北师大九上第16讲 相似三角形的性质及应用(提高)
- 格式:docx
- 大小:301.21 KB
- 文档页数:9
北师大(2011)版九年级数学上册回顾思考:相似三角形及应用课标呈现 考查内容:1.通过具体实例认识图形的相似.了解相似多边形和相似比.2.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例.3.了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.*了解相似三角形判定定理的证明.4.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.5.会利用图形的相似解决一些简单的实际问题. 教学流程:(一)考点梳理夯实基础 1.比例线段:对于四条线段a ,b ,c ,d 中,如果a b =c d,就称a ,b ,c ,d 四条线段是成比例线段,简称比例线段.2.比例线段的性质: ⑴基本性质:a b =c d ⇒ad =bc (bd ≠0);a b =b d⇒b 2=ad ; ⑵合比性质:a b =c d ⇒a ±b b =c ±dd ;⑶等比性质:若a b =c d=…=m n(b +d +…+n ≠0),那么a +c +…+mb +d +…+n =ab3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 4.相似三角形性质:__________⑴相似三角形的对应边__________,对应角__________.⑵相似三角形的对应高的比,_________________与__________都等于相似比 ⑶相似三角形周长的比等于_______,相似三角形面积的比等于__________.【答案】⑴成比例,相等;⑵对应角平分线的比,对应中线的比;⑶相似比,相似比的平方 5.相似三角形的判定:⑴平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似; (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似:(3)如果两个三角形的两组对应边的比相等,并且相应夹角相等,那么这两个三角形相似: (4)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 6.相似三角形的几种典型图形(二)自主练习(三)例题解析(四)拓展提高(五)回顾总结 学生谈收获和体会 (六)作业布置:同步练习。
相似三角形的性质及应用
【学习目标】
1、探索相似三角形的性质,能运用性质进行有关计算;
2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).
【要点梳理】
要点一、相似三角形的应用
1.测量高度
测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.
要点诠释:测量旗杆的高度的几种方法:
平面镜测量法影子测量法手臂测量法标杆测量法
2.测量距离
测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.
2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.
要点诠释:
1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;
2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;
3.视点:观察事物的着眼点(一般指观察者眼睛的位置);
4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.
要点二、相似三角形的性质
1.相似三角形的对应角相等,对应边的比相等.
2. 相似三角形中的重要线段的比等于相似比.
相似三角形对应高,对应中线,对应角平分线的比都等于相似比.
要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.
3. 相似三角形周长的比等于相似比.
∽,则
由比例性质可得:
4. 相似三角形面积的比等于相似比的平方.
∽,则分别作出与的高和,则
要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.
【典型例题】
类型一、相似三角形的应用
1. 在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上。
已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为().
A.24m
B.22m
C.20m
D.18m
2
11
22=
11
22
ABC
A B C
BC AD k B C k A D
S
k
S B C A D B C A D
'''
''''
⋅⋅⋅⋅
==
'''''''''
⋅⋅
△
△
举一反三:
【变式】已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高度BC.
2. 如图,直立在B处的标杆AB=2.4m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8m,FB=2.5m,人高EF=1.5m,求树高CD.
类型二、相似三角形的性质
3.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使
点A与点B重合,折痕为DE,则S△BCE:S△BDE等于().
A. 2:5 B.14:25 C.16:25 D. 4:21
举一反三
【变式】在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC边上的高.
4.如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015=.
举一反三:
【变式】如图,已知中,,,,,点在上,(与点不重合),点在上.
(1)当的面积与四边形的面积相等时,求的长.
(2)当的周长与四边形的周长相等时,求的长.
【巩固练习】
一、选择题
1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值().
A.只有1个 B.可以有2个C.有2个以上,但有限 D.有无数个
2. 如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()
A.=B.=C.=D.=
3. 如图,已知D、E分别是的AB、 AC边上的点,且
那么等于().
A.1:9 B.1:3 C.1:8 D.1:2
4.如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E 两点,直线BG与AC交于 F点,则△AED的面积:四边形ADGF的面积=( ).
A.1:2 B.2:1 C.2:3 D.3:2
5. 如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1、S2、S3、S4,则S1︰S2︰S3︰S4等于().
A.1︰2︰3︰4
B.2︰3︰4︰5
C.1︰3︰5︰7
D.3︰5︰7︰9
6.如图,在□ABCD中,E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则
S△DEF:S△EBF:S△ABF等于( ).
A.4:10:25
B.4:9:25
C.2:3:5
D.2:5:25
二、填空题
7.将一副三角板按图叠放,则△AOB与△DOC的面积之比等于.
8.如图,△ABC 中,点D 在边AB 上,满足∠ADC=∠ACB,若AC=2,AD=1,则DB=_________.
9.如图,在△PAB 中,M 、N 是AB 上两点,且△PMN 是等边三角形,△BPM ∽△PAN ,则∠APB 的度数是
_______________.
10.如图,△ABC 中,DE ∥BC,BE,CD 交于点F ,且=3
,则
:
=______________.
11. 如图,丁轩同学在晚上由路灯AC
走向路灯
BD ,当他走到点
P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯
BD 的底部,
已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是_________________.
S
△EFC
S
△EFD
S
△ADE
S
△ABC
12.如图,锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,
则AC边上的高为______________.
三、解答题
13. 为了测量图(1)和图(2)中的树高,在同一时刻某人进行了如下操作:
图(1):测得竹竿CD的长为0.8米,其影CE长1米,树影AE长2.4米.
图(2):测得落在地面的树影长2.8米,落在墙上的树影高1.2米,请问图(1)和图(2)中的树高各是多少?
14.(1)阅读下列材料,补全证明过程:
已知:如图,矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连结DE交OC于点F,作FG⊥BC于G.求证:点G是线段BC的一个三等分点.
证明:在矩形ABCD中,OE⊥BC,DC⊥BC,
∴OE∥DC.∵=,∴==.∴=.
……
(2)请你仿照(1)的画法,在原图上画出BC的一个四等分点(要求保留画图痕迹,可不写画法及证明过程).
15. 某车库出口处设置有“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的连接点,当车辆经过时,栏杆AEF升起后的位置如图1所示(图2为其几何图形).其中AB⊥BC,DC⊥BC,EF⊥BC,⊥EAB=150°,AB=AE=1.2m,BC=2.4m.
(1)求图2中点E到地面的高度(即EH的长.≈1.73,结果精确到0.01m,栏杆宽度忽略不计);
(2)若一辆厢式货车的宽度和高度均为2m,这辆车能否驶入该车库?请说明理由.。