纳米压痕与布洛维相比的优点
- 格式:ppt
- 大小:2.36 MB
- 文档页数:22
纳米压痕技术及其应用傅杰摘要:纳米压痕技术也称深度敏感压痕技术,是最简单的测试材料力学性质的方法之一,在材料科学的各个领域都得到了广泛的应用,本文主要针对纳米压痕技术及其应用做一个简单概述。
关键字:纳米压痕技术,应用一、引言传统的压痕测量是将一特定形状和尺寸的压头在一垂直压力下将其压入试样,当压力撤除后。
通过测量压痕的断截面面积,人们可以得到被测材料的硬度这种测量方法的缺点之一是仅仅能够得到材料的塑性性质。
另外一个缺点就是这种测量方法只能适用于较大尺寸的试样。
新兴纳米压痕方法是通过计算机控制载荷连续变化, 在线监测压深量, 由于施加的是超低载荷, 加上监测传感器具有优于1 nm 的位移分辨率, 所以, 可以获得小到纳米级的压深, 它特别适用于测量薄膜、镀层、微机电系统中的材料等微小体积材料力学性能可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效应、粘弹性或蠕变行为等1]。
二、纳米压痕技术概述纳米硬度计主要由轴向移动线圈、加载单元、金刚石压头和控制单元等四部分组成。
压头材料一般为金刚石,常用的有伯克维奇压头(Berkovich)和维氏(Vicker)压头。
压入载荷的测量和控制是通过应变仪来实现,整个压入过程由计算机自动控制,可在线测量载荷与相应的位移,并建立两者之间的相应关系(即P—h曲线)。
在纳米压痕的应用中,弹性模量和硬度值是最常用的实验数据,通过卸载曲线的斜率得到弹性模量E,硬度值H 则可由最大加载载荷和残余变形面积求出2]。
纳米压痕技术大体上有5种技术理论,他们分别是[2-3]:(1)Oliver和Pharr方法:根据试验所测得的载荷一位移曲线,可以从卸载曲线的斜率求出弹性模量,而硬度值则可由最大加载载荷和压痕的残余变形面积求得。
该方法的不足之处是采用传统的硬度定义来进行材料的硬度和弹性模量计算,没有考虑纳米尺度上的尺寸效应。
(2)应变梯度理论:材料硬度H 依赖于压头压人被测材料的深度h,并且随着压人深度的减小而增大,因此具有尺度效应。
纳米压痕测试原理
今天我们要讨论的是纳米压痕测试(Nanoindentation Test)。
纳米压痕测试是一种广泛应用于材料力学性能测试的新型技术,具有研究物质本质的能力,是一种快速、非破坏的测试技术。
纳米压痕测试主要是利用一定的机械设备来测试样品表面的力学性能,根据测得的数据来评价样品的力学性能。
根据纳米压痕测试的原理来看,纳米压痕测试的机理主要是利用一台纳米压痕仪,将精密的力传递到样品表面,通过精密的传感器来测量所传递的力的大小,然后根据预先设定的力大小依次在样品表面按照固定的力大小逐步压入,直到样品表面出现一定的压痕,然后测量压痕的深度以及压痕和样品表面的软硬程度,形成力-压缩示图,以此来评价样品表面的力学性能。
纳米压痕测试的优势在于能够将测试精度提高到纳米级,能够快速准确的测量样品表面的力学性能,不仅有助于研究材料本质,还可以为材料的设计和制备提供有用的实验数据支持。
此外,纳米压痕测试的方法也相对较为简单,并且无需进行大量的样品制备,只需要一块样品就可以进行测试,减少了实验成本。
另外,纳米压痕测试也是一种完全非破坏性的测试,不会对样品表面造成任何破坏,保证了样品的可重复性。
总之,纳米压痕测试是一种非常有用的测试技术,可以有效地测试样品表面的力学性能,为材料的研究和设计提供有用的信息。
- 1 -。
纳米压痕试验方法研究一、引言随着科学技术的发展,材料科学领域的研究越来越深入。
纳米压痕试验作为材料科学领域的一种重要试验方法,能够在纳米尺度上研究材料的力学性能和机械行为。
本文将介绍纳米压痕试验的背景和意义,阐述纳米压痕试验的原理和实验方法,分析纳米压痕试验结果并与传统试验方法进行比较,最后总结归纳纳米压痕试验的重要性和未来发展方向。
二、纳米压痕试验的背景和意义在材料科学领域,研究人员对材料的力学性能和机械行为的研究不断深入。
