2012年第17届华罗庚金杯少年数学邀请赛(含答案)
- 格式:doc
- 大小:288.00 KB
- 文档页数:2
2012年第17届华罗庚金杯少年数学邀请赛初赛试卷(初一组)一、选择题(每小题10分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.若ab<0 ,a-b>0 ,则a,b两数的正负情况为〔〕.(A)a>0,b<0 (B) a>0,b>0(C)a<0,b>0(D)a<0,b<0 2.右图是一个两位数的加法算式,已知A+B+C+D=22,贝X+Y=〔〕. (A)13 (B) 7 (C) 4 (D)23.右图中,ABC是一个钝角三角形,BC=6cm,AB=5 cm,BC边上的高AD为4cm.若此三角形以每秒3 cm的速度沿DA所在直线向上移动,2秒后,此三角形扫过的面积是〔〕cm2(A)36 (B) 54 (C) 60 (D)664在10口10口10口10口10的四个"口"中分别填入“+”“-”“×”“÷”运算符号各一次,所成的算式的值的最小值为〔〕.(A)-84 (B) -89 (C) -94 (D)-995.已知甲瓶盐水浓度为8%,乙瓶盐水浓度为5%,混合后浓度为6.2%,那么四分之一的甲瓶盐水与六分之一的乙瓶盐水混合后的浓度为〔〕. (A)5.0% (B) 6% (C) 6.5% (D)7.5%6.将2012表示为n个的连续自然数之和〔n≥2 〉,则n有〔〕种不同的取值.(A)0 (B) 1 (C) 2 (D)3二、填空题(每小题10分,满分40分)8.有理数a ,b ,c,d满足等式8a2十7c2=16ab ,9b2十4d2=8cd ,那么a十b十d十d=_______.9.如右图所示,正方形ABCD的面积为36 cm2,EFGH正方形的面积为256cm2,三角形ACG的面积为27cm2,则四边形CDHG的面积为_____cm2第十七届全国华罗庚金杯少年数学邀请赛初赛试题〔初一组〕答案1、A 2、C 3、D 4、B 5、C 6、B7、2010 8、0 9、77 10、12。
目录第二十二届华罗庚金杯少年数学邀请赛 (1)第二十一届华罗庚金杯少年数学邀请赛 (3)第二十一届华罗庚金杯少年数学邀请赛 (5)第二十届华罗庚金杯少年数学邀请赛 (7)第二十届华罗庚金杯少年数学邀请赛 (9)第十九届华罗庚金杯少年数学邀请赛 (11)第十九届华罗庚金杯少年数学邀请赛 (13)第十八届华罗庚金杯少年数学邀请赛 (15)第十八届华罗庚金杯少年数学邀请赛 (17)第十七届华罗庚金杯少年数学邀请赛 (19)第十七届华罗庚金杯少年数学邀请赛 (21)第二十二届华罗庚金杯少年数学邀请赛答案 (23)第二十一届华罗庚金杯少年数学邀请赛答案 (24)第二十一届华罗庚金杯少年数学邀请赛答案 (25)第二十届华罗庚金杯少年数学邀请赛答案 (26)第二十届华罗庚金杯少年数学邀请赛答案 (27)第十九届华罗庚金杯少年数学邀请赛答案 (28)第十九届华罗庚金杯少年数学邀请赛答案 (29)第十八届华罗庚金杯少年数学邀请赛答案 (30)第十八届华罗庚金杯少年数学邀请赛答案 (31)第十八届华罗庚金杯少年数学邀请赛答案 (32)第十七届华罗庚金杯少年数学邀请赛答案 (33)第十七届华罗庚金杯少年数学邀请赛答案 (34)A B 第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间 2016 年 12 月 10 日 10:00-11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.A .16B .17C .18D .192. 小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟,某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟. A .6 B .8 C .10 D .123. 将长方形 ABCD 对角线平均分成 12 段,连接成右图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是( )平方厘米.A .14B .16C .18D .204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是( ).A .2986B .2858C .2672D .27545. 在序列 20170……中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( )A .8615B .2016C .4023D .20176. 从 0 至 9 选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.× 71 0 2罗华金杯ABG FHDEC二、填空题.(每小题 10 分,共 40 分)7. 若( 1 5 245 3— )× 9 2 5 7 ÷ 2 +2.25=4,那么A 的值是 .3 34 1A8. 右图中,“华罗庚金杯”五个汉字分别代表 1-5 这五个不同的数字,将各线段两端点的数字相加得到五个和,共有 种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为 CD 的中点,AE 和 BD 的交点为 F ,AC 和 BE 的交点为 H ,AC 和BD 的交点为 G ,四边形 EHGF 的面积是 15 平方厘米,则 ABCD 的面积是平方厘米.10. 若 2017,1029 与 725 除以 d 的余数均为 r ,那么 d -r 的最大值是 .庚第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组A 卷) (时间:2015 年 12 月 12 日 10:00~11:00一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. 算式999 9 × 999 9 的结果中含有( )个数字 0.2016个92016个9A .2017B .2016C .2015D .20142. 已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A 、B 出发,相向而行,在距 A 地 140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.A . 2 2B . 2 4C .3D . 3 15 5 53. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,则这个七位数最大是( )A .9981733B .9884737C .9978137D .98717734. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有( )种不同的排法. A .1152B .864C .576D .2885. 在等腰梯形 ABCD 中,AB 平行于 CD ,AB =6,CD =14,∠AEC 是直角,CE =CB ,则 AE 2 等于( )A .84B .80C .75D .646. 从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到 5个数,它们的数字和相等.那么 n 的最小值等于( ). A .109 B .110 C .111 D .112EABD C二、填空题.(每小题 10 分,共 40 分)AP M O7. 两个正方形的面积之差为 2016 平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8. 如下图,O ,P ,M 是线段 AB 上的三个点,AO = 4 AB ,BP = 2AB ,M 是 AB 的中点,且 OM =2,那5 3么 PM 长为 .9. 设 q 是一个平方数.如果 q -2 和 q +2 都是质数,就称 q 为 p 型平方数.例如,9 就是一个 p 型平方数.那么小于 1000 的最大 p 型平方数是 .10. 有一个等腰梯形的纸片,上底长度为 2015,下底长度为 2016.用该纸片剪出一些等腰梯形,要求剪出的梯形的两底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出 个同样的等腰梯形.