利用共轨压力传感器测量共轨内的燃油压力,从而调整供油泵的供油量。

(2)自由调节喷油量:以发动机的转速及油门开度信息等为基础,由计算机计算出最佳喷油量,通过控制喷油器电磁阀的通电、断电时刻及通电时间长短,直接控制喷油参数。

(3)自由调节喷油率形状:根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。

(4)自由调节喷油时间:根据发动机的转速和负荷等参数,计算出最佳喷油时间,并控制电控喷油器在适当的时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。

在电控共轨系统中,由各种传感器——发动机转速传感器、油门开度传感器、温度传感器等,实时检测出发动机的实际运行状态,由ECU根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油时间、喷油率等参数,使发动机始终都能在最佳状态下工作。

德国博世公司和日本电装公司的研究结果均表明:在直喷式柴油机中,采用电控共轨式燃油系统与采用普通凸轮驱动的泵管嘴系统相比,电控共轨系统与发动机匹配时更加方便灵活。其突出优点可以归纳如下:

(1)广阔的应用领域(用于轿车和轻型载货车,每缸功率可达30kW,用于重型载货车以及机车和船舶用柴油机,每缸功率约可达200kW左右)。

(2)更高的喷油压力,目前可达140 MPa,不久的将来计划达到180Mpa。

(3)喷油始点、喷油终点可以方便地改变。

(4)可以实现预喷射、主喷射和后喷射,可以根据排放等要求实现多段喷射。

(5)喷油压力与实际使用工况相适应。在电控共轨式燃油系统中,喷油压力的建立与燃油喷射之间无相互依存关系,喷油压力不取决于发动机转速和喷油量。在高压燃油存储器即“共轨”中,始终充满喷射用的具有一定压力的燃油。喷油量由计算机通过计算决定,受到的其他制约条件很少。

(6)喷油正时和喷油压力在ECU中由存储的特性曲线谱(MAP)算出。然后,电磁阀控制装在每个发动机气缸上的喷油器(喷油单元)予以实现。

ECU借助于传感器得知驾驶员的要求(加速踏板位置)以及发动机和车辆的实时工作状态。ECU处理由传感器检测到的信号并对车辆,特别是对发动机进行控制和调节。曲轴转速传感器测定发动机转速,凸轮轴转速传感器确定发火顺序(相位)。加速踏板传感器是一种电位计,它通过电信号通知ECU关于驾驶员对转矩的要求。

空气质量流量计检测空气质量流量。在涡轮增压并带增压压力调节的发动机中,增压压力传感器检测增压压力。在低温和发动机处于冷态时,ECU可根据冷却水温度传感器和空气温度传感器的数值对喷油始点、预喷油及其他参数进行最佳匹配。根据车辆的不同,还可将其他传感器和数据传输线接到ECU上,以适应日益增长的安全性和舒适性要求。

计算机具有自我诊断功能,对系统的主要零部件进行技术诊断,如果某个零件产生了故障,诊断系统会向驾驶员发出警报,并根据故障情况自动作出处理;或使发动机停止运行——即所谓故障应急功能,或切换控制方法,使车辆继续行驶到安全的地方。

在传统的泵管嘴嫌油系统中,喷油压力与发动机的转速、负荷有关,不是独立变量。

在高压电控共轨系统中,供油压力与发动机的转速、负荷无关,是可以独立控制的。由共轨压力传感器测出燃油压力,并与设定的目标喷油压力进行比较后进行反馈控制。

表8-2为轿车柴油机用三种燃油系统的比较

二、电控共轨系统的组成

电控共轨嫩油系统的主要组成部分是:电控喷油器、供油泵、各种传感器和电控单元ECU 等。

1、电控喷油器

在电控共轨系统中,设计、工艺难度最大的部件首推电控喷油器。到目前为为止,电控共轨系统中品种最多的部件也是电控喷油器。各种电控喷油器的基本原理相同,结构相似,但外形相差较大。

(一)电控喷油器概述

表8-3是电装公司和博世公司电控喷油器喷油量的试验数据。各种喷油器性能差不多仅有徽小的差别.

表8-4是根据一些资料整理的,当今世界上具有一定规模的柴油机燃油系统公司的电控喷油器的基本数据。

表8-4 电控喷油器基本资料

各种电控喷油器的基本资料表8-4

(二)电装公司的电控喷油器

电装公司在电控喷油器开发方面从80年代中期开始就一直走在世界前列。

表8-5是电装公司关于电控喷油器的产品开发规划图。

1.电控喷油器的规划

表8-5是电装公司关于电控喷油器的产品开发规划图。

1997年之前是基本产品开发阶段。从1998年开始到2001年是新型电控喷油器开发的第一阶段,主要是X1和X2型电控喷油器,2002年之后是断一代电控喷油器G2的开发阶段。关于G2型电控喷油器的具体资料还不多见。

2.三通阀结构和二通阀结构

电装公司最初开发的电控喷油器采用三通阀结构。在设计初期阶段,从理论上分析,三通阀结构具有很多优越性,但是实际试验和使用过程中发现,该三通阅结构并不如想像的好,因为燃油泄漏量较大。但是,

燃油从何处泄漏,如何减少燃

油泄漏等又没有有效的技术

措施。因此,使用后不久就废

止了,改成了二通阀结构。电

装公司三通阀喷油器和二通

阀喷油器的结构对比如图8-47

所示。

三通阀式喷油器的工作原理如图8-48 (b)所示。

当二通阀开启(通电,图8-48 (a))时,控制腔内的高压燃油经量孔2流人低压腔中,控制腔中的燃油压力降低,但是,喷油嘴压力室中的燃油压力仍是高压。压力室中的高压使针阀开启,向气缸内喷射燃油。当二通阀关闭(不通电)时,通过量孔1,控制腔中的然油压力升高,使针阀下降,喷油结束。这里有一个重要条件:量孔2的直径必须小于其左下方的量孔1的直径。否则不能进行上述工作。

二通阀的通电时刻确定了喷油始点,二通阀的通电时间长短确定喷油量。这些基本喷油参数都是电子脉冲控制的。TWv(二通阀)通过控制喷油器控制腔内的压力来控制喷油的开始和喷油终了。量孔大小既控制喷油嘴针阀的开启速度,也控制喷油率形状。控制活塞的作用是将控制腔内的油压作用力传递到喷油嘴针阀上。

三通阀的工作原理如图8-48(2)所示。在三通阀式喷油器的共轨系统中,共轨中总是高压,压力范围是15-130Mpa。三通阀有两个阀体:内阀(固定)和外阀(可动)。二阀同轴地、密密地配合在一起。内阀和外阀分别具有各自的密封座面。

三通阀电控喷油器的工作过程如下:

(1)不喷油状态:电磁线圈处于不通电的状态,外阀在弹簧力和高压油压力的作用下压向下方而关闭。控制腔内是共轨的高压燃油的压力,所以,喷油嘴的针阀关闭.不喷油。

(2)喷油开始状态:电磁阀开始通电,由于电磁力的作用,外阀被向上拉起,外阀开启,但是,这时内阀是关闭的;通过固定的节流孔燃油流出,针阀尾部的压力降低,针阀开始上升,喷射开始。如果持续通电,则针阀上升到最大升程,达到最大喷油率的状态。

(3)喷油结束状态:通向三通阀的电流一旦切断,在弹赞力和姗油压力的作用下,外阀下降而关闭。这时,共轨内的高压燃油一下子就流人喷油器的控制腔内,针阀快速关闭,喷油迅速结束。喷油始点和喷油延续时间由指令脉冲决定,与转速及负荷无关;因此,可以自由控制喷油时间。在主脉冲之前,有一个脉宽相当小的预喷射脉冲。在ECD-U2系统中,可以方便地实现预喷射。根据发动机的实际需要,预喷射形状可以有多种形式。