传统的力学试验方法通常是在宏观尺度上进行的,难以在纳米尺度上研究材料的力学性能和机械行为。
因此,纳米压痕试验方法应运而生。
纳米压痕试验可以实现在纳米尺度上对材料进行精确的力学性能测试,为材料科学领域的研究提供更为准确的试验数据。
三、纳米压痕试验的原理和实验方法1、纳米压痕试验的原理纳米压痕试验是通过在材料表面施加一定压力的载荷,测量材料表面的变形和位移,从而获得材料的力学性能和机械行为。
在纳米压痕试验中,载荷一般采用压头为锥形或球形的力传感器,通过计算机控制系统实现对材料表面进行精确的位移控制和数据采集。
2、纳米压痕试验的实验方法纳米压痕试验的实验方法主要包括以下几个步骤:(1)选择合适的试样:根据研究目的和材料性质选择合适的试样。
试样表面应平整、无瑕疵,以保证试验结果的准确性。
(2)安装试样:将试样固定在纳米压痕试验仪上,确保试样稳定不动。
(3)选择合适的载荷和位移:根据试样材料性质和研究目的选择合适的载荷和位移范围。
(4)进行纳米压痕试验:通过计算机控制系统控制力传感器向下位移,实现对试样表面施加压力。
同时,采集试样表面的变形数据,记录下载荷和位移的变化情况。
(5)数据处理和分析:根据采集到的数据,进行曲线拟合、数据处理和分析,获得材料的力学性能指标和机械行为参数。
四、纳米压痕试验结果与传统的试验方法比较与传统力学试验方法相比,纳米压痕试验具有以下优点:1、精度高:纳米压痕试验可以在纳米尺度上对材料进行精确的力学性能测试,而传统力学试验方法是在宏观尺度上进行的,精度相对较低。
纳米压痕原理纳米压痕技术是一种用于材料表面硬度和弹性模量测量的先进技术。
它是由威廉姆斯和奥利弗在1992年首次提出的,通过在纳米尺度下施加压痕来研究材料的力学性能。
纳米压痕技术已经被广泛应用于材料科学、纳米材料、薄膜材料、生物材料、金属材料等领域。
纳米压痕原理基于弹性理论和塑性变形理论,通过在纳米尺度下施加压痕来研究材料的硬度、弹性模量和塑性变形行为。
纳米压痕技术主要包括压头和样品的接触、加载、保持和卸载四个阶段。
在压头和样品接触阶段,压头逐渐接触到样品表面直到建立稳定的接触。
在加载阶段,压头施加载荷并逐渐形成压痕,记录载荷和压头位移的关系。
在保持阶段,保持载荷不变,使压头停留在最大载荷位置,记录载荷和时间的关系。
最后在卸载阶段,卸载载荷并记录载荷和压头位移的关系。
纳米压痕技术的原理是通过对压头载荷和位移的关系进行分析,可以得出样品的硬度和弹性模量等力学性能参数。
硬度是材料抵抗外界力量侵入的能力,是材料表面的一个重要力学性能参数;弹性模量是材料在弹性阶段的应力和应变关系,是材料的一个重要弹性参数。
通过纳米压痕技术可以实现对材料力学性能的定量分析和表征。
纳米压痕技术具有高分辨率、无损伤、样品制备简单、操作方便等优点,已经成为研究材料力学性能的重要手段。
它在材料科学、纳米材料、薄膜材料、生物材料、金属材料等领域有着广泛的应用前景。
通过对纳米压痕原理的深入理解和研究,可以推动材料力学性能表征技术的发展,为材料设计和制备提供重要的理论和实验基础。
总之,纳米压痕原理是一种重要的材料力学性能表征技术,通过对压头载荷和位移的关系进行分析,可以得出样品的硬度和弹性模量等力学性能参数。
纳米压痕技术具有高分辨率、无损伤、样品制备简单、操作方便等优点,已经成为研究材料力学性能的重要手段。
通过对纳米压痕原理的深入理解和研究,可以推动材料力学性能表征技术的发展,为材料设计和制备提供重要的理论和实验基础。
微纳米力学及纳米压痕表征技术摘要:微纳米力学为微纳米尺度力学,即特征尺度为微纳米之间的微细结构所涉及的力学问题[1] 。
纳米压痕方法是通过计算机控制载荷连续变化,并在线监测压深量[2],适用于微米或纳米级的薄膜力学性能测试,本实验采用Oliver–Pharr 方法研究了Al2O3 薄膜,附着在ZnS 基底,得到了Al2O3 薄膜的力学性能。