第二十一届华罗庚金杯少年数学邀请赛初赛试卷 B (小学高年级组)(时间:2015 年 12 月 12 日 10:00~11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. “凑 24 点”游戏规则是:从一副扑克牌中抽去大小王剩下 52 张,(如果初练也可只用 1 至 10 这 40 张牌)任意抽取 4 张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成 24.每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是 3,8,8,9,那么算式为(9- 8)×8×3 或(9-8÷8)×3 等.在下面 4 个选项中,唯一无法凑出 24 点的是( ). A .1,2,2,3 B .1,4,6,7 C .1,5,5,5 D .3,3,7,72. 有一种数,是以法国数学家梅森的名字命名的,它们就是形如 2n -1( n 为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:22-1=3 就是一个梅森质数.第一个梅森合数是( ).A .4B .15C .127D .20473. 有一种饮料包装瓶的容积是 1.5 升.现瓶里装了一些饮料,正放时饮料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如下图.那么瓶内现有饮料( )升.A .1B .1.2C .1.25D .1.3754. 已知 a ,b 为自然数, 4 = 1 + 1,那么 a +b 的最小值是( ).15 a bA .16B .20C .30D .65. 如下图,平面上有 25 个点,每个点上都钉着钉子,形成 5×5 的正方形钉阵.现有足够多的橡皮筋,最多能套出( )种面积不同的正方形.A .4B .6C .8D .106. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是( ).A .9981733B .9884737C .9978137D .9871773二、填空题.(每小题 10 分,共 40 分)华 杯 赛 三 十 年× 杯 杯今 年 认 真 赛 好今 年 认 真 赛 好 三 十 年 华 杯 赛 好7. 计算:20152+20162-2014×2016-2015×2017= .8. 在下边的算式中,相同汉字代表相同数字,不同汉字代表不同数字.当杯代表 5 时,“华杯赛”所代表的三位数是 .9. 于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说:我们家今年的年龄总和是你年龄的 7 倍,如果明年给妳添一个弟弟或妹妹,我们家 2020 年的年龄总和就是你那时年龄的 6 倍.那么笑笑今年 岁.10. 教育部于 2015 年 9 月 21 日公布了全国青少年校园足球特色学校名单,笑笑所在的学校榜上有名.为 了更好地备战明年市里举行的小学生足球联赛,近期他们学校的球队将和另 3 支球队进行一次足球友 谊赛.比赛采用单循环制(即每两队比赛一场),规定胜一场得 3 分,负一场得 0 分,平局两队各得 1分;以总得分高低确定名次,若两支球队得分相同,就参考净胜球、相互胜负关系等决定名次.笑笑学校的球队要想稳获这次友谊赛的前两名,至少要得 分.第二十届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 现在从甲、乙、丙、丁四个人中选出两个人参加一项活动,规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的两个人是( )A .甲、乙B .乙、丙C .甲、丙D .乙、丁2. 以平面上任意 4 个点为顶点的三角形中,钝角三角形最多有( )个.A .5B .2C .4D .33. 桌上有编号 1 至 20 的 20 张卡片,小明每次取出 2 张卡片,要求一张卡片的编号是另一张卡片的 2 倍多 2,则小明最多取出( )张卡片. A .12B .14C .16D .184. 足球友谊比赛的票价是 50 元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一, 而票房收入增加了四分之一,那么每张票售价降了( )元.A .10B . 25C . 50D .25235. 一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分,那么,这只旧钟的 24 小时比标准时间的 24 小时( ).A .快 12 分B .快 6 分C .慢 6 分D .慢 12 分6. 在下图的 6×6 方格内,每个方格中只能填 A 、B 、C 、D 、E 、F 中的某个字母,要求每行、每列、每个标有粗线的 2×3 长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是( ).A .E 、 C 、 D 、 FB .E 、D 、C 、FC .D 、 F 、 C 、E D .D 、C 、F 、EB CA B D ABCE二、填空题(每小题 10 分,共 40 分) - - - = AFDPBEC7. 计算4811 + 265 1 + 904 129 41 55184160 7036 12 2030 42 568. 过正三角形 ABC 内一点 P ,向三边作垂线,垂足依次为 D 、E 、F ,连接 AP 、BP 、CP .如果正三角形ABC 的面积是 2028 平方厘米,三角形 PAD 和三角形 PBE 的面积都是 192 平方厘米,则三角形 PCF的面积为平方厘米.9. 自然数 2015 最多可以表示成 个连续奇数的和.10. 由单位正方形拼成的 15×15 网格,以网格的格点为顶点作边长为整数的正方形,则边长大于 5 的正方形有 个.第二十届华罗庚金杯少年数学邀请赛A BED H C 初赛 C 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:( 9 - 11 + 13 - 15 + 17 )×120- 1 ÷ 1=( )20 30 42 56 72 3 4A .42B .43C .15 1D .16 2332. 如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成 45 度角.最高的小树高 2.8 米,最低的小树高 1.4 米,那么从左向右数第 4 棵树的高度是( )米.A .2.6B .2.4C .2.2D .2.03. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生,事后,甲、乙、丙、丁 4 位同学有如下的对话: 甲:“丙、丁之中至少有 1 人捐了款.” 乙:“丁、甲之中至多有 1 人捐了款.” 丙:“你们 3 人中至少有 2 人捐了款.” 丁:“你们 3 人中至多有 2 人捐了款.” 已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ).A .甲、乙B .丙、丁C .甲、丙D .乙、丁4. 六位同学数学考试的平均成绩是 92.5 分,他们的成绩是互不相同的整数,最高的 99 分,最低的 76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94 B .95 C .96D .975. 如图,BH 是直角梯形 ABCD 的高,E 为梯形对角线 AC 上一点;如果△DEH 、△BEH 、△BCH 的面积依次为 56、50、40,那么△CEH 的面积是( ).A .32B .34C .35D .366. 一个由边长为 1 的小正方形组成的n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4 个角上的小正方形不全同色,那么正整数 n 的最大值是( ).A .3B .4C .5D .645°二、填空题(每小题10 分,共40 分)7.在每个格子中填入1 至6 中的一个,使得每行、每列及每个2×3 长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是3 月 1 4相约华杯8.整数n 一共有10 个约数,这些约数从小到大排列,第8 个数是n.那么整数n 的最大值是39.在边长为300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是厘米.