决定预喷射形状的参数有:预喷油量大小及预喷油与主喷油之间的时间间隔。但是,实现该理想的喷油速率图形的具体方法主要是准确而细致地调节脉冲始点、脉冲宽度和脉冲间隔。图8-49为喷油器的控制电路。

ECD-U2高压共轨燃油系统是完全的“时间一压力调节系统”。喷油量是由共轨压力和喷油器电磁阀通电脉冲宽度决定的。以共轨压力为参数,改变脉冲宽度,可以得到一条线性的喷油器的喷油量特性。利用这一特性,在发动机全部工作范围内,可以方便地得到如目标设定的调速特性。

近来,电控燃油系统的喷油率控制方

面取得了新的进展,在一次喷油循环中可以实现5段,甚至7段喷抽(理论上可以实现更多段喷油)。但其中只有一次是主喷油,其余均为辅助喷射,目的在于改善燃烧质量,改善排放等。在电控共轨燃油系统中,原则上都已经

解决了。根据ECU送来的电子控制信号,喷油器

将共轨内的高压燃油以最佳的喷油时刻、最适当

的喷油量、最合适的喷油率和喷雾状态喷入发动

机燃烧室中。电装公司电控喷油器的整体结构如

图8-49所示。喷油器的主要零件是:喷油嘴,控

制喷油率的量孔,控制活塞和二通阀。电控喷油

器中由电磁阀直接控制喷油始点、

喷油始点、喷油间隔和喷油终点,从而直接

控制喷油量、喷油时间和喷油率。电控喷油器实

际上完成了传统喷油装置中的喷油器、调速器和

提前器的功能。与直喷式柴油机中的机械式喷油

器体相似,喷油器可用压板等安装在气缸盖内。

设计良好的电控喷油器和传统的机械式喷油器结

构相近。因此,共轨式喷油器在直喷式柴油机中

的安装不需要显著改变气缸盖结构。

对于三通阀式电控喷油器和二通阀式电控喷油器曾进行过认真的对比分析。相对于三通阀喷油器来说,二通阀式电控喷油器具有两项重要改进:

(1)电磁阀密封部分减少:由原来的2处减少到1处。

(2)电磁线圈的结构:采用螺旋形磁铁。磁铁直径减小:由原来的φ30mm减小到φ25mm。驱动能量减少:从原来的120mj减小到70mJ。

相对于三通阀来说,二通阀式电控喷油器具有独特的优点:

(1)漏油量减少,燃油耗降低(燃油泄漏量减少:在1000r/min,120MPa下,燃油泄漏量从220mm3/行程减少到120mm3/行程)。

(2)结构紧凑,体积小,安装自由度大,在发动机上布置比较方便。

(3)排放改善,可满足高压化要求。

(4)ECU-EDU一体化。

(5)控制阀和针阀座面的耐磨性提高,密封面的密封性提高,重要零件的强度增加,工作可靠性提高,共轨压力明显提高等。

表8-6是二通阀式喷油器的喷油量特性曲线。图中表明脉宽和每循环喷油量的关系;

在不同的喷油压力下,脉宽相同,喷油量不同;喷油压力越高,喷油量越大。但是,左图和右图相比,带补偿电阻的喷油器和不带补偿电阻的喷油器的喷油量也有一定的区别。显然,带补偿电阻的电控喷油器喷油量特性的线性度提高了,分散度降低了。

表8-6

3.X2

型和G2型

电控喷油

电装

公司X2型

电控喷油

器的模型图可参见图8-50。其主要特点是:

(1)加在电磁阀上的油压降低了—由于采用了低压沟;密封座面耐磨性提高了;阀可承受的工作压力提高了—从135MPa提高到160MPao

(2)整体结构更加小型化—头部高度降低了。

(3)可靠性提高了—由于采用CrN镀层、采用陶瓷元件

(4)可承受的面压提高了;强度方面进行了计算校核。

下一代的G2型喷油器的主要特点如下:

图8-50 电装公司X2型电控喷油器

(1)喷油高压化。设法降低喷油嘴偶件座面的接触压力。例如:将指令活塞的直径从φ5.0减小到料φ4.3mtn。密封性能提高;耐压强度提高;滑动面之间的耐磨性能提高;针阀座面的耐磨性能提高。

(2)减小喷油量的波动偏差。改进电磁阀的响应特性,增加外部调节机构——二通阀的设定负荷、升程大小等。

(3)实现多段喷油化、减小多段喷油之间的时间间隔——从0.7ms降低到0.4ms(目标值)。改善电磁阀的响应特性,减小控制室的容积。

(4)降低成本。电磁阀的机构更加简单一一螺旋型改成容积型(bulk),执行器改成针阀式一体阀等。

下一代的G2型电控喷油器的工作原理如图8-51所示

2、供油泵

供油泵的主要作用是将低压燃油加压成高压燃油,储存在共轨内,等待ECU的喷射指令。供油压力可以通过压力限制器进行设定。所以,在共轨系统中可以自由地控制喷油压力。

电装公司关于共轨系统的供油泵有一套完整的开发计划。表8-7是电装公司供油泵的产品系列概况。

图8-52是电装公司关于供油泵的十年发展规划图。从20世纪90年代开始研发到2001年是第一阶段,从2002年开始到2006年是第二阶段。

电装公司共轨系统供油泵的基本参数如表8-8所示。

第一代产品是直列泵型的HPO型供油泵系列。HPO系列供油泵有:HPO-UHD, HPO-HD 和HPO-MD.

第二代产品的特征是:FM系列供油泵的供油压力提高到180MPa,推出了ECD-U2(P)用的转子式供油泵——HP3和HP4。在转子式供油泵中全部采用进油计量,供油压力均为

180Mpa。

HPO系列供油泵的主要特征可以归纳如下:

(1)可靠性高

可以满足高供油压力的要求:第一阶段:120 -140MPa;第二阶段:160-180MPa;采用机油润滑;使用寿命长;使用过程中故障少。这些均已被市场使用实践所证实。

(2)效率高

因为采用电磁阀控制预行程,只对需要的供油量作功,不必对多余的燃油进行加压;实现同步控制,一副柱塞偶件用三个凸轮完成压油。

(3)成本低

一个凸轮基圆对应三个凸轮,因此,气缸数减少;最多的有四个凸轮,可以用于8缸柴油机。

HPO系列供油泵是柱塞式直列泵,有2缸,也有3缸,采用发动机机油强制润滑,不需要维护。此外,还设有直通共油阀,当泵体内压力超过255kPa时,直通供抽阀开启,燃油流回油箱中。不同的发动机可以选用不同的供油泵。一般说来,大型柴油机选用类似于直立泵的供油泵,小型柴油机可以选用类似于分配泵的转子式供油泵。

供油泵产生的高压然油经共轨分配到各个气缸的喷油器中;燃油压力由设置在共轨内的压力传感器检出,反馈到控制系统,并使实际压力值和事先设定的、与发动机转速和发动机负荷相适应的压力值始终一致。

直列式供油泵结构和传统的直列式喷油泵的结构相似,通过凸轮和柱塞机构使燃油增压,各柱塞上方配置供油阀。凸轮有单作用型、双作用型、三作用型和四作用型等多种;采用三作用型凸轮可使柱塞单元减少到1/3。向共轨中供油的频率应和喷油孩率相同,这样可使共轨中的压力波动平稳。

HP型供油泵的基本工作原理如图8-53所示

A——柱塞下行,控制阀开启,低压燃油经控制阀流人柱塞腔;