关键词:微纳米力学纳米压痕杨氏模量硬度0引言近年来,随着工业的现代化、规模化、产业化,以及高新技术和国防技术的发展,对各种材料表面性能的要求越来越高。
20世纪80年代,现代表面技术被国际科技界誉为最具发展前途的十大技术之一。
薄膜、涂层和表面处理材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异,这些差异在摩擦磨损、物理、化学、机械行为中起着主导作用,如计算机磁盘、光盘等,要求表层不但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。
因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。
[3]同时随着材料设计的微量化、微电子行业集成电路结构的复杂化,传统材料力学性能测试方法已难以满足微米级及更小尺度样品的测试精度,不能够准确评估薄膜材料的强度指标和寿命 ;另外在材料微结构研究领域中, 材料研究尺度逐渐缩小,材料的变形机制表现出与传统块状材料相反的规律 ,以上趋势要求测试仪器具有高的位置分辨率、位移分辨率和载荷分辨率 ,纳米压痕方法能够满足上述测试需求。
[4]现在,薄膜的厚度己经做到了微米级,甚至于纳米级,对于这样的薄膜,用传统的材料力学性能测试方法己经无法解决。
纳米压痕试验方法是一种在传统的布氏和维氏硬度试验基础上发展起来的新的力学性能试验方法。
它通过连续控制和记录样品上压头加载和卸载时的载荷和位移数据,并对这些数据进行分析而得出材料的许多力学性能指标,压痕深度可以非常浅,压痕深度在纳米范围,也可以得到材料的力学性能,这样该方法就成为薄膜、涂层和表面处理材料力学性能测试的首选工具,如薄膜、涂层和表面处理材料表面力学性能测试等。
纳米压痕测残余应力的原理
纳米压痕测残余应力是一种用于测量材料表面或薄膜中残余应力的方法。
其原理基于材料受压后产生的弹性变形。
下面是一种常见的纳米压痕测残余应力的原理:
1. 硬度与残余应力关系:纳米压痕技术中使用的压头通常是针对性材料的圆锥或棱柱形状,通过将压头接触到材料表面并施加一定的负载来进行实验。
当负载超过材料的弹性极限时,材料会发生塑性变形并留下一个压痕。
2. 压痕形状分析:通过观察和测量压痕的形状和尺寸参数,可以推导出材料的硬度。
压痕的形状受到材料的力学性质、压痕深度和压头形状等因素的影响。
3. 弹性恢复的测量:在施加负载后,当负载减小或卸去时,材料会发生一定程度的弹性恢复。
通过测量压痕的弹性恢复行为(包括压痕直径、卸载弹性深度等参数),可以计算出残余应力。
4. 本构关系:利用材料的本构关系(描述应力与应变之间的关系),可以将弹性恢复行为转化为应力的变化。
然后可以通过解析方法或数值方法来计算残余应力。
纳米压痕测残余应力的优点在于它能够对材料表面的应力分布进行快速、准确的测量,并且对样品的尺寸要求较低。
然而,纳米压痕测量也存在一些限制,包括对材料的特定形状和力学性质的要求,以及测量过程中可能引入的误差等。
纳米压痕方法在材料研究中的应用纳米压痕方法在材料研究中的应用引言:纳米压痕方法是一种在纳米尺度下对材料进行力学性能测试的技术,它通过对材料施加微小的压力和观察材料在压力下的变形情况来评估材料的硬度、弹性模量和塑性行为等力学特性。
这种方法具有非常广泛的应用领域,包括材料科学、纳米技术、生物医学和电子器件等。
本文将深入探讨纳米压痕方法在材料研究中的应用,包括其原理、实验步骤和在不同材料中的应用案例。
一、纳米压痕方法的原理1. 纳米压痕机理纳米压痕方法基于材料受力导致的变形行为来评估材料的力学性能。
在纳米压痕实验中,压头采用微小的针尖或球状探头,施加在样品表面上。
通过控制压头所施加的压力和加载速率,可以获得不同范围内的材料变形情况。
在这个过程中,探测器记录样品的变形曲线,从而计算出材料的硬度、弹性模量和塑性变形等力学参数。
2. 纳米压痕仪器的原理纳米压痕仪器通常由压头、负载传感器和位移传感器等组成。
压头通过控制系统施加压力,负载传感器测量压力大小,位移传感器检测样品的变形情况。