(π取3.14)10.A 地、B 地、C 地、D 地依次分布在同一条公路上,甲、乙、丙三人分别从A 地、B 地C 地同时出发,匀速向D 地行进.当甲在C 地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9 分钟,乙也追上了丙,这时乙的速度减少25%;乙追上丙后再行50 米,三人同时到D 地.已知乙出发时的速度是每分钟60 米,那么甲出发时的速度是每分钟米,A、D 两地间的路程是米.第十九届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分.小龙得分 120 分,那么小龙最多答对了( )道试题.A .40B .42C .48D .503. 用左下图的四张含有 4 个方格的纸板拼成了右下图所示的图形.若在右下图的 16 个方格分别填入 1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么 A 、B 、C 、D 四个方格中数的平均数是( ).A . 4B . 5C D .74. 小明所在班级的人数不足 40 人,但比 30 人多,那么这个班男、女生人数的比不可能是( ).A .2︰3B .3︰4C .4︰5D .3︰75. 某学校组织一次远足活动,计划 10 点 10 分从甲地出发,13 点 10 分到达乙地,但出发晚了 5 分钟, 却早到达了 4 分钟.甲、乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是( ). A .11 点 40 分 B .11 点 50 分 C .12 点 D .12 点 10 分6. 如图所示,AF =7cm ,DH =4cm ,BG =5cm ,AE =1cm .若正方形 ABCD 内的四边形 EFGH 的面积为78 平方厘米,则正方形的边长为( )cm .A .10B .11C .12D .13ABA EDHF BC二、填空题(每小题 10 分,共 40 分)甲 乙7. 五名选手 A 、B 、C 、D 、E 参加“好声音”比赛,五个人站成一排集体亮相.他们胸前有每人的选手编号牌,5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是 .8. 甲、乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成方体(经过旋转得到相同的正方体视为同一种情况).种不同的 2×2×2 的正10. 在一个圆周上有 70 个点,任选其中一个点标上 1,按顺时针方向隔一个点的点上标 2,隔两个点的点上标 3,再隔三个点的点上标 4,继续这个操作,直到 1,2,3,…,2014 都被标记在点上.每个点可 能不止标有一个数,那么标记了 2014 的点上标记的最小整数是分分5 10 15 202530 5 10 15 202530第十九届华罗庚金杯少年数学邀请赛初赛 B 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 在下列四个算式中: AB ÷ CD =2,E ×F =0,G -H =1,I +J =4,A ~J 代表 0~9 中的不同数字,那么两位数 AB 不可能是( ). A .54 B .58 C .92 D .963. 淘气用一张正方形纸剪下了一个最大的圆(如图甲),笑笑用一张圆形纸剪下了七个相等的最大圆(如图乙),在这两种剪法中,哪种剪法的利用率最高?(利用率指的是剪下的圆形面积和占原来图形面积的百分率)下面几种说法中正确的是( ).A .淘气的剪法利用率高B .笑笑的剪法利用率高C .两种剪法利用率一样D .无法判断4. 小华下午 2 点要到少年宫参加活动,但他的手表每个小时快了 4 分钟,他特意在上午 10 点时对好了表.当小华按照自己的表于下午 2 点到少年宫时,实际早到了( )分钟.A .14B .15C .16D .175. 甲、乙、丙、丁四个人今年的年龄之和是 72 岁.几年前(至少一年)甲是 22 岁时,乙是 16 岁.又知道,当甲是 19 岁的时候,丙的年龄是丁的 3 倍(此时丁至少 1 岁).如果甲、乙、丙、丁四个人的年龄互不相同,那么今年甲的年龄可以有( )种情况.A .4B .6C .8D .106. 有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数 2014315.将这七张卡片全部分给了甲、乙、丙、丁四人,每人至多分 2 张.他们各说了一句话: 甲:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 8 的倍数.” 乙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数仍不是 9 的倍数.” 丙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 10 的倍数.” 丁:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 11 的倍数.” 已知四个人中恰好有一个人说了谎,那么说谎的人是( ).A .甲B .乙C .丙D .丁甲 乙二、填空题(每小题 10 分,共 40 分)13 ÷ 3 + 3 ÷ 2 1 + 17. 算式 1007× 4 44 3 ÷19 的计算结果是 .(1 + 2 + 3 + 4 + 5)⨯ 5 - 228. 海滩上有一堆栗子,这是四只猴子的财产,它们想要平均分配,第一只猴子来了,它左等右等别的猴子都不来,便把栗子分成四堆,每堆一样多,还剩下一个,它把剩下的一个顺手扔到海里,自己拿走了四堆中的一堆.第二只猴子来了,它也没有等到别的猴子,于是它把剩下的栗子等分成四堆,还剩下一个,它又扔掉一个,自己拿走一堆.第三只猴子也是如此,等分成四堆后,把剩下的一个扔掉, 自己拿走一堆;而最后一只猴子来,也将剩下的栗子等分成了四堆,扔掉多余的一个,取走一堆.那 么这堆栗子原来至少有 个.9. 甲、乙二人同时从 A 地出发匀速走向 B 地,与此同时丙从 B 地出发匀速走向 A 地.出发后 20 分钟甲与丙相遇,相遇后甲立即掉头;甲掉头后 10 分钟与乙相遇,然后甲再次掉头走向 B 地.结果当甲走到 B 地时,乙恰走过 A 、B 两地中点 105 米,而丙离 A 地还有 315 米.甲的速度是乙的速度的 倍,A 、B 两地间的路程是 米.10. 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组成的等差数列中包含 1 的有 种取法;总共有 种取法.第十八届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 2012.25×2013.75-2010.25×2015.75=( )A .5B .6C .7D .82. 2013 年的钟声敲响了,小明哥哥感慨地说:这是我有生以来第一次将要渡过一个没有重复数字的年份.已知小明哥哥出生的年份是 19 的倍数,那么 2013 年小明哥哥的年龄是( )岁.A .16B .18C .20D .223. 一只青蛙 8 点从深为 12 米的井底向上爬,它每向上爬 3 米,因为井壁打滑,就会下滑 1 米,下滑 1 米的时间是向上爬 3 米所用时间的三分之一.8 点 17 分时,青蛙第二次爬至离井口 3 米之处,那么青蛙从井底爬到井口时所花的时间为( )分钟.A .22B .20C .17D .164. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9︰7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7︰5,那么盒子里原有的黑子数比白子数多( )个.A .5B .6C .7D .85. 图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF 平行于 BD .若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )平方厘米.A .5B .10C .15D .206. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.A .0.9B .1.8C .3.6D .7.2D F MCAEB二、填空题(每小题 10 分,共 40 分)D E AFB7. 