B——柱塞上行,但控制阀中尚未通电,控制阀仍处于开启状态,吸进了的燃油并未升压,经控制阀油流回低压腔;

C——ECU计算出满足必要的供油量的定时,适时地向控制阀供电,并使之开启,切断回油流路,柱塞腔内燃油增压;因此,高压燃油经出油阀(单向阀)压人共轨内;控制阀开启后的柱塞行程与供油量对应。如果使控制阀的开启时间(柱塞的预行程)改变,则供油量随之改变,从而可以控制共轨压力;

D——凸轮越过最大升程后,则柱塞进人下降行程,柱塞腔内的压力降低;这时出油阀关闭,压油停止;控制阀处于停止通电状态,控制阀开启,低压燃油将被吸人柱塞腔内,即回复到A状态。

电装公司的第二代供油泵采用转子式,其结构如图8-54所示。

3、ECU

ECU——Electronic Control Unit(电子控制单元)。

同样的部件,不同厂家的名称不尽一致,例如,日本电装公司叫做ECU,博世公司则称为EDC,威孚公司也称为EDC,还有的叫做Engine Control Unit-发动机控制单元等。

电装公司早期称为ECU;后来,由于增加了EDU(电控驱动单元),ECU和EDU并列安装。然后,又将ECU和EDU合并成一体,仍称ECU。现在,统称为ECM(发动机控制模块)。不管名称如何,其基本功能是始终一致的。

ECU的基本功能是结合实时工况和外界条件,始终使发动机控制在最佳燃烧状态。

ECU广泛用于各种电控系统中。例如:电控共轨系统、TICS系统、电子调速器、电控分配泵、电控泵喷嘴等。

(一)作用和工作原理

ECU按照预先设计的程序计算各种传感器送来的信息,经过处理以后,并把各个参数限制在允许的电压电平上,再发送给各相关的执行机构,执行各种预定的控制功能。

微处理机根据输人数据和存储在MAP的中的数据,计算喷油时间、喷油量、喷油率和喷油定时等,并将这些参数转换为与发动机运行匹配的随时间变化的电量。由于发动机的工作是高速变化的,而且要求计算精度高,处理速度快,因此ECU的性能应当随发动机技术的发展而发展,徽处理器的内存越来越大,信息处理能力越来越高。

图8-55是日本电装公司ECD-U2系统与五十铃汽车公司6HK1-TC柴油机实际配用的ECU。图8-56是6HK1-TC柴油机的电控共轨式燃油系统的线路图。

4、传感器

(一)共执压力传感器

共轨压力传感器的作用是以足够的精度,在相应较短的时间内,测定共轨中的实时压力,并向ECU提供电信号。

图8-57博世公司共轨压力传感器

图8-57是博世公司共轨压力传感器的结构图。图8-58是日本电装公司ECD-U2型电控共轨系统压力传感器的结构和特性曲线。

共轨压力传感器由下列构件组成:压力敏感元件(焊接在压力接头上);带求值电路的电路板和带电气插头的传感器外壳。

燃油经一个小孔流向共轨压力传感器,传感器的膜片将孔的末端封住。高压燃油经压力室的小孔流向膜片。膜片上装有半导体型敏感元件,可将压力转换为电信号。通过连接导线将产生的电信号传送到一个向ECU提供测量信号的求值电路。

共轨压力传感器的工作原理是:当膜片形状改变时,膜片上涂层的电阻发生变化。这样,由系统压力引起膜片形状变化(150MPa时变化量约lmm),促使电阻值改变,并在用5V 供电的电阻电桥中产生电压变化。电压在0-70mV之间变化(具体数值由压力而定),经求值电路放大到0.5-4.5V。精确测量共轨中的压力是电控共轨系统正常工作的必要条件。为此,压力传感器在测量压力时允许偏差很小。在主要工作范围内,测量精度约为最大值的2%。

共轨压力传感器失效时,具有应急行驶功能的调压阀以固定的预定值进行控制

(二)流量限制器

在博世电控共轨系统中装有流量限制器。该流量限制器的作用和电装公司电控共轨系统中的流动缓冲器相仿。

流量限制器的作用是防止喷油器可能出现的持续喷油现象。为此,由共轨流出的油量超过最大流量时,流量限制器将自动关闭流向相应喷油器的进油口,停止继续喷油。

图8-60 流量限制器的工作

原理图8-59 流量限制器

流量限制器(图8-59)有一个金属外壳,外壳有外螺纹,以便拧在共轨上,另一端的外螺纹用来拧人喷油器的进油管。外壳两端有孔,以便与共轨或喷油器进油管建立液压联系。流量限制器内部有一个活塞,一根弹簧将此活塞向共轨方向压紧。活塞对外壳壁部密封。活塞上的纵向孔连接进油孔和出油孔。纵向孔直径在末端是缩小的,这种缩小的作用就像流量精确规定的节流孔效果一样。

流量限制器的工作原理如图8-60所示,正常工作状态是:活塞处在静止位置,即靠在共轨端的限位体上。一次喷油后,喷油器端的压力略有下降,从而活塞向喷油器方向运动。活塞压出的容积补偿了喷油器喷出的容积。在喷油终了时,活塞停止运动,不关闭密封座面,弹簧将活塞压回到静止位置。燃油经节流孔流出。弹簧和节流孔尺寸是如此设计的:使得在最大喷油量(包括一个安全储备量)时活塞仍能抵达共轨端的限位体位置。此静止位置一直保持至、到下一次喷油。

泄油量过大时的保护性工作原理:由于喷出的油量过大,活塞从静止位置被压到出油端的密封座面上。然后,活塞在此位置一直保持到发动机停机时靠在喷油器端的限位体上,从而关闭通往喷油器的进油口。

泄油量过小时的保护性工作原理:由于产生泄油,活塞不再能达到静止位置。经过几次喷油后,活塞移动到出油端的密封座面上。即在此处,活塞停留到发动机停机时靠在喷油器端的限位体上,从而将通往喷油器的进油口关闭。

(三)流动缓冲器

电装公司的流动缓冲器的结构如图8-61所示。流动缓冲器的基本工作原理如图8-62所示。

当处于静态时,球将量孔堵死,没有燃油流动。当加上一定的压力,球的位移为L1时,则对应着一定的流量。

如果因为某种原因,流量突然加大时,则球的位移加大,达到L1+L2时,球将右侧的出油孔堵死,即球落座,再也没有燃油流向喷油器,起到保护作用。

(四)压力限制器

压力限制器的作用相当于安全阀(但是,并不控制压力),它的基本作用是限制共轨中的压力过高或过低。因为某种原因,当共轨中的压力达到140 MPa时,则压力限制器开启,打开卸油孔卸压。当压力下降到约30 MPa时,球阀复位。始终维持共轨内的压力,不致过高或过低。

压力限制器的结构和工作原理如图8-63所示。在正常状态下,球阀处于落座位置,共轨内维持正常压力;如果共轨内产生了高压,则球阀被顶开,图中配合部分脱开,高压燃油从共轨端流向油箱,开始卸压。从而限制共轨内压力不超过一定的压力值。

(五)供油泵控制阀

供油泵控制阀(PCV)的作用是用于调整共轨内的嫌油压力。方法是调整供油泵供人共轨内的燃油量。所以,向控制阀通电和断电的时刻就决定了供油泵向共轨内供入的供油。

电装公司ECD-U2系统的供油泵控制阀的外形如图8-64所示。

(六)调压阀

调压阀的作用是根据发动机的负荷状况调整和保持共轨中的压力。当共轨压力过高时,调压阀打开,一部分燃油经集油管流回油箱;当共轨压力过低时,调压阀关闭,高压端对低压端密封。