通过将以上信息进行整合和计算,可以得到准确的力学性能参数。
二、纳米压痕方法的实验步骤1. 样品制备进行纳米压痕实验前,首先需要准备好样品。
样品可以是固态材料如金属、陶瓷或聚合物,也可以是生物组织或薄膜等其他类型的材料。
样品的平整度和表面质量对实验结果有着很大的影响,因此在制备过程中需要保证样品表面的光洁度和平整度。
2. 实验参数设置在实验前,需要根据材料的特性和分析需求设置好实验参数,包括压头的类型、压力的范围和加载速率等。
不同的材料需要不同的实验参数,这些参数的选择将直接影响到实验结果的准确性和可靠性。
3. 进行压痕实验将样品固定在纳米压痕仪器上,并在控制系统的指导下进行压痕实验。
实验过程中,通过记录和监测压头施加的压力和样品的变形情况,可以获得包括压头载荷-位移曲线、变形图像和力学性能参数等数据。
根据这些数据,可以对材料的力学性能进行准确的分析和评估。
纳米压痕显微镜材料表面力学性能纳米压痕显微镜是一种广泛应用于材料科学与工程领域的重要试验方法。
它通过在材料表面施加微小的压力,来研究材料的力学性能表现。
借助纳米压痕显微镜,我们可以测量材料的硬度、弹性模量以及其他力学性能参数,从而深入了解材料的力学行为。
本文将探讨纳米压痕显微镜在材料表面力学性能研究中的应用。
一、纳米压痕显微镜的工作原理纳米压痕显微镜是由压头、扫描探针、力传感器和控制系统等组成的。
在实验过程中,压头通过控制系统施加垂直向下的力量,使其与材料表面发生接触。
随着施加力的增加,材料表面会出现塑性变形,形成一个压痕。
通过扫描探针的移动,可以对压痕的几何形状进行测量和记录。
同时,力传感器可以实时感知施加在材料表面的力量大小,从而获得材料的硬度和弹性模量等力学性能参数。
二、纳米压痕显微镜的应用1. 材料硬度的测量在纳米压痕显微镜实验中,通过测量压痕的几何形状和施加力量的大小,可以计算出材料的硬度。
硬度是材料抵抗外界力量的能力,常用来评估材料的抗刮擦、抗磨损性能。
通过纳米压痕显微镜的测量,可以获得材料表面的硬度分布,进而提供优化表面处理和涂层技术的基础数据。
2. 材料弹性模量的测量除了硬度,纳米压痕显微镜还可以测量材料的弹性模量。
弹性模量是材料抵抗形变的能力指标,可以反映材料的刚度和弹性恢复能力。
通过测量压痕的几何形状以及施加的力量信息,可以利用数学模型计算得到材料的弹性模量。
这对于研究纳米结构材料以及薄膜的力学性能具有重要意义。
3. 表面力学性能的定量研究除了硬度和弹性模量,纳米压痕显微镜还可以通过改变施加的压力和观察材料的变形行为,进一步研究材料的力学性能。
例如,在纳米压痕显微镜中进行循环压痕实验,可以评估材料的塑性变形、损伤恢复和断裂行为。
这有助于深入了解材料的耐久性和长期使用性能。
三、纳米压痕显微镜的优势和局限性纳米压痕显微镜作为一种先进的材料力学性能测试方法,具有以下优势:1. 非破坏性测试:纳米压痕显微镜可以在微小的压力下对材料表面进行测试,不会对样品产生明显的损伤,适用于对珍贵样品进行检测。
纳米压痕技术在工程材料研究中的应用魏振伟;刘昌奎;周静怡;曲士昱【摘要】纳米压痕技术具有高灵敏度、操作简单等优点,可以在微纳尺度上获得块体材料、薄膜以及涂层等的多种力学性能参数.尤其随着材料基因组技术的推广,其将成为应用越来越广泛的力学性能表征方法.本研究介绍了纳米压痕技术的Oliver-Pharr方法原理,以及其在载荷-位移、硬度、弹性模量、断裂韧度、蠕变性能、残余应力、纤维界面性能表征方面的应用.在使用过程中仍存在一些问题需要注意和进一步研究:纳米压痕技术获得的力学性能参量需要考虑其测试模型的适用性;材料表面加工过程需要很高的技术及一致性,以最大减小甚至消除材料表面状态及物理特征对测试结果准确性和重复性的影响;由于测试位置较难精确定位,标准压头外形尺寸存在偏差以及设备本身的热漂移,纳米压痕测试重复性差.【期刊名称】《失效分析与预防》【年(卷),期】2018(013)004【总页数】6页(P255-260)【关键词】纳米压痕;断裂韧度;蠕变应力指数;残余应力【作者】魏振伟;刘昌奎;周静怡;曲士昱【作者单位】中国航发北京航空材料研究院, 北京100095;航空工业失效分析中心, 北京100095;航空材料检测与评价北京市重点实验室, 北京100095;材料检测与评价航空科技重点实验室, 北京100095【正文语种】中文【中图分类】TU502.60 引言纳米压痕技术也称为深度敏感压痕技术,是一种最简单的测试材料力学性能的方法,试样要求简单,平面干净即可[1]。