小明、小华、小刚三人分 363 张卡片,他们决定按年龄比来分.若小明拿 7 张,小华就要拿 6 张;若小刚拿 8 张,小明就要拿 5 张.最后,小明拿了 张;小华拿了张.张;小刚拿了8. 某公司的工作人员每周都工作 5 天休息 2 天,而公司要求每周从周一至周日,每天都至少有 32 人上班,那么该公司至少需要名工作人员.9. 如图,AB 是圆 O 的直径,长 6 厘米,正方形 BCDE 的一个顶点 E 在圆周上,∠ABE =45°.那么圆 O中非阴影部分的面积与正方形 BCDE 中非阴影部分面积的差等于 平方厘米(取 π=3.14)10. 圣诞老人有 36 个同样的礼物,分别装在 8 个袋子中.已知 8 个袋子中礼物的个数至少为 1 且各不相 同.现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给 8 个小朋友,恰好分完(每个小朋 友至少分得一个礼物).那么,共有 种不同的选择.第十八届华罗庚金杯少年数学邀请赛AB 初赛 B 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数,各位数字互不相同,所有数字之和等于 6,并且这个数是 11 的倍数,则满足这种要求的四位数共有( )个.A .6B .7C .8D .92. 2+2×3+2×3×3+……+2× 3 ⨯ 3 ⨯⨯ 3 个位数字是( ). 9个3A .2B .8C .4D .63. 在下面的阴影三角形中,不能由下图中左面的阴影三角形经过旋转、平移得到的是图( )中的三角形.ABCD4. 某日,甲学校买了 56 千克水果糖,每千克 8.06 元.过了几日,乙学校也需要买同样的 56 千克水果糖,不过正好赶上促销活动,每千克水果糖降价 0.56 元,而且只要买水果糖都会额外赠送 5%同样的水果糖.那么乙学校将比甲学校少花( )元.A .20B .51.36C .31.36D .10.365. 甲、乙两仓的稻谷数量一样,爸爸、妈妈和阳阳单独运完一仓稻谷分别需要 10 天、12 天和 15 天.爸爸、妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷.那么阳阳帮妈妈运了( )天. A .3B .4C .5D .66. 如图,将长度为 9 的线段 AB 分成 9 等份,那么图中所有线段的长度的总和是( ).A .132B .144C .156D .165二、填空题(每小题10 分,共40 分)7.将乘积0.2˙43˙×0.32˙5233˙化为小数,小数点后第2013 位的数字是.8.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为分钟.9.一个水池有三个进水口和一个出水口.同时打开出水口和其中的两个进水口,注满整个水池分别需要6 小时、5 小时和4 小时;同时打开出水口和三个进水口,注满整个水池需要3 小时.如果同时打开三个进水口,不打开出水口,那么注满整个水池需要小时.10.九个同样的直角三角形卡片,用卡片的锐角拼成一圈,可以拼成类似下图所示的平面图形.这种三角形卡片中的两个锐角中较小的一个的度数有种不同的可能值.(下图只是其中一种可能的情况)第十七届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2012 年 3 月 17 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:[(0.8+ 1 )×24+6.6]÷ 9-7.6=( ).5 14A .30B .40C .50D .602. 以平面上 4 个点为端点连接线段,形成的图形中最多可以有( )个三角形.A .3B .4C .6D .83. 一个奇怪的动物庄园里住着猫和狗,狗比猫多 180 只.有 20%的狗错认为自己是猫;有 20%的猫错认为自己是狗.在所有的猫和狗中,有 32%认为自己是猫,那么狗有( )只.A .240B .248C .420D .8424. 下图的方格纸中有五个编号为 1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是( )A .1,2B .2,3C .3,4D .4,55. 在下图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是( ) A .369B .396C .459D .5496. 下图是由相同的正方形和相同的等腰直角三角形构成,则正方形的个数为( )A .83B .79C .72D .651 253 4A B C + D E F H IJ二、填空题(每小题 10 分,共 40 分)百十个百 十 个A EC HFB7. 如图的计数器三个档上各有 10 个算珠,将每档算珠分成上下两部分,得到两个三位数.要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是.8. 四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是 3:0 或 3:1.则胜队得 3 分,负队得 0 分;如果比分是 3:2,则胜队得 2 分,负队得 1 分.比赛的结果各队得分恰好是四个连续的自然数,则第一名的得分是 分.9. 甲、乙两车分别从 A 、B 两地同时出发,且在 A 、B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶 4 小时到达 B ,而乙车只行驶了 1 小时就到达 A ,则两车第 15 次(在 A ,B 两地相遇次数不计)相遇时,它们行驶了 小时.10. 正方形 ABCD 的面积为 9 平方厘米,正方形 EFGH 的面积为 64 平方厘米.如图所示,边 BC 落在 EH上.己知三角形 ACG 的面积为 6.75 平方厘米,则三角形 ABE 的面积为 平方厘米.。
2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小中组)一、填空题(每题10分,共80分)1.(10分)计算:28×7×25+12×7×25+7×11×3+44=.2.(10分)字母 A,B,C 分别代表 1~9 中不同的数字.在使得如图的加法算式成立的所有情形中,三个字母 A,B,C 都不可能取到的数字的乘积是.3.(10分)鸡兔同笼,共有头51个,兔的总脚数比鸡的总脚数的3倍多4只,那么笼中共有兔子只.4.(10分)抽屉里有若干个玻璃球,小军每次操作都取出抽屉中球数的一半再放回一个球.如此操作了2012次后,抽屉里还剩有2个球.那么原来抽屉里有个球.5.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点 A,B,C,D 为顶点的四边形ABCD的面积等于多少平方分米?6.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?7.(10分)有一些自然数,它们中的每一个与7相乘,其积的末尾四位数都为2012,那么在这些自然数中,最小的数是.8.(10分)将棱长为1米的正方体木块分割成棱长为1厘米的小正方体积木,设想孙悟空施展神力将所有的小积木一个接一个地叠放起来,成为一根长方体“神棒”,直指蓝天.已知珠穆朗玛峰的海拔高度为8844米,则“神棒”的高度超过珠穆朗玛峰的海拔高度米.二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)已知被除数比除数大78,并且商是 6,余数是 3,求被除数与除数之积.10.(10分)今年甲、乙俩人年龄的和是70岁.若干年前,当甲的年龄只有乙现在这么大时,乙的年龄恰好是甲年龄的一半.问:甲今年多少岁?11.(10分)有三个连续偶数,它们的乘积是一个五位数,该五位数个位是0,万位是2,十位、百位和千位是三个不同的数字,那么这三个连续偶数的和是多少?12.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表 0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小中组)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:28×7×25+12×7×25+7×11×3+44=7275 .【分析】根据乘法的结合律与分配律简算即可,注意计算中的11×25的乘法时根据“两边拉,中间加”巧算.