博世公司电控共轨系统中的调压阀(图8-65)有一个固定凸缘,通过该凸缘将其固定在供油泵或者共轨上。电枢将一钢球压人密封座,使高压端对低压端密封。为此,一方面弹筑将电枢往下压,另一方面电磁铁对电枢作用一个力。为进行润滑和散热,整个电枢周围有燃油流过。调压阀有两个调节回路:一个是低速电子调节回路,用于调整共轨中可变化的平均压力值;另一个是高速机械液压式调节回路,用以补偿高频压力波动。

调压阀的工作原理如下:

1、调压阀不工作时:共轨或供油泵出口处的压力高于调压阀进口处的压力。由于无电流的电磁铁不产生作用力,当燃油压力大于弹黄力时,调压阀打开,根据输油量的不同,保持打开程度大一些或小一些。弹簧的设计负荷约10MPa。

2、调压阀工作时:如果要提升高压回路中的压力,除了弹簧力之外,还需要再建立一个磁力。控制调压阀,直至磁力和弹簧力与高压压力之间达到平衡时才被关闭。然后调压阀停留在某个开启位,保持压力不变。当供油泵改变,燃油经喷油器从高压部分流出时,通过不同的开度予以补偿。电磁铁的作用力与控制电流成正比。控制电流的变化通过脉宽调制来实现。调制频率为1kHz时,可以避免电枢的干扰运动和共轨中的压力波动。

(七)限压阀

限压阀的作用相当于安全阀,它的基本作用是限制共轨中的压力。当共轨中燃油压力过高时,打开放油孔卸压。共轨内允许的短时间最高压力为150Mpa。

博世公司电控共轨系统中的

限压阀(图8-66),主要由下列构

件组成:外壳(有外螺纹,以便拧

装在共轨上),通往油箱的回油管

接头,活塞和弹簧。

外壳在通往共轨的连接端有一个小孔,一般工况下,此孔被外壳内部密封座面上的锥形活塞头部关闭。在标准工作压力(135MPa)下,弹簧将活塞紧压在座面上。此时,共轨呈关闭状态。当共轨中的燃油压力超过规定的最大压力时,活塞在高压燃油压力的作用下压缩弹黄,高压燃油从共轨中流出。燃油经过通道流人活塞中央的孔,然后经集油管流回油箱。随着阀的开启,嫩油从共轨中流出,共轨中的压力降低。

(八)曲轴转角传感器和气缸识别传感器

在飞轮上每7.50设置一个信息孔,但是,总共缺少3个孔。也就是说,在飞轮圆周上共有45个孔。发动机每旋转2转,将会产生90个脉冲信号。曲轴转角传感器接受到信息后,则通过传感器线圈的磁力线发生变化,在线圈内产生交流电压。根据这些信号,可以检出发动机的转速和7.50的曲轴转角间隔。

和曲轴转角传感器相似,气缸识别传感器也是利用通过线圈的磁力线变化产生交流电压的特性制成的。在供油泵凸轮轴中间设置了一个圆盘状的齿轮,且每1200缺一个齿(凹形切槽),但在某一处多了一个齿。因此,发动机每转2转则发出7个脉冲信号。

根据曲轴转角传感器和气缸判别传感器的信息,可以判断出第一气缸为基准脉冲。

曲轴转角传感器和气缸判别传感器的外形和控制电路图如图8-67所示。

(九)其它共轨组件

1、油门传感器

安装在加速踏板上,可以检测出脚踏板的力量(加速踏板的转角),给ECU提供相应的电压值。

2、增压压力传感器

安装在进气管上,随时监视增压器提供的进气压力变化,进而修正发动机的喷油量。

3、水温传感器

检测发动机冷却液的温度,以修正喷油量。

4、燃油温度传感器

检测燃油的温度,修正喷油量。

5、大气温度传感器

监视大气温度的变化,修正燃油喷射。

6、全速油门传感器

该传感器作为PTO而使用,使用PTO时,用以控制发动机的转速。

7、速度传感器

安装在变速器上,监视车速变化。

8、油门开关

安装在加速踏板上,监视加速踏板的怠速位置。

9、大气压力传感器

大气压力传感器一般布置在ECU内部,为了确保燃油喷射的最佳化,随时都在监视着大气压力的变化。

本章小节

柴油机的技术状况是否良好,与柴油机燃油供给系的技术状况息息相关。如喷油泵供油量过大或过小,喷油提前角过大或过小,喷油压力过高或过低,喷雾质量差,进、排气系统阻力过大等均会影响柴油机技术状况。

在使用中必须按规定使用柴油,认真执行维护保养规程,定期进行清洁、紧固、检查、调整和润滑工作。清洁是提高维修质量、减轻机件磨损的基本工作。清洁工作做得好,不但为检查、紧固、调整和润滑工作创造良好的条件,还可直接清除故障隐患。如果燃油滤清器的滤清效果差,燃油中所含的杂质不仅会增加零件的磨损,严重的还会使喷油泵柱塞副和喷油器针阀副卡滞,恶化喷雾质量,危及柴油机的正常工作。

柴油机动力不足,起动困难,排气冒黑烟等故障均与燃油供给系有关,应及时检查喷油提前角、喷油器喷雾质量,及进、排气系统是否受阻,必要时需进行检修,更换不合格的燃油和部件及总成。

复习思考题

一、填空题

1.柴油机与汽油机相比,具有、、、等优点,因此目前重型汽车均以柴油机作动力。

2.柴油机燃料供给系由、、、四套装置组成。

3.柴油机燃料供给装置由、、、、、

、和等组成。

4.废气涡轮增压器由、、等三部分组成。

5.柴油机混合气的形成和燃烧过程可按曲轴转角划分为、、

和四个阶段。

6.按结构形式,柴油机燃烧室分成两大类,即燃烧室,其活塞顶面凹坑

呈、、、及等;燃烧室,包括和燃烧室。

7.现代柴油机形成良好混合气的方法基本上有两种,即在和利用形成混合气。

8.长型孔式喷油器是由、和三大部分组成。是喷油器的主要部件,它由和组成,二者合称为针阀偶件。针阀中部的锥面用以承受油压,称为针阀下端的锥面用以密封喷油器内腔,称为。