尽管制备一个平整、没有损伤的表面比较费时费力,但是相较于传统的宏观力学性能试验如拉伸、压缩等,需要尺寸大、且表面质量完好,纳米压痕表征技术具有很大的优势[2-3]。
纳米压痕表征技术不仅仅是显微硬度的简单扩展,因为其具有很高的力分辨率和位移分辨率,通过分析纳米压痕加载-卸载位移曲线,可以在纳米尺度上测量材料的各种力学性能[4],如载荷-位移曲线、弹性模量、硬度、断裂韧度、蠕变性能、残余应力[5]以及界面性能等丰富的信息。
纳米压痕技术(英:Nanoindentation),也称深度敏感压痕技术(英:Depth-Sensing Indentation, DSI),是最简单的测试材料力学性质的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量(Elastic Modulus)、硬度(Hardness)、断裂韧性(Frac ture Toughness)、应变硬化效应(Strain Hardening Effect)、粘弹性使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
能隙(Bandgap energy gap)或译作能带隙,在固态物理学中泛指半导体或是绝缘体的价带(valenc e band)(价带[1](valenc e band)或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。
对半导体而言,此能带中的能级基本上是连续的。
全充满的能带中的电子不能在固体中自由运动。
但若该电子受它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充带中留下的电子可在固体中自由运动。
)顶端至传导带(传导带(conduction band)系指半导体或是绝缘体材料中,一个电子所具有能量的范围。
这个能量的范围高于价带(valence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流)(conduction band)底端的能量差距, 对一个本征半导体(intrinsic semic onduc tor)而言,其导电性与能隙的大小有关,只有获得足够能量的电子才能从价带被激发,跨过能隙并跃迁至传导带。
【材料课堂】一文了解纳米压痕技术近年来,测量纳米硬度一般采用新兴的纳米压痕技术 (nano-indentation),由于采用纳米压痕技术可以在极小的尺寸范围内测试材料的力学性能,除了塑性性质外,还可反映材料的弹性性质,因此得到了越来越广泛的应用。
纳米压痕技术也称深度敏感压痕技术(Depth-Sensing Indentation, DSI),是最简单的测试材料力学性质的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度、断裂韧性、应变硬化效应、粘弹性或蠕变行为等。
纳米压痕理论图1为纳米压痕试验中典型的载荷-位移曲线。
在加载过程中试样表面首先发生的是弹性变形,随着载荷进一步提高,塑性变形开始出现并逐步增大;卸载过程主要是弹性变形恢复的过程,而塑性变形最终使得样品表面形成了压痕。
图中Pmax 为最大载荷,hmax 为最大位移,hf为卸载后的位移,S为卸载曲线初期的斜率。
纳米硬度的计算仍采用传统的硬度公式H =P/A。