【解答】解:28×7×25+12×7×25+7×11×3+44=7×25×(28+12)+11×21+11×4=7×(25×40)+11×(21+4)=7×1000+11×25=7000+275=7275故答案为:7275.2.(10分)字母 A,B,C 分别代表 1~9 中不同的数字.在使得如图的加法算式成立的所有情形中,三个字母 A,B,C 都不可能取到的数字的乘积是8 .【分析】首先分析出A是加上进位等于B,那么A比B小1,并且A与B 的和是有..进位的,枚举出所有情况排除即可.【解答】解:依题意可知:A加上进位等于B,那么这两个数字相差1,可以是A=5,B=6,C=1.A=6,B=7,C=3.A=7,B=8,C=5.A=8,B=9,C=7.那么A,B,C不可能取道的数字有2,4即2×4=8故答案为:83.(10分)鸡兔同笼,共有头51个,兔的总脚数比鸡的总脚数的3倍多4只,那么笼中共有兔子31 只.【分析】根据题意可知如果少一只兔子,则兔的总脚数是鸡的总脚数的3倍,因一只兔脚的只数是一只鸡脚只数的4÷2=2倍,所以当兔的只数是鸡的只数的3÷2=1.5倍时兔的总脚数是鸡的总脚数的3倍,据此可只鸡的头数是(51﹣1)÷(1.5+1)=20只,进而可求出兔子的只数.【解答】解:4÷2=2(51﹣1)÷(3÷2+1)=50÷2.5=20(只)51﹣20=31(只)答:笼子中共有兔子31只.故答案为:31.4.(10分)抽屉里有若干个玻璃球,小军每次操作都取出抽屉中球数的一半再放回一个球.如此操作了2012次后,抽屉里还剩有2个球.那么原来抽屉里有 2 个球.【分析】还原问题每次拿走一半再放回一个,倒推就是每次拿走一个再加一倍.2个拿走1个,剩下1个加一倍是2个.重复周期问题.【解答】解:还原问题的倒推图操作第一次:(2﹣1)×2=2(个)操作第二次:(2﹣1)×2=2(个)操作第三次:(2﹣1)×2=2(个)每一次结果都是2个,属于周期问题.无论操作多少次结果都是2个.故答案为:25.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点 A,B,C,D 为顶点的四边形ABCD的面积等于多少平方分米?【分析】这属于正方形格点问题,根据正方形格点毕克定理S=N﹣1+L÷2可以直接求出面积,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部的格点数是12,边界点的数是6,根据公式列出算式是12﹣1+6÷2=14答:四边形ABCD的面积等于14平方分米.6.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?【分析】小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.【解答】解:小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.答:小虫从A到B的不同路线有10条.7.(10分)有一些自然数,它们中的每一个与7相乘,其积的末尾四位数都为2012,那么在这些自然数中,最小的数是1716 .【分析】首先分析本题可以反过来求解,想找到最小的乘数可以转换找到最小的乘积,2012不是7的倍数,那么需要在前面加上一位数字是最小的即可.【解答】解:首先发现2012不是7的倍数,那么要找到最小就需要看看在2012前加一个最小的数字组成7的倍数.在首位加上数字1,12012÷7=1716.那么最小就是1716.故答案为:1716.8.(10分)将棱长为1米的正方体木块分割成棱长为1厘米的小正方体积木,设想孙悟空施展神力将所有的小积木一个接一个地叠放起来,成为一根长方体“神棒”,直指蓝天.已知珠穆朗玛峰的海拔高度为8844米,则“神棒”的高度超过珠穆朗玛峰的海拔高度1156 米.【分析】1米=100厘米,则1立方米=1000000立方厘米,即1 米的正方体木块分割成棱长为 1 厘米的小正方体积1000000个,即可求解.【解答】解:1立方米=1000000立方厘米,即1米的正方体木块分割成棱长为1厘米的小正方体积1000000个;它们相互叠加组成“神棒”的高度=1000000×0.01=10000(米);即比珠穆朗玛峰的海拔高度高10000﹣8848=1156(米),故填1156.故答案为:1156.二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)已知被除数比除数大78,并且商是 6,余数是 3,求被除数与除数之积.【分析】被除数=除数×商+余数,所以被除数是除数的6倍多3,78就是除数的5倍多3.【解答】解:除数=(78﹣3)÷(6﹣1)=25,被除数=除数×商+余数=6×25+3=153,那么被除数与除数之积是153×25=3825.故答案为:3825.10.(10分)今年甲、乙俩人年龄的和是70岁.若干年前,当甲的年龄只有乙现在这么大时,乙的年龄恰好是甲年龄的一半.问:甲今年多少岁?【分析】根据题意,可得:若干年前乙的年龄等于今年乙的年龄的一半,所以今年甲的年龄等于若干年前甲的年龄的1.5(1+0.5=1.5)倍,所以今年甲的年龄等于今年乙的年龄的1.5倍,再根据今年甲、乙两人年龄的和是70岁.求出甲今年多少岁即可.【解答】解:因为当甲的年龄只有乙现在这么大时,乙的年龄恰好是甲年龄的一半,所以今年甲的年龄等于若干年前甲的年龄的:1+0.5=1.5倍,所以今年甲的年龄等于今年乙的年龄的1.5倍,70÷(1+1.5)×1.5=70÷2.5×1.5=28×1.5=42(岁)答:甲今年42岁.11.(10分)有三个连续偶数,它们的乘积是一个五位数,该五位数个位是0,万位是2,十位、百位和千位是三个不同的数字,那么这三个连续偶数的和是多少?【分析】26×26×26=17576,31×31×31=29791,所以三个连续偶数在24,26,28,30,32之间,考虑个位为0,应有因数2,5.【解答】解:26×26×26=17576,31×31×31=29791,所以三个连续偶数在24,26,28,30,32之间,考虑个位为0,应有因数2,5,26×28×30=21840,符合要求.28×30×32=26880,不合要求,30×32×34=32640,不符合要求.所以这三个连续偶数的和为26+28+30=84.故答案为:84.12.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表 0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?【分析】由题意,14×20×35+98=9898,即可得出结论.【解答】解:由题意,14×20×35+98=9898,∴当四位数北京精神最大时,厚德为98.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:49:20;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小高组)一、填空题(每题10分,共80分)1.(10分)算式×[2×(1.875﹣)]÷[(0.875+1)÷3]的值为.2.(10分)小龙的妈妈比爸爸小3 岁,妈妈今年的年龄是小龙今年的9倍,爸爸明年的年龄是小龙明年的8倍,那么爸爸今年岁.3.(10分)某水池有A、B两个排水龙头.同时打开两个龙头排水,30分钟可将满池的水排尽;同时打开两个龙头排水10分钟,然后关闭A龙头,B龙头继续排水,30分钟后也可以将满池的水排尽.那么单独打开B龙头,需要分钟才能排尽满池的水.4.(10分)如图,圆O的面积为32,OC⊥AB,∠AOE=∠EOD,∠COF=∠FOD,则扇形EOF的面积为.5.(10分)算式+++++++++的值的整数部分为.6.(10分)如图中,正方形ABCD的面积为840平方厘米,AE=EB,BF=2FC,DF与EC 相交于G.则四边形AEGD的面积为平方厘米.7.(10分)一个自然数无论从左向右读或从右向左读都是一样的数称之为“回文数”,例如:909.那么所有三位回文数的平均数是.8.(10分)将七个连续自然数分别填在五个圆的交点A,B,C,D,E,F,G处,使得每个圆上的数的和都相等.如果所填的数都大于0且不大于10,则填在点G处的数是.二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?10.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点A,B,C,D为顶点的四边形ABCD的面积等于多少平方分米?11.