9.喷油器油束的特性可用油雾油束的、和来表示。

10.喷油泵按其作用原理不同,可分为喷油泵和喷油泵三大类,目前大多数柴油机采用的是喷油泵。

11.国产系列喷油泵分为、、、和、、等系列。东风和解放系列中型载货柴油车均采用型喷油泵。

12.柴油机燃料供给系的与,与,与

柴油机共轨系统

柴油机共轨系统 [来源:本网讯 2006/12/26] (日)伊藤泶次古田克则 【摘要】虽然柴油机热效率高,但排放法规的强度也在逐年增加。为此,近年来,具有高度柔性控制的、能进行超高压喷射的共轨系统已逐渐成为主流。介绍了共轨系统的结构、运行、特性及其主要部件??供油泵和喷油器的技术和未来发展趋势。 1 前言 与汽油机相比,柴油机热效率高,也就是说在燃油耗方面占有优势,因此在热衷环保的欧洲,柴油车占据汽车总产量的40%。另一方面,从防止大气污染的观点出发,颗粒(PM)和NOx的排放法规日趋严格,为了应对严格的排放法规,就必须实现燃油的高压喷射化和高度的喷油控制。 本文介绍在近年来可实现超高压喷射且控制自由度高的共轨喷油系统中供油泵和喷油器的 相关技术及其今后的发展动向。 2 共轨系统的构成、运行及特征 图1以日本DENSO公司第二代共轨系统为例示出了系统构成图,图2为系统构成部件的照片。其主要部件为:供油泵(生成高压燃油)、共轨(蓄积高压燃料)、喷油器(喷射燃油)以及控制这些部件的ECU和检测发动机运行状态的各种传感器。共轨系统是把在供油泵中生成的高压燃油蓄积在共轨中,然后通过喷油器中的执行器决定喷油开始和结束的电控燃油喷射系统。 图1 共轨系统构成 图2 系统构成部件 共轨系统的第一个特征是可以实现高压喷射而与发动机的转速无关,燃油喷雾可实现微粒化,从而促进燃油和空气的混合。因此可以实现更完全的燃烧,降低排气中的PM。为了实现这样的超高压喷射,产生高压的供油泵和蓄压的共轨必不可少。 第二个特征是实现了以往喷油系统不能实现的一个燃烧循环中的多次喷油,也提高了燃烧控制自由度。 第三个特征是由于可以修正喷油量,所以喷油精度高。因为考虑到燃油耗和降低排放,所以提高喷油器的喷油控制精度很重要。最近的研究表明,预喷射的喷油量越小,PM和NOx之间的折衷就越弱,为了实现高精度的多次喷射,装有高速执行器的喷油器不可或缺。 3 共轨系统构成部件 以下详细介绍构成上述共轨系统的基本部件:供油泵和喷油器。 3.1 供油泵 如图3的产品发展历史所示,第一代供油泵为卡车用的、以直列式喷油泵为基础的HP0泵,以及乘用车用的、以分配型喷油泵为基础的HP2泵。乘用车用的HP2泵利用电磁阀实现进油量调整,并采用了在分配型喷油泵上卓有成效的内凸轮。HP2泵最大压力为145 MPa,而比这更高的压力对传统的内凸轮方式而言已达到极限。为此,如图4所示,第二代供油泵把柱塞的驱动结构由滚子机构改为平面滑动机构,降低了驱动部分的面压,以实现180 MPa的超高压喷射。进而,作为对应180 MPa 超高压喷射的另一项技术,在采用上述压力供给机构的同时,在柱塞的滑动面上涂覆陶瓷涂层,进行

玉柴高压共轨系统维修柴油机培训材料

共轨系统概述BOSCH高压共轨技术 柴油共轨系统特性 传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。 共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有: 喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。 通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗 柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 液力系统 低压液力系统 —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统 —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC)

—传感器 —电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、 增压压力调节器、废气循环调节器、节流阀等 —线束 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。 轨系统示意图 喷油器 喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。 高压油轨 高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

柴油机电控系统维修

柴油机电控系统维修

————————————————————————————————作者:————————————————————————————————日期:

柴油机电控系统 柴油机电控技术的发展 在柴油机的电子控制系统中,最早研究并实现产业化的是电子控制柴油喷射系统,到目前为止已经经历了三代变化: 1. 第一代电控柴油喷射系统:位置控制式。 2. 第二代电控柴油喷射系统:时间控制式。 3. 第三代电控柴油喷射系统:高压共轨式系统。 柴油机电控燃油喷射系统的特点 1.提高发动机的动力性和经济性 2.降低氮氧化物和微粒的排放 3.提高发动机运转稳定性 4.改善低温起动性 5.控制涡轮增压 6.适应性广 7.控制精度高、响应快 柴油机电控系统的功能 1. 燃油喷射控制 2. 怠速控制 3. 进气控制 4. 增压控制 5. 排放控制 6. 起动控制 7. 巡航控制 8. 故障自诊断和失效保护 9. 柴油机与自动变速器的综合控制 柴油机电控燃油喷射系统的基本组成 传感器 传感器是柴油机实现电控的关键技术之一,其作用是感知和检测发动机与车辆的运行状态,并将检测结果转换成电信号输送给ECU。柴油机电控燃油喷射系统所用的传感器多数与汽油机电控系统相同。在柴油机电控系统中常用的传感器有压力传感器、温度传感器、位置传感器、转速传感器、空气流量传感器及氧传感器等。此外,在电控系统中还有开关量采集电路,用于检测空调、离合器、挡位、制动、巡航控制等开关量的状态信息。所有的信息经过电控单元的信号采集模块处理后送到发动机电控单元,作为发动机控制的依据。

柴油机电控单元 执行器 执行器主要是接收ECU传来的指令,并完成所需调控任务。不同柴油机电控燃油喷射系统的执行元件有很大差异,如电控直列泵[b1] 和分配泵中的线性螺线管,电控单体泵和泵喷嘴中的电磁阀,电控共轨系统中的PCV阀和喷油器电磁阀,以及空气系统控制中的各种阀门控制器等。执行器的水平决定了最终柴油机能够达到的性能。 第一代位置控制式电控燃油喷射系统 位置控制式直列柱塞泵 位置控制式电控分配泵系统 第一代位置控制式电控燃油喷射系统的控制特点 位置控制式直列柱塞泵 ECU根据加速踏板位置传感器信号(即负荷信号)和柴油机转速信号,并参考供油齿条位置、冷却液温度、进气压力等传感器信号,按内存控制程序计算供油量和喷油提前角控制参数值,再通过ECU中行程或位置伺服电路,使电子调速器内的线性螺线管控制喷油泵供油齿条的行程或位置。 1. 喷油量的控制 线性螺线管安装在原喷油泵供油齿条的一端,螺线管中的铁心与喷油泵的供油齿条连成一体。当控制电流通过螺线管时,产生一个作用在铁芯上的与螺线管中电流成正比的电磁力,推动油量调节齿杆移动,当推力与复位弹簧力平衡时,齿杆就停留在某一位置上。齿杆位置传感器将信号传给ECU,ECU根据齿杆的实际位置和预定位置间的偏差量,发出改变输入螺线管电流的驱动信号就能精确控制齿杆的位置,从而改变喷油量 位置控制式直列柱塞泵电子调速器结构

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 一、高压共轨技术简介 我们先来了解下传统柴油发动机燃油喷射系统的局限性: 传统柴油发动机燃油喷射系统的工作过程是:柴油通过高压油泵提高油压后,再按照一定的供油定时和供油量通过喷油器,喷入气缸燃烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物的排放量,油耗也增高。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。 随着发动机自动控制技术的发展和进步,为了解决柴油机燃油压力变化所造成的燃油喷射燃烧缺陷,现代柴油机采用了一种高压共轨电控燃油喷射技术,使柴油机的性能得到了全面提升。 柴油机在机械喷射、增压喷射和普通电喷后,近几年来出现了共轨高压喷射。高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨管、电控喷油器、各种传感器和电控单元ECU 等组成,如图1所示。发动机工作时,高压油泵上自带的齿轮泵通过负压从油箱中吸油,并以一定的压力(约5~7bar)将过滤后燃油送入高压油泵。燃油进入高压柱塞腔后被压缩,通过高压油管进入共轨管形成高压,每缸喷油器通过高压油管与共轨管相连,以实现高压喷射。 2.1.1 高压油泵(High pressure pump) 高压油泵是高压共轨系统中的关键部件之一,它的主要作用是将低压燃油加压成为高压燃油,储存在油轨内等待ECU的喷射指令。高压油泵由齿轮泵、油量计量单元、溢流阀、进出油阀和高压柱塞等部分组成。以Bosch目前广泛应用于中国商用车市场并已开始本地化生产的CPN2.2BL为例,其结构如图2所示[12]。