式中,H 为硬度 (GPa);P 为最大载荷 ( μ N),即上文中的 P max ;A 为压痕面积的投影(nm2 )。
图1 纳米压痕试验的典型载荷-位移曲线但与传统硬度计算不同的是,A 值不是由压痕照片得到,而是根据“接触深度” hc(nm)计算得到的。
具体关系式需通过试验来确定,根据压头形状的不同,一般采用多项式拟合的方法,比如针对三角锥形压头,其拟合结果为:A = 24.5 + 793hc + 4238+ 332+ 0.059+0.069+ 8.68+ 35.4+36. 9式中“接触深度”hc由下式计算得出:hc = h - ε P max/S,式中,ε是与压头形状有关的常数,对于球形或三角锥形压头可以取ε = 0.75。
而S的值可以通过对载荷-位移曲线的卸载部分进行拟合,再对拟合函数求导得出,即,式中Q 为拟合函数。
这样通过试验得到载荷-位移曲线,测量和计算试验过程中的载荷P、压痕深度h和卸载曲线初期的斜率S,就可以得到样品的硬度值。
纳米尺度下材料力学性质测试方法分享随着科学技术的发展,纳米尺度材料的研究变得越来越重要。
纳米尺度材料具有独特的力学性质,与传统材料相比有着许多不同之处。
为了深入了解和研究纳米尺度材料的力学性质,科学家们不断开发出各种先进的测试方法。
在本文中,我将分享一些纳米尺度下常用的材料力学性质测试方法。
一、原子力显微镜(AFM)原子力显微镜(Atomic Force Microscopy,简称AFM)是一种常用的纳米级力学性质测试方法。
它通过在纳米尺度下测量材料表面的力与距离之间的关系,来获得材料的力学性质信息。
AFM的基本工作原理是利用一个具有纳米尖端的探针对样品表面进行扫描,并测量在探针与样品之间的力的变化。
使用AFM可以获得材料的力学性质参数,如纳米硬度、弹性模量和塑性变形等信息。
此外,AFM还可以进行纳米级别的形貌表征,使得研究人员可以直观地观察到材料的表面形貌和结构。
二、纳米压痕技术纳米压痕技术是一种直接测量材料硬度和弹性模量的方法。
该方法通过在纳米尺度下施加一个小的压痕负荷,通过测量压痕的深度和形状来推算材料的力学性质。
纳米压痕技术一般使用压痕仪进行测试。
在进行纳米压痕测试时,样品通常需要进行前处理,例如制备平整的表面或进行退火处理。
测试过程中,将尖端负载在材料表面上,并控制负载的大小和施加时间。
然后,通过测量压痕的深度和直径来计算材料的硬度和弹性模量。
纳米压痕技术广泛应用于纳米硬度测试、薄膜力学性质研究等领域。
三、纳米拉曼光谱法纳米拉曼光谱法是一种非常有用的测试方法,可以用来研究材料的力学性质。
该方法利用激光对材料进行激发,通过测量材料产生的拉曼散射光谱来获得材料的力学信息。
纳米拉曼光谱法可以提供关于材料中分子振动的信息,从而揭示材料的化学成分和晶格结构。
利用纳米拉曼光谱法可以研究材料的应力分布、材料的强度以及材料在纳米尺度下的变形行为等。
纳米拉曼光谱法具有非接触、高灵敏度和高分辨率的特点,适用于研究纳米尺度材料力学性质的表征。
纳米压痕技术(英:Nanoindentation),也称深度敏感压痕技术(英:Depth-Sensing Indentation, DSI),是最简单的测试材料力学性质的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量(Elastic Modulus)、硬度(Hardness)、断裂韧性(Frac ture Toughness)、应变硬化效应(Strain Hardening Effect)、粘弹性使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
能隙(Bandgap energy gap)或译作能带隙,在固态物理学中泛指半导体或是绝缘体的价带(valenc e band)(价带[1](valenc e band)或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。