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?12.(10分)求最小的自然数,它恰好能表示成4种不同的不少于两个的连续非零自然数之和.2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小高组)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)算式×[2×(1.875﹣)]÷[(0.875+1)÷3]的值为5.【分析】根据分数的四则混合运算的运算顺序解答即可,注意把带分数化成假分数,小数化成分数有利于计算.【解答】解:×[2×(1.875﹣)]÷[(0.875+1)÷3]=××(﹣)÷[(+)×]=4×÷[(+)×]=÷[×]=÷=5故答案为:5.2.(10分)小龙的妈妈比爸爸小3 岁,妈妈今年的年龄是小龙今年的9倍,爸爸明年的年龄是小龙明年的8倍,那么爸爸今年39岁.【分析】设小龙今年的年龄是x岁,那么妈妈的年龄就是9x岁,小龙的妈妈比爸爸小3 岁,那么小龙爸爸的年龄就是9x+3岁,明年小龙爸爸的年龄就是9x+3+1岁;小龙明年的年龄就是x+1岁,它的8倍就是(x+1)×8,这与小龙爸爸明年的年龄相等,由此列出方程求出小龙今年的年龄,进而求出爸爸的年龄.【解答】解:设小龙今年的年龄是x岁,小龙爸爸的年龄就是9x+3岁,(x+1)×8=9x+3+18x+8=9x+49x﹣8x=8﹣4x=49x+3=9×4+3=39(岁)答:爸爸今年39岁.故答案为:39.3.(10分)某水池有A、B两个排水龙头.同时打开两个龙头排水,30分钟可将满池的水排尽;同时打开两个龙头排水10分钟,然后关闭A龙头,B龙头继续排水,30分钟后也可以将满池的水排尽.那么单独打开B龙头,需要45分钟才能排尽满池的水.【分析】设工作总量为1,A,B共同排水30分钟排尽,10分钟完成工程的,B完成剩下工程的,时间为30分钟,据此可求出B的工作效率,进而求解.【解答】解:设工作总量为1,A,B共同排水需要30分钟.两个水龙头的效率和为,合作10分钟,完成工作总量为×10=,但是B排水单独工作需要30分钟,工作总量为,B水龙头的效率为:,单独打开B需要时间:1÷=45(分).故答案为:45.4.(10分)如图,圆O的面积为32,OC⊥AB,∠AOE=∠EOD,∠COF=∠FOD,则扇形EOF的面积为4.【分析】可以利用弧度之间的关系先求得EOF的弧度,而EOF可以分EOC和COF两个弧度,再利用已知的弧度关系,不难求得EOF的弧度,面积也不难求得.【解答】解:根据分析,由图可知,∠AOE=∠EOD=∠FOD+∠COF+∠EOC;又∠AOE=90°﹣∠EOC,∠FOD=∠COF,∴90°﹣∠EOC=∠FOD+∠COF+∠EOC=2×∠COF+∠EOC,⇒2(∠EOC+∠COF)=90°⇒∠EOC+∠COF=45°⇒∠EOF=45°,又∵圆O的面积为32=πr2,∴EOF的面积===4.故答案是:4.5.(10分)算式+++++++++的值的整数部分为46.【分析】先把算式通过拆分变形为50﹣5×(++++…++),然后讨论括号里的和的取值,即可解答.【解答】解:设A=+++++++++=5×(+++++++++)=5×(1×10﹣﹣﹣…﹣)=50﹣5×(++++…++)括号里的:++++…++=(+++)+(+)+(++)所以,++++…++<5×(+)=则,A>50﹣5×≈46.5同理,++++…++=(+++)+(+)+(++)所以,++++…++>5×(+)=则,A<50﹣5×≈46.8所以,46.5<A<46.8所以,[A]=46即,原式的值的整数部分为46.故答案为:46.6.(10分)如图中,正方形ABCD的面积为840平方厘米,AE=EB,BF=2FC,DF与EC相交于G.则四边形AEGD的面积为510平方厘米.【分析】这图形,易让人想到求三角形BCE、CDF、CGF的面积,其中难求得是△CGF 的面积.根据所给的条件,我们应做做GM⊥BC交点为M,这样就形成了与△BCE、△CDF对应的2组相似三角形.再利用相似三角形面积之比等于相似比的平方,即可求得△CGF的面积.最后根据图形即可算出所求图形的面积.【解答】解:做GM⊥BC交点为M,∴△FMG∽△FCD⇒FM:FC=MG:CD,∵BF=2FC⇒BC=3FC,∴MG=3FM,∵△CGM:△CEB⇒CM:CB=GM:BE,BC=2BE,∴GM=CM=3FM⇒CM=6FM,∴FM:FC=1:7,CM:CB=2:7,S△BCE=□ABCD=210,S△CGM=4÷49×210=840÷49=120÷7,S△CDF=S□ABCD÷6=140,S△MGF=140×1÷49=140÷49=20÷7,S△CGM+△MGF=120÷7+20÷7=20,840﹣210﹣140+20=510(平方厘米).故:四边形AEGD的面积是510平方厘米.7.(10分)一个自然数无论从左向右读或从右向左读都是一样的数称之为“回文数”,例如:909.那么所有三位回文数的平均数是550.【分析】三位回文数是ABA的形式,共有90个,因此平均数=这些数的和÷90=[101×(1+2+…+9)×10+10×(0+1+2+…+9)×9]÷90,即可得出结论.【解答】解:三位回文数是ABA的形式A共有1到9共9种可能,即1B1、2B2、3B3…B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…共有9×10=90个因此平均数=这些数的和÷90=[101×(1+2+…+9)×10+10×(0+1+2+…+9)×9]÷90=(101×45×10+10×45×9)÷90=45×10×110÷90=5×110=550,故答案为550.8.(10分)将七个连续自然数分别填在五个圆的交点A,B,C,D,E,F,G处,使得每个圆上的数的和都相等.如果所填的数都大于0且不大于10,则填在点G处的数是6.【分析】首先分析这些数字之间的关系,相等的量和有倍数关系的量,枚举尝试即可.【解答】解:依题意可知:A+B=A+C+D=B+E+F=C+F+G=D+E+G.C+D=B,E+F=A.C+F+G+D+E+G=A+B+A+B2G=A+B.(和为偶数)字母G估算再中间数字5,6,7.字母A不能是1,2.字母B比较大.尝试A=3,B=9,G=6.E+F=3,C+D=9.相等数字和为12.所以F=1.C=5.E =2,D=4.满足条件.故答案为:6二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?【分析】小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.【解答】解:小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.答:小虫从A到B的不同路线有10条.10.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点A,B,C,D为顶点的四边形ABCD的面积等于多少平方分米?【分析】这属于正方形格点问题,根据正方形格点毕克定理S=N﹣1+L÷2可以直接求出面积,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部的格点数是12,边界点的数是6,根据公式列出算式是12﹣1+6÷2=14答:四边形ABCD的面积等于14平方分米.11.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?【分析】由题意,14×20×35+98=9898,即可得出结论.【解答】解:由题意,14×20×35+98=9898,∴当四位数北京精神最大时,厚德为98.12.(10分)求最小的自然数,它恰好能表示成4种不同的不少于两个的连续非零自然数之和.【分析】从连续非零自然数的和的奇偶性切入进行分析:因为是连续非零自然数之和,那么两个数的和,奇数+偶数=奇数;三个数的和,偶数+奇数+偶数=奇数,并且是3的倍数;四个数的和一定是偶数,排除掉;五个数的和,奇数+偶数+奇数+偶数+奇数=奇数,并且是5的倍数;六个数时,三个奇数+三个偶数=奇数.3和5最小公倍数是15,这个最小自然数一定是15的倍数.通过试算可知45是符合条件的最小的自然数.【解答】解:两个数的和,奇数+偶数=奇数;三个数的和,偶数+奇数+偶数=奇数,并且是3的倍数;四个数的和一定是偶数,排除掉;五个数的和,奇数+偶数+奇数+偶数+奇数=奇数,并且是5的倍数;六个数时,三个奇数+三个偶数=奇数.3和5的最小公倍数是15,所以这个最小自然数一定是15的倍数.试算:45=22+23=14+15+16=7+8+9+10+11=5+6+7+8+9+10所以45是符合条件的最小的自然数.。