柴油机高压共轨电控燃油喷射技术介绍

柴油机高压共轨电控燃油喷射技术介绍 摘要:传统机械发动机的喷油系统凭借其可靠性、易维护性一直在不断地发展和使用。进入21世纪以来,随着人们对能源、环保的意识和要求日益提高,传统发动机的脉动喷油系统已经不能够满足现代发动机的要求。因此,现代发动机的共轨燃油喷射技术在避免了传统发动机缺点的基础上,得到了快速的发展,已经成为燃油喷射的主要发展趋势。为了更好的对高压共轨电控发动机燃油喷射系统的理解,现对高压共轨电控燃油喷射系统进行系统的介绍。 1 引言 随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。我国从八十年代起相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。 2 高压共轨电控燃油喷射技术发展过程 20世纪40年代电控共轨燃油喷射技术首先在航空发动机上应用,20世纪50年代在赛车发动机上广泛应用。20世纪90年代,柴油机的电控供油系统开始在实际应用中大量使用。主要有日本电装公司和丰田汽车公司ECD-U2系统、博世公司和D-C公司电控共轨式燃油喷射系统。 国外在柴油机电控高压共轨燃油喷射系统方面的研究开展得较早而且比较深入,有多种共轨系统已经投产,并与整车进行了匹配应用。日本电装公司的ECD-U2系统是电控高压共轨燃油喷射系统的典型代表,该系统还能实现预喷射和靴型喷射。 共轨喷射的发展大体经历了3个阶段,如表1所示。 从表1中可以看出:共轨喷射的最高喷射压力在不断提高,这样对于喷射品质的提高有着重要的意义。压力越高,燃料雾化越好,颗粒越小越均匀,燃烧越充分,经济性、动力性和排放性均好,但这对喷射系统的要求也越高;喷射的次数不断增加,可以实现满足发动机燃烧和排放的多次喷射,可以控制燃烧的不同阶段喷油量和喷油速率,使燃烧更充分,热效率提高;在最小稳定喷射量上,3个阶段的每次的喷射量在下降,这说明每次喷射时候可以使喷射更均匀、更细密,喷油和断油更干脆,反应灵敏,响应特性好,这样有利于燃烧,减少积炭的产生。

柴油发动机电控系统

柴油发动机的电控系统 柴油机电控系统以柴油机转速和负荷作为反映柴油机实际工况的基本信号,参照由试验得出的柴油机各工况相对应的喷油量和喷油定时MAP来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时,然后通过执行器进行控制输出。 柴油机电控系统概述 【任务目标】 (1)柴油机电控技术的发展。 (2)柴油机电控技术的特点。 (3)柴油机电控系统的基本组成。 (4)应用在柴油机上的电控系统。 【学习目标】 (1)了解柴油机电控技术的发展。 (2)了解柴油机电控技术的特点。 (3)了解柴油机电控系统的基本组成。 (4)掌握应用在柴油机上的电控系统。 柴油机电控技术的发展 1.柴油机电控技术的发展 1)柴油机技术的发展历程 柴油用英文表示为Diesel,这是为了纪念柴油发动机的发明者――鲁道夫·狄塞尔(RudolfDiesel)如图8-1所示。 狄塞尔生于1858年,德国人,毕业于慕尼黑工业大学。1879年,狄塞尔大学毕业,当上了一名冷藏专业工程师。在工作中狄塞尔深感当时的蒸气机效率极低,萌发了设计新型发动机的念头。在积蓄了一些资金后,狄塞尔辞去了制冷工程师的职务,自己开办了一家发动机实验室。 针对蒸汽机效率低的弱点,狄塞尔专注于开发高效率的内燃机。19世纪末,石油产品在欧洲极为罕见,于是狄塞尔决定选用植物油来解决机器的燃料问题(他用于实验的是花生油)。因为植物油点火性能不佳,无法套用奥托内燃机的结构。狄塞尔决定另起炉灶,提高内燃机的压缩比,利用压缩产生的高温高压点燃油料。后来,这种压燃式发动机循环便被称为狄塞尔循环。

柴油机高压共轨喷油系统的现状与发展

柴油机高压共轨喷油系统的现状及发展 然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

船用电控共轨柴油机的最新技术特点和管理 K

船用电控共轨柴油机的最新技术特点和管理 [摘要]阐述了电控共轨柴油机的工作过程和特点,着重分析比较两大主流机型(SulzerRT-flex和MAN-B&WME/ME-C)。通过与传统型柴油机在性能和结构上的比较,介绍了电控柴油机的优点,探讨船用柴油机电子喷射燃油系统的运行管理措施,指出电控共轨燃油喷射系统NOx排放可完全符合MARPOL73/78国际防污公约的最新要求,从而进一步改善船舶柴油机的经济性、可靠性。这是船用柴油机的发展方向。 1.前言 随着科学电子技术迅猛发展,微型计算机已越来越广泛地应用在船舶动力控制和监测中。为了提高燃油经济性、降低排放要求、提高可靠性和操作的灵活性,实现适时调节,电控共轨柴油机已成为发展的必然趋势。经过各大厂商的不懈努力,全电控型的柴油机终于在2003年研制成功并得到实船验证,这标志着柴油机的发展经历了又一次质的飞跃。 2.传统柴油机和电控型柴油机的区别。 传统的柴油机是由调速器控制其喷油量,由凸轮控制其喷油定时、进排气等过程,能使柴油机在额定工况下实现性能的优化。但是当柴油机的工况、海况、外界环境、燃油品质发生变化,凸轮轴磨损或者机械间隙改变导致喷油正时、喷油速率、配气正时、气阀时面值等参数偏离其设计的最佳值时,均会影响柴油机经济性能。 船用柴油机工作过程的燃烧效率,燃油消耗以及废气排放污染,一直是人们关注的问题。根据国际海事组织《MARPOL73/78公约》的规定对船舶柴油机NOx 的排放进行了严格的限制。而控制其最有效的手段是降低最高燃烧温度及控制燃气在高温下停留的时间。 电控型柴油机也称为智能型柴油机,即将电子设备及软件应用于船用柴油机并成为其重要部分的新型柴油机。根据柴油机燃烧理论,主要是应用了电控技术,通过控制燃油喷射正时、喷油量、喷射速率、压力以及进、排气阀正时,能够有效地实现柴油机在各种负荷下的性能最优化,从而达到在满足最新排放要求下,提高其经济性、可靠性、操纵灵活性和延长使用寿命。 3.电控共轨型柴油机 3.1目前两种主流智能型船用柴油机的比较 W?rtsil?公司SulzerRT-flex系列柴油机采用的共轨系统和MAN-B&W公司的ME/ME-C系列柴油机采用的电控燃油喷射系统,具有一定的差别:(1)油轨方面。SulzerRT-flex机型的公共油轨有两个,一是20MPa的滑油,它的作用是因为电子控制系统中所输出的能量有限而作为驱动排气阀、气缸起动阀和喷射控制装置;二是100MPa的重油,它作为柴油机的燃料油,在油轨中等待喷射。而MAN-B&WME机型的公共油轨仅一个20MPa滑油,它作为动力油使用。轨压上的差别很大程度上取决于油轨的密封技术,因此对油轨的管理就要区

柴油机高压共轨系统

高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 结构及原理 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积 起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控 制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构; 而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得 多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状况 以及经济性和排放性的要求对共轨腔内的油压进行灵活调节,尤其优 化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀控制各缸喷油器在相应时刻喷油。 预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分燃烧,缩短主喷射的着火延迟期。这样缸内压力升高率和峰值压力都会下降,发动机工作比较缓和,同时缸内温度降低使得NOx排放减小。预喷射还可以降低失火的可能性,改善高压共轨系统的冷起动性能。 主喷射初期降低喷射速率,也可以减少着火延迟期内喷入气缸内的油量。提高主喷射中期的喷射速率,可以缩短喷射时间从而缩短缓燃期。 主要生产商 目前世界上主要有三大公司在研发和生产柴油机高压共轨系统,日本电装、德国博世和美国德尔福。共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。没有了回油管,在结构上更简单。压力从200~2000帕弹性调节。最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。 应用背景 日趋严重的能源危机,成为全世界内燃机行业关注的焦点,也使柴油机越来越受到用户青睐。与汽油机相比柴油机有很多优势:能减少20%~25%的CO2废气排放,车速较低时的加速性能更有优势,平均燃油消耗低25%~30%,能提供更多的驾驶乐趣。因此,有人大胆对全球汽车产量中柴油机的发展趋势进行了预测,并按区域划分世界汽车产量中的柴油机比例。但是,与汽油机相比,柴油机的排放控制又是一个难点。为满足排放标准,柴油机先进的燃油喷射系统———高压共轨技术成为业内人士关注的焦点。前些年,高压共轨技术是外资一统天下,现在这种局面被打破了。 排放标准的提升必然推动发动机技术的发展 发展前景