对半导体而言,此能带中的能级基本上是连续的。
全充满的能带中的电子不能在固体中自由运动。
但若该电子受它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充带中留下的电子可在固体中自由运动。
)顶端至传导带(传导带(conduction band)系指半导体或是绝缘体材料中,一个电子所具有能量的范围。
这个能量的范围高于价带(valence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流)(conduction band)底端的能量差距, 对一个本征半导体(intrinsic semic onduc tor)而言,其导电性与能隙的大小有关,只有获得足够能量的电子才能从价带被激发,跨过能隙并跃迁至传导带。
关于纳米压痕技术的一些思考嘿,咱今儿来聊聊纳米压痕技术。
你说这纳米压痕技术啊,就像是一个神奇的小魔术。
你看啊,纳米,那是多小的尺度啊,小得咱肉眼几乎都看不见。
可这技术就能在这么小的尺度上玩出花样来。
就好像我们在一个极小极小的世界里,小心翼翼地摆弄着各种东西。
它能测量材料在纳米尺度上的性能,这可不得了哇!这就好比我们能知道一个小不点儿东西到底有多结实,有多抗压。
想象一下,我们平时看东西,就是看看外表,觉得这个硬,那个软。
但纳米压痕技术呢,能深入到材料的内部,去探究那些我们根本想不到的细节。
这技术在很多领域都大显身手呢!在材料科学里,它就像一个超级侦探,能找出材料的各种小秘密,让科学家们更好地了解材料的特性,然后去改进它,让材料变得更厉害。
在制造业里,它能帮忙把关,确保生产出来的东西质量过硬。
你说这纳米压痕技术是不是很牛?它就像是打开了一扇通往微观世界的大门,让我们看到了以前从未看到过的景象。
而且啊,它还在不断发展,不断进步呢!以后说不定能发现更多我们意想不到的东西。
咱再想想,要是没有这纳米压痕技术,那我们对很多材料的了解不就只停留在表面了吗?那得多可惜呀!现在有了它,我们就能更深入地了解材料,这对科技的发展,对我们的生活,那影响可太大啦!它就像是一个默默工作的小能手,虽然我们平时可能不太注意到它,但它却在为我们的生活变得更美好而努力着。
是不是很神奇?这纳米压痕技术啊,真的是让人不得不佩服!它让我们对这个世界的认识又深入了一层,让我们能创造出更好的东西来。
所以说啊,可别小看了这纳米压痕技术,它虽然小,但能量大着呢!它就像一颗小小的星星,在科技的天空中闪闪发光,为我们照亮前进的道路。
咱得好好感谢那些研究纳米压痕技术的科学家们,是他们让这个神奇的技术诞生,让我们的生活变得更精彩!你说呢?。
两种微纳米硬度测试方法的比较
周亮;姚英学
【期刊名称】《测试技术学报》
【年(卷),期】2006(020)001
【摘要】在对材料微纳米硬度测试中,可利用纳米压痕方法得到载荷-位移曲线,并用相关算法得到接触面积和硬度值;也可通过原子力显微镜测出压痕残余面积,由残余面积和最大载荷得到材料的硬度值.利用这两种方法对塑性材料单晶铝和脆性材料单晶硅做微纳米硬度测试试验,经过比较分析,这两种方法各有优势和不足,得到的材料微纳米硬度都有压痕尺寸效应,但第二种方法得到的微纳米硬度尺寸效应比第一种明显.
【总页数】5页(P6-10)
【作者】周亮;姚英学
【作者单位】哈尔滨工业大学机电学院,黑龙江,哈尔滨,150001;哈尔滨工业大学机电学院,黑龙江,哈尔滨,150001
【正文语种】中文
【中图分类】TB938.2
【相关文献】
1.两种小麦籽粒硬度测定方法比较试验 [J], 田素梅
2.两种铬黑T指示液在水质总硬度测定中的比较 [J], 高芹;独霖
3.两种陶瓷材料仪器化压入硬度与维氏硬度的比较分析 [J], 李晓飞;马德军;陈伟;
王家梁
4.微纳米硬度仪测定青釉陶瓷砖维氏硬度试验方法 [J], 龚明;区卓琨;霍铭发;况学成;张敏
5.几种薄膜涂层硬度测试方法的比较 [J], 杨光;葛志宏
因版权原因,仅展示原文概要,查看原文内容请购买。