2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小高组)一、填空题(每题10分,共80分)1.(10分)算式×[2×(1.875﹣)]÷[(0.875+1)÷3]的值为.2.(10分)小龙的妈妈比爸爸小 3 岁,妈妈今年的年龄是小龙今年的9倍,爸爸明年的年龄是小龙明年的8倍,那么爸爸今年岁.3.(10分)某水池有A、B两个排水龙头.同时打开两个龙头排水,30分钟可将满池的水排尽;同时打开两个龙头排水10分钟,然后关闭A龙头,B 龙头继续排水,30分钟后也可以将满池的水排尽.那么单独打开B龙头,需要分钟才能排尽满池的水.4.(10分)如图,圆O的面积为32,OC⊥AB,∠AOE=∠EOD,∠COF=∠FOD,则扇形EOF的面积为.5.(10分)算式+++++++++的值的整数部分为.6.(10分)如图中,正方形ABCD的面积为840平方厘米,AE=EB,BF=2FC,DF与EC相交于G.则四边形AEGD的面积为平方厘米.7.(10分)一个自然数无论从左向右读或从右向左读都是一样的数称之为“回文数”,例如:909.那么所有三位回文数的平均数是.8.(10分)将七个连续自然数分别填在五个圆的交点A,B,C,D,E,F,G 处,使得每个圆上的数的和都相等.如果所填的数都大于0且不大于10,则填在点G处的数是.二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?10.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点 A,B,C,D 为顶点的四边形ABCD的面积等于多少平方分米?11.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表 0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?12.(10分)求最小的自然数,它恰好能表示成4种不同的不少于两个的连续非零自然数之和.2012年第十七届“华罗庚金杯”少年数学邀请赛网试决赛试卷(小高组)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)算式×[2×(1.875﹣)]÷[(0.875+1)÷3]的值为 5 .【分析】根据分数的四则混合运算的运算顺序解答即可,注意把带分数化成假分数,小数化成分数有利于计算.【解答】解:×[2×(1.875﹣)]÷[(0.875+1)÷3]=××(﹣)÷[(+)×]=4×÷[(+)×]=÷[×]=÷=5故答案为:5.2.(10分)小龙的妈妈比爸爸小 3 岁,妈妈今年的年龄是小龙今年的9倍,爸爸明年的年龄是小龙明年的8倍,那么爸爸今年39 岁.【分析】设小龙今年的年龄是x岁,那么妈妈的年龄就是9x岁,小龙的妈妈比爸爸小3 岁,那么小龙爸爸的年龄就是9x+3岁,明年小龙爸爸的年龄就是9x+3+1岁;小龙明年的年龄就是x+1岁,它的8倍就是(x+1)×8,这与小龙爸爸明年的年龄相等,由此列出方程求出小龙今年的年龄,进而求出爸爸的年龄.【解答】解:设小龙今年的年龄是x岁,小龙爸爸的年龄就是9x+3岁,(x+1)×8=9x+3+18x+8=9x+49x﹣8x=8﹣4x=49x+3=9×4+3=39(岁)答:爸爸今年39岁.故答案为:39.3.(10分)某水池有A、B两个排水龙头.同时打开两个龙头排水,30分钟可将满池的水排尽;同时打开两个龙头排水10分钟,然后关闭A龙头,B 龙头继续排水,30分钟后也可以将满池的水排尽.那么单独打开B龙头,需要45 分钟才能排尽满池的水.【分析】设工作总量为1,A,B共同排水30分钟排尽,10分钟完成工程的,B完成剩下工程的,时间为30分钟,据此可求出B的工作效率,进而求解.【解答】解:设工作总量为1,A,B共同排水需要30分钟.两个水龙头的效率和为,合作10分钟,完成工作总量为×10=,但是B排水单独工作需要30分钟,工作总量为,B水龙头的效率为:,单独打开B需要时间:1÷=45(分).故答案为:45.4.(10分)如图,圆O的面积为32,OC⊥AB,∠AOE=∠EOD,∠COF=∠FOD,则扇形EOF的面积为 4 .【分析】可以利用弧度之间的关系先求得EOF的弧度,而EOF可以分EOC 和COF两个弧度,再利用已知的弧度关系,不难求得EOF的弧度,面积也不难求得.【解答】解:根据分析,由图可知,∠AOE=∠EOD=∠FOD+∠COF+∠EOC;又∠AOE=90°﹣∠EOC,∠FOD=∠COF,∴90°﹣∠EOC=∠FOD+∠COF+∠EOC=2×∠COF+∠EOC,⇒2(∠EOC+∠COF)=90°⇒∠EOC+∠COF=45°⇒∠EOF=45°,又∵圆O的面积为32=πr2,∴EOF的面积===4.故答案是:4.5.(10分)算式+++++++++的值的整数部分为46 .【分析】先把算式通过拆分变形为50﹣5×(++++…++),然后讨论括号里的和的取值,即可解答.【解答】解:设A=+++++++++=5×(+++++++++)=5×(1×10﹣﹣﹣…﹣)=50﹣5×(++++…++)括号里的:++++…++=(+++)+(+)+(++)所以,++++…++<5×(+)=则,A>50﹣5×≈46.5同理,++++…++=(+++)+(+)+(++)所以,++++…++>5×(+)=则,A<50﹣5×≈46.8所以,46.5<A<46.8所以,[A]=46即,原式的值的整数部分为46.故答案为:46.6.(10分)如图中,正方形ABCD的面积为840平方厘米,AE=EB,BF=2FC,DF与EC相交于G.则四边形AEGD的面积为510 平方厘米.【分析】这图形,易让人想到求三角形BCE、CDF、CGF的面积,其中难求得是△CGF的面积.根据所给的条件,我们应做做GM⊥BC交点为M,这样就形成了与△BCE、△CDF对应的2组相似三角形.再利用相似三角形面积之比等于相似比的平方,即可求得△CGF的面积.最后根据图形即可算出所求图形的面积.【解答】解:做GM⊥BC交点为M,∴△FMG∽△FCD⇒FM:FC=MG:CD,∵BF=2FC⇒BC=3FC,∴MG=3FM,∵△CGM:△CEB⇒CM:CB=GM:BE,BC=2BE,∴GM=CM=3FM⇒CM=6FM,∴FM:FC=1:7,CM:CB=2:7,S△BCE=□ABCD=210,S△CGM=4÷49×210=840÷49=120÷7,S△CDF=S□ABCD÷6=140,S△MGF=140×1÷49=140÷49=20÷7,S△CGM+△MGF=120÷7+20÷7=20,840﹣210﹣140+20=510(平方厘米).故:四边形AEGD的面积是510平方厘米.7.(10分)一个自然数无论从左向右读或从右向左读都是一样的数称之为“回文数”,例如:909.那么所有三位回文数的平均数是550 .【分析】三位回文数是ABA的形式,共有90个,因此平均数=这些数的和÷90=[101×(1+2+…+9)×10+10×(0+1+2+…+9)×9]÷90,即可得出结论.【解答】解:三位回文数是ABA的形式A共有1到9共9种可能,即1B1、2B2、3B3…B共有0到9共10种可能,即A0A、A1A、A2A、A3A、…共有9×10=90个因此平均数=这些数的和÷90=[101×(1+2+…+9)×10+10×(0+1+2+…+9)×9]÷90=(101×45×10+10×45×9)÷90=45×10×110÷90=5×110=550,故答案为550.8.(10分)将七个连续自然数分别填在五个圆的交点A,B,C,D,E,F,G 处,使得每个圆上的数的和都相等.如果所填的数都大于0且不大于10,则填在点G处的数是 6 .【分析】首先分析这些数字之间的关系,相等的量和有倍数关系的量,枚举尝试即可.【解答】解:依题意可知:A+B=A+C+D=B+E+F=C+F+G=D+E+G.C+D=B,E+F=A.C+F+G+D+E+G=A+B+A+B2G=A+B.(和为偶数)字母G估算再中间数字5,6,7.字母A不能是1,2.字母B比较大.尝试A=3,B=9,G=6.E+F=3,C+D=9.