共轨式电控喷油系统

★柴油机共轨式电控燃油喷射技术产生的背景: 随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。我国从80年代起相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。 柴油机高速运转时,柴油喷射过程的时间只有千分之几秒。实验证明,喷射过程中,高压油管各处的压力是随时间和位置的不同而变化的。柴油的可压缩性质和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在喷射时之后,使高压油管内的压力再次上升,达到令喷油器针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,并使油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低速区域容易产生上述现象。严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机燃油压力变化所造成的缺陷,现代柴油机采用了一种称之为“共轨”的电喷技术。 ★什么是共轨技术? 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。

柴油机电控技术简介习题(苍松教学)

一、填空题 1.常用的加速踏板位置传感器有_____________ 、___________。 2.差动电感式加速踏板位置传感器主要由________、 _________和 _________等组成。 3.在柴油机电控燃油喷射系统中,ECU以柴油机___________ 和 ___________作为主控制信号,按设定的程序确定最佳的供油速率和供油规律。 4.柴油机的怠速控制主要包括_______________和 _____________________的控制。 5.柴油机的起动控制主要包括______________ 、____________ 、____________控制。 6.___________、 ___________是影响柴油机动力性和经济性的重要因素。 7.柴油机电控系统中,进气控制主要包括__________、 __________、 _________控制。 8.柴油机中的燃油温度传感器一般采用的是________________。 9. 第一代柴油机电控燃油喷射系统主要以_____________或 _____________为特征。 10. “位置控制”的直列柱塞泵供油量控制一般采用___________电磁阀。 11.柴油机电控系统的控制模式可分为___________、 ___________、 ________三大类。 12.柴油机执行器中所使用的执行电器主要有__________、 _________ 、_________ 、________和力矩电机等。 13.最早的柴油机电控燃油喷射系统就是以_______________为基础改造的。 14.加速踏板位置传感器用以检测____________________信号。 15.发动机负荷信号和_____________信号共同决定柴油机的喷油量及喷油提前角。 16.柴油机电子控制系统的执行器由____________ 、_____________两部分组成。 17.最佳喷油提前角受____________、 __________ 、__________燃油温度、进气温度、及压力等多种因素的影 响。 18.柴油机电控系统是由______________、 ____________ 、___________三部分组成。 19.在装用电子调速器的柱塞泵电控系统中,喷油量控制是由ECU通过控制_____________来实现的。 20.直流电动机式电子调速器主要由___________、 ____________ 和控制杆等组成。 21.电动助推器实际上就是直线运动的__________________。 22.控制杆位置传感器安装在______________内,用来检测___________的位置。 23. 第二代柴油机电控燃油喷射系统包括_______________燃油喷射系统;________________燃油喷射系统和 _____________________燃油喷射系统。 24.直列柱塞泵供油正时电控系统的两个电磁阀分别安装在___________________中。 25.直列柱塞泵供油正时电控系统的转速传感器安装在________________________上。 26.直列柱塞泵常用的正时控制器为___________________。 27.电控柴油机燃油喷射控制主要包括______________控制;______________控制; __________________控制等。 28. 柱塞泵正时控制器的组成主要由_______、 _______ 、________、 ________、 ________、调整弹簧等组成。 二、判断题 1.柴油电控系统能在不同工况及工作条件下对喷油量进行校正补偿。() 2.对于不同用途、不同机型的柴油机,柴油机电子控制系统应有较强的适应性。() 3.着火正时传感器检测燃烧室开始燃烧的时刻,修正喷油正时。() 4.柴油机电控燃油喷射系统一般对供油量采用开环控制。() 5.在不同柴油机电控燃油喷射系统中,供油正时和供油量的执行元件是不同的。() 6.在多缸柴油机工作时,由于喷油量控制指令值一定,所以各缸喷油量就一定。() 7.喷油提前角对柴油机的动力性、经济性及排放影响很大。() 8.柴油机是压燃式,发动机在低温条件下着火相当困难。() 9.柴油机的排放控制主要是废气再循环控制。()

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机电控技术发展三个阶段的技术简介.doc

柴油机电控技术发展三个阶段的技术简介 柴油机电控技术的发展 柴油机电控技术是在解决能源危机和排放污染两大难题的背景下,在飞速发展的电子控制技术平台上发展起来的。汽油机电控技术的发展为柴油机电控技术的发展提供了宝贵经验。 柴油机电控技术发展的三个阶段:位置控制、时间控制、时间—压力控制(压力控制)

第一代柴油机电控燃油喷射系统(常规压力电控喷油系统) 优点:结构不需改动,生产继承性好,便于对现有柴油机进行升级换代。 缺点:系统响应慢、控制频率低、控制自由度小、控制精度不够高,喷油压力无法独立控制。 第二代柴油机电控燃油喷射系统(高压电控喷油系统) 改变了传统燃油供给系统的组成和结构,主要以电控共轨(各缸喷油器共用一个高压油管)式喷油系统为特征,直接对喷油器的喷油量、喷油正时、喷油速率和喷油规律、喷油压力等进行“时间-压力控制”或“压力控制”。 特点:通过设置传感器、电控单元、高速电磁阀和相关电/液控制执行元件等,组成数字式高频调节系统,有电磁阀的通、断电时刻和通、断电时间控制喷油泵的供油量和供油正时。但供油压力还无法独立控制。 ●柴油机电控燃油喷射系统的优点 1.改善低温起动性。 电子控制系统能够以最佳的程序替代驾驶员进行这种麻烦的起动操作,使柴油机低温起动更容易。 2.降低氮氧化物和烟度的排放。 采用柴油机电控技术,可精确地将喷油量控制在不超过冒烟界限的适当范围内,同时根据发动机工况调节喷油时刻,从而有效地抑制排烟。 3.提高发动机运转稳定性。 4.提高发动机的动力性和经济性。 采用柴油机电控系统,无论负荷怎样增减,都能保证发动机怠速工况下以最低的转速稳定运转,有利于提高其经济性。 5.控制涡轮增压。 柴油机电控系统中,ECU根据传感器信号精确计算喷油量和喷油正时。从而提高发动机的动力性和经济性。采用电子控制技术可以对增压装置进行精确的控制。 6.适应性广。

柴油机电控共轨技术

第二节柴油机电控共轨技术 一、柴油机电控共轨系统简介 图8-44是博世公司生产的第一代高压电控共轨燃油系统。 图8-4 BOSCH 第一代高压电控共轨燃油系统 该系统的主要特点: 共轨压力为135 MPa;2、可实现预喷射;3、可实现闭环控制; 4、可用于3-8缸轿车柴油机; 5、排放可达欧3排放标准。 图8-45是日本电装公司开发的适用于轿车柴油机的高压电控共轨系统。 第一代电控共轨系统基本上是采用高速电磁阀作为执行器,承受的最高油压及系统的效率受到了限制,为了解决这一难题,许多公司正在开发采用压电晶体的电控共轨燃油系统。 图8-46是ECD-U2共轨系统在汽车上的实际布置图

电控共轨系统的特点可以概括如下: (1)自由调节喷油压力(共轨压力):利用共轨压力传感器测量共轨内的燃油压力,从而调整供油泵的供油量。 (2)自由调节喷油量:以发动机的转速及油门开度信息等为基础,由计算机计算出最佳喷油量,通过控制喷油器电磁阀的通电、断电时刻及通电时间长短,直接控制喷油参数。 (3)自由调节喷油率形状:根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。 (4)自由调节喷油时间:根据发动机的转速和负荷等参数,计算出最佳喷油时间,并控制电控喷油器在适当的时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。 在电控共轨系统中,由各种传感器——发动机转速传感器、油门开度传感器、温度传感器等,实时检测出发动机的实际运行状态,由ECU根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油时间、喷油率等参数,使发动机始终都能在最佳状态下工作。 德国博世公司和日本电装公司的研究结果均表明:在直喷式柴油机中,采用电控共轨式燃油系统与采用普通凸轮驱动的泵管嘴系统相比,电控共轨系统与发动机匹配时更加方便灵活。其突出优点可以归纳如下: (1)广阔的应用领域(用于轿车和轻型载货车,每缸功率可达30kW,用于重型载货车以及机车和船舶用柴油机,每缸功率约可达200kW左右)。 (2)更高的喷油压力,目前可达140 MPa,不久的将来计划达到180Mpa。 (3)喷油始点、喷油终点可以方便地改变。 (4)可以实现预喷射、主喷射和后喷射,可以根据排放等要求实现多段喷射。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 浅谈柴油机高压共轨技术 一、高压共轨技术简介我们先来了解下传统柴油发动机燃油喷射 系统的局限性:传统柴油发动机燃油喷射系统的工作过程再按照一定是:柴油通过高压油泵提高油压后,喷入气缸燃的供油定时

和供油量通过喷油器, 烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,油耗于是增加了烟度和碳氢化合物的排放量, 每次喷射循环后高压油管内的残此外,也增高。尤其随之引起不稳定的喷射,压都会发生变化,严重时不仅喷在低转速区域容易产生上述现象,油不均匀,而且会发生间歇性不喷射现象。为随着发动机自动控制技术的发展和进步,了解决柴油机燃油压力变化所造成的燃油喷射现代柴油机采用了一种 高压共轨电控燃烧缺陷,燃油喷射技术,使柴油机的性能得到了全面提升。,柴油机在机械喷射、增压喷射和普通电喷后轨共。射高压喷高共现来几近年出了轨压电喷技术 是指在高压油泵、压力Rail)Common (- 1 - 传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并

可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可 以大幅度减小柴油机供油压力随发动机转 速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨ECU管、电控喷油器、各种传感器和电控单元- 2 -

详谈柴油机高压共轨电喷技术

详谈柴油机高压共轨电喷技术高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨

柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。 共轨系统与柴油喷射系统的区别 共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷射过程彼此完全分开。电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。 燃油喷射压力是柴油发动机的重要指标,因为它联系着发动机的动力、油耗、排放等。共轨柴油喷射系统已将燃油喷射压力提高到1800巴 近年发展 最近2年,匹配直喷柴油发动机的轿车在欧洲得到了显著发展,有着高效和出色的燃油经济性,并降低了发动机噪音。直喷柴油发动机使用的是泵喷嘴系统,国内生产的1.9TDI宝来就应用这一系统,最高喷射压力可达到1800巴。泵喷嘴直喷系统好虽好,但燃油压力不能保持恒定,随着排放控制的更加苛刻,就需要更高及恒定的柴油喷射压力和更完善的电子控制,于是众多制造商们就把优点更多的柴油共轨系统作为柴油发动机的发展方向。这一系统有很高的燃油压力,并能提供弹性燃油分配控制,通过ECU灵活地控制燃油分配、燃油喷射时间、

论柴油机电控燃油喷射系统

论柴油机电控燃油喷射系统 摘要:(……自己写……..) 关键词:柴油机;工作原理;优缺点;类型;特征;控制策略;故障诊断 一.什么是柴油机电控燃油喷射系统 柴油机电控燃油喷射系统由传感器、ECU(计算机)和执行机构三部分组成。 其任务是对喷油系统进行电子控制, 实现对喷油量以及喷油定时随运行工况的实时控制。 采用转速、油门踏板位置、喷油时刻、进气温度、进气压力、 燃油温度、冷却水温度等传感器, 将实时检测的参数同时输入计算机(ECU), 与已储存的设定参数值或参数图谱(MAP图)进行比较, 经过处理计算按照最佳值或计算后的目标值把指令送到执行器。 执行器根据ECU指令控制喷油量(供油齿条位置或电磁阀关闭持续时间) 和喷油正时(正时控制阀开闭或电磁阀关闭始点), 同时对废气再循环阀、 预热塞等执行机构进行控制,使柴油机运行状态达到最佳。 二.柴油机电控系统工作原理 以柴油机转速和负荷作为反映柴油机实际工况的基本信号, 参照由试验得出的柴油机各工况相对应的喷油量和喷油定时MAP来确定基本的喷油量和喷油定时, 然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量 和喷油正时,然后通过执行器进行控制输出。 三.柴油机电控燃油喷射系统的优点和难点 优点 1高的喷射压力

为满足排放法规的要求,柴油喷射压力从10MPa提高到200MPa。 如此高的喷射压力可明显改善柴油和空气的混合质量,缩短着 火延迟期,使燃烧更迅速、更彻底,并且控制燃烧温度,从而降低废气排放。 2独立的喷射压力控制 传统柴油机的供油系统的喷射压力与柴油机的转速负荷有关。 这种特性对于低转速、部分负荷条件下的燃油经济性和排放不利。 若供油系统具有不依赖转速和负荷的喷射压力控制能力,就可选择最合适的 喷射压力使喷射持续期、着火延迟期最佳,使柴油机在各种工况下的废气排 放最低而经济性最优。 3改善柴油机燃油经济性 用户对柴油机的燃油消耗率非常关注。高喷射压力、独立的喷射压力控制、 小喷孔、高平均喷油压力等措施都能降低燃油消耗率,从而提高了柴油机 的燃油使用经济性。 4独立的燃油喷射正时控制 喷射正时直接影响到柴油机活塞上止点前喷入汽缸的油量,决定着汽缸的 峰值爆发压力和最高温度。高的汽缸压力和温度可以改善燃油使用经济性, 但导致NOX增加。而不依赖于转速和负荷的喷射正时控制能力,是在燃油消 耗率和排放之间实现最佳平衡的关键措施。 5可变的预喷射控制能力 预喷射可以降低颗粒排放,又不增加NOX排放,还可改善柴油机冷启动性能、 降低冷态工况下白烟的排放,降低噪声,改善低速扭矩。但是预喷射量、 预喷射与主喷射之间的时间间隔在不同工况下的要求是不一样的。因此具有 可变的预喷射控制能力对柴油机的性能和排放十分有利。 6最小油量的控制能力 供油系统具有高喷射压力的能力与柴油机怠速所需要的小油量控制能力发生矛盾。 当供油系统具有预喷射能力后将会使控制小油量的能力进一步降低。由于工程机械 用柴油机的工况很复杂,怠速工况经常出现,而电喷柴油机容易实现最小油量控制。 7快速断油能力 喷射结束时必须快速断油,如果不能快速断油,在低压力下喷射的柴油就会因燃烧 不充分而冒黑烟,增加HC排放。电喷柴油机喷油器上采用的高速电磁开关阀很容易实现快速断油。

相关主题
文本预览
相关文档 最新文档