相等数字和为12.所以F=1.C =5.E=2,D=4.满足条件.故答案为:6二、回答下列各题(每题10分,共40分,写出答案即可)9.(10分)一只小虫沿如图中的线路从A爬到B.规定:图中标示箭头的边只能沿箭头方向行进,而且每条边在同一路线中至多通过一次.问:小虫从A到B的不同路线有多少条?【分析】小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.【解答】解:小虫从A到B,第一个六边形的分叉口上下均有2条,B所在的六边形也上下有2条,于是有2×2+2×2=8条,中间往回走的箭头有2条路线,一共有10条.答:小虫从A到B的不同路线有10条.10.(10分)如图是由1平方分米的正方形瓷砖铺砌的墙面的残片.问:图中由格点 A,B,C,D 为顶点的四边形ABCD的面积等于多少平方分米?【分析】这属于正方形格点问题,根据正方形格点毕克定理S=N﹣1+L÷2可以直接求出面积,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部的格点数是12,边界点的数是6,根据公式列出算式是12﹣1+6÷2=14答:四边形ABCD的面积等于14平方分米.11.(10分)在等式“爱国×创新×包容+厚德=北京精神”中,每个汉字代表 0~9 的一个数字,爱、国、创、新、包、容、厚、德分别代表不同的数字.当四位数北京精神最大时,厚德为多少?【分析】由题意,14×20×35+98=9898,即可得出结论.【解答】解:由题意,14×20×35+98=9898,∴当四位数北京精神最大时,厚德为98.12.(10分)求最小的自然数,它恰好能表示成4种不同的不少于两个的连续非零自然数之和.【分析】从连续非零自然数的和的奇偶性切入进行分析:因为是连续非零自然数之和,那么两个数的和,奇数+偶数=奇数;三个数的和,偶数+奇数+偶数=奇数,并且是3的倍数;四个数的和一定是偶数,排除掉;五个数的和,奇数+偶数+奇数+偶数+奇数=奇数,并且是5的倍数;六个数时,三个奇数+三个偶数=奇数.3和5最小公倍数是15,这个最小自然数一定是15的倍数.通过试算可知45是符合条件的最小的自然数.【解答】解:两个数的和,奇数+偶数=奇数;三个数的和,偶数+奇数+偶数=奇数,并且是3的倍数;四个数的和一定是偶数,排除掉;五个数的和,奇数+偶数+奇数+偶数+奇数=奇数,并且是5的倍数;六个数时,三个奇数+三个偶数=奇数.3和5的最小公倍数是15,所以这个最小自然数一定是15的倍数.试算:45=22+23=14+15+16=7+8+9+10+11=5+6+7+8+9+10所以45是符合条件的最小的自然数.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:49:29;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
÷()﹣的值为 .3.(10分)设某圆锥的侧面积是10π,表面积是19π,则它的侧面展开图的圆心角是 .4.(10分)设a△b和a▽b分别表示取a和b两个数的最小值和最大值,如,3△4=3,3▽4=4,那么对于不同的数x,5▽[4▽(x△4)]的取值共有 个.5.(10分)某水池有A,B两个水龙头.如果A,B同时打开需要30分钟可将水池注满.现在A和B同时打开10分钟,6.(10分)如图是一个五棱柱的平面展开图.图中的正方形边长都为2.按图所示数据,这个五棱柱的体积等7.(10分)一条路上有A、O、B三个地点,O在A与B之间,A与O相距1620,米,甲、乙两人同时分别从A和O8.(10分)从1到1000中最多可以选出 个数,使得这些数中任意两个数的差都不整除它们的和.二.解答下列各题(每题10分,要求写出简要过程)。
N=++…+,问12.(10分)小明拿着100元人民币去商店买文具,回来后数了数找回来的人民币有4张不同币值的纸币,4枚不同的硬币.纸币面值大于一元,硬币的面值小于1元.并且所有纸币的面值和以“元”为单位可以被3整除,所有硬币的面值13.(10分)能否用540个图所示的1×2的小长方形拼成一个6×180的大长方形,使得6×180的长方形的每一行、每一列都有奇数个星?请说明理由.14.(10分)已知100个互不相同的质数p1,p2,…,p100,记N=p12+p12+…+p1002,问:N被3除的余数是多少?15.(15分)王大妈拿了一袋硬币去银行兑换纸币,袋中有一分、二分、五分和一角四种硬币,二分的枚数是一分的,五分硬币的枚数是二分的,一角硬币的枚数是五分的少7枚.王大妈兑换到的纸币恰好是大于50小于100的整元数.问这四种硬币各有多少枚?16.(15分)右图四一个三角形网格,由16个小的等边三角形构成.网格中由3个相邻的小三角形构成的图形称为“3﹣梯形”.如果在每个小三角形内填上数字1﹣9中的一个,那么能否给出一种填法,使得任意两个“3﹣梯形”中的3个数之和均不相同?如果能,请举出一例;如果不能,请说明理由.三.解答下列各题(每小题15分,共60分,要求写出详细过程)17.(15分)图中,ABCD是平行四边形,E在AB边上,F在DC边上,G为AF与DE的交点,H为CE与BF的交点.已知,平行四边形ABCD的面积是1,=,三角形BHC的面积是,求三角形ADG的面积.18.(15分)记一千个自然数x、x+1、x+2、…,x+999的和的和为a,如果a的数字和等于50,则x最小为多少?19.(15分)请写出所有满足下面三个条件的正整数a和b;(1)a≤b;(2)a+b 是个三位数,且三个数字从小到大排列等差;(3)a×b 是一个五位数,且五个数字相同.20.(15分)记一百个自然数x,x+1,x+2,…,x+99的和为a,如果a的数字和等于50,则x最小为多少?.。
2012年“华杯赛”初赛试题(小高组),2012年3月17日华杯赛笔试初赛开考
太原赛区考试不同,现在更新太原华杯赛4、5题试题原题:
4、老师在黑板上写了从1开始的若干个连续自然数,1,2,3……,后来擦掉其中一个数,剩下数的平均数是25又24分之11,擦掉的自然数是()
A、12
B、17
C、 20
D、3
5、美羊羊去批发市场进货,她所带的钱如果买芒果刚好买20千克,如果买菠萝刚好买30千克如果买草莓,刚好买60千克。
好最后买回的三种水量数量相同,那么这三种水果一共买了多少千克。
A、45
B、27
C、30
D、36
第十七届全国华罗庚金杯少年数学邀请赛
初赛试题(小学高年级组笔试版)答案
太原市4、5题考试不同,现在将4、5题答案公布如下:4、D;5、C。
2012年第17届华罗庚金杯少年数学邀请赛
初赛试卷(初一组)
一、选择题(每小题10分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)
1.若ab<0 ,a-b>0 ,则a,b两数的正负情况为〔〕.
(A)a>0,b<0 (B) a>0,b>0(C)a<0,b>0(D)a<0,b<0 2.右图是一个两位数的加法算式,已知A+B+C+D=22,贝X+Y=〔〕. (A)13 (B) 7 (C) 4 (D)2
3.右图中,ABC是一个钝角三角形,BC=6cm,AB=5 cm,BC边上的高AD为4cm.若此三角形以每
秒3 cm的速度沿DA所在直线向上移动,2秒后,此三角形扫过的面积是〔〕cm2
(A)36 (B) 54 (C) 60 (D)66
4在10口10口10口10口10的四个"口"中分别填入“+”“-”“×”“÷”运
算符号各一次,所成的算式的值的最小值为〔〕.
(A)-84 (B) -89 (C) -94 (D)-99
5.已知甲瓶盐水浓度为8%,乙瓶盐水浓度为5%,混合后浓度为
6.2%,那么四分之一的甲瓶盐水与六分之一的乙瓶盐水混合后的浓度为〔〕. (A)5.0% (B) 6% (C) 6.5% (D)
7.5%
6.将2012表示为n个的连续自然数之和〔n≥2 〉,则n有〔〕种不同的取值.
(A)0 (B) 1 (C) 2 (D)3
二、填空题(每小题10分,满分40分)
8.有理数a ,b ,c,d满足等式8a2十7c2=16ab ,9b2十4d2=8cd ,那么a十b十d十d=_______.
9.如右图所示,正方形ABCD的面积为36 cm2,EFGH正方形的面积为256cm2,三角形ACG的面积为27cm2,则四边形CDHG的面积为_____cm2
第十七届全国华罗庚金杯少年数学邀请赛初赛试题〔初一组〕答案1、A 2、C 3、D 4、B 5、C 6、B
7、2010 8、0 9、77 10、12。