椭圆离心率的解决方法
- 格式:docx
- 大小:22.91 KB
- 文档页数:2
关于高中数学离心率题型解法的有效解决技巧离心率是椭圆形几何图形较为重要的一个参数,它代表着椭圆的扁平程度。
在高中数学中,离心率一般作为重要内容涉及到椭圆、双曲线和抛物线的相关题型。
下面,我们将介绍一些高效的解决离心率题型的有效技巧。
一、离心率的定义和特点椭圆的离心率是一个非常重要的物理量,它代表着椭圆的扁平程度。
在椭圆的定义中,其离心率的定义是:离心率等于椭圆长轴和短轴的差值与它们的和的比值。
它的数值在0~1之间。
双曲线的离心率是大于1的,它代表着双曲线的扁平程度。
它的数值大于1。
抛物线没有离心率的概念,因为抛物线是一个具有对称性的几何图形。
二、椭圆题型的解法在椭圆的题型中,很多问题都涉及到了离心率,因此我们需要通过不同的方法求解。
(1)已知椭圆的方程,求椭圆长轴和短轴长度以及离心率。
一般来说,已知椭圆的方程为$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$,其中a和b分别表示长轴和短轴长度,离心率为$e=\sqrt{1-\dfrac{b^2}{a^2}}$。
根据椭圆的定义式,可以知道:$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$$其中a,b分别表示椭圆的长轴和短轴长度。
可以通过已知的a和b来确定椭圆的方程。
(3)已知椭圆上两点的坐标,求离心率。
根据椭圆的性质,椭圆上任意两点到椭圆中心的距离之和是定值。
因此,可以利用椭圆焦点的性质求解该问题:设点$A(x_1,y_1)$和点$B(x_2,y_2)$在椭圆上,焦点为点$F_1$和$F_2$,椭圆中心为点$O$,则有:$AF_1+BF_1=AF_2+BF_2=2a$ $(a>$离心率为$e=\dfrac{c}{a}$,其中c表示椭圆两个焦点之间的距离。
其中$c=\sqrt{a^2+b^2}$为双曲线的焦点之间的距离。
(1)了解椭圆、双曲线和抛物线的定义、性质和方程式,能够熟练计算离心率。
离心率问题的7种题型和15种方法离心率(eccentricity)是描述椭圆轨道形状的一个重要参数,它的大小决定了行星或卫星轨道的偏心程度。
在天文学、航天学等相关领域,经常需要解决各种与离心率相关的问题,下面我们将介绍离心率问题的7种常见题型和15种解题方法。
一、离心率的定义及性质离心率是描述椭圆轨道形状的一个参数,它等于椭圆长半轴和短半轴之差的一半与长半轴的比值。
离心率的取值范围为0到1之间,当离心率为0时,椭圆变成了一个圆,当离心率为1时,椭圆变成了一条直线。
离心率越大,椭圆的形状越扁平,轨道越偏心。
二、离心率问题的7种题型1. 求给定离心率的椭圆的半长轴和半短轴长度;2. 已知椭圆的长半轴和离心率,求短半轴长度;3. 已知椭圆的长半轴和短半轴长度,求离心率;4. 求给定行星或卫星的轨道离心率;5. 已知行星或卫星轨道的离心率和半长轴长度,求轨道的半短轴长度;6. 已知行星或卫星的轨道离心率和半短轴长度,求轨道的半长轴长度;7. 求给定行星或卫星的轨道周期。
三、离心率问题的15种解题方法1. 利用椭圆轨道的定义和性质,直接计算出椭圆的长短半轴;2. 利用椭圆的面积和周长公式计算出椭圆的长短半轴;3. 利用行星或卫星的轨道速度和距离公式计算出轨道离心率;4. 利用行星或卫星的轨道周期和距离公式计算出轨道离心率;5. 利用行星或卫星的轨道半径和速度公式计算出轨道离心率;6. 利用行星或卫星在轨道上的最高点和最低点的距离差和总距离计算出轨道离心率;7. 利用行星或卫星的轨道焦点距离和长轴长度计算出轨道离心率;8. 利用行星或卫星的轨道高度、速度和引力公式计算出轨道离心率;9. 利用行星或卫星的轨道高度、周期和引力公式计算出轨道离心率;10. 利用行星或卫星的轨道高度、半径和引力公式计算出轨道离心率;11. 利用行星或卫星的轨道平均速度和最高、最低速度之比计算出轨道离心率;12. 利用行星或卫星在轨道上的最高点和最低点速度之比计算出轨道离心率;13. 利用行星或卫星在轨道上的最高点和最低点的动能之比计算出轨道离心率;14. 利用行星或卫星在轨道上的最高点和最低点的势能之比计算出轨道离心率;15. 利用行星或卫星的轨道半径、质量和速度计算出轨道离心率。
离心率求解技巧离心率是描述椭圆轨道形状的一个重要参数,它可以用来衡量椭圆离圆形的程度。
在太空科学和航天工程中,离心率的求解是一个基本的问题。
下面将介绍一些离心率求解的技巧。
一、基本概念离心率是椭圆轨道焦点与椭圆形心之间的距离与椭圆长轴的比值。
换句话说,离心率表示椭圆形状的扁平度。
当离心率为0时,椭圆退化为圆形;当离心率为1时,椭圆退化为抛物线;当离心率大于1时,椭圆退化为双曲线。
二、离心率的求解求解离心率的基本思路是通过已知的轨道参数来计算。
根据Kepler定律,可以利用动量守恒定律和能量守恒定律来推导椭圆轨道的离心率。
1. 动量守恒定律根据动量守恒定律,可以得到以下公式:m * (V * r) = h,其中m表示物体的质量,V表示物体在轨道上的速度,r表示物体距离轨道中心的距离,h表示动量守恒常数。
当物体距离轨道中心的距离最小时(即椭圆轨道的近地点),动量守恒常数h可以表示为:h = m * (Vmin * rmin),其中Vmin表示物体在近地点的速度,rmin表示物体在近地点的距离。
2. 能量守恒定律根据能量守恒定律,可以得到以下公式:E = (1/2) * m * V^2 - G * M * m / r,其中E表示物体的总能量,G表示万有引力常数,M 表示天体的质量。
当物体距离轨道中心的距离最远时(即椭圆轨道的远地点),能量守恒常数E可以表示为:E = (1/2) * m * Vmax^2 - G * M * m / rmax,其中Vmax表示物体在远地点的速度,rmax表示物体在远地点的距离。
3. 离心率的求解根据动量守恒定律和能量守恒定律,可以得到以下公式:Vmin * rmin = Vmax * rmax,以及Vmin^2 * rmin = Vmax^2 * rmax + 2 * G * M / (1 - e),其中e表示椭圆轨道的离心率。
将上述两个公式联立求解,可以解得椭圆轨道的离心率e。
离心率求解题技巧离心率是描述一个椭圆形状的参数,用于描述椭圆形状的偏离程度,计算方法是椭圆长轴与短轴之间的差异与长轴的比值。
离心率(E)的计算公式如下:E = c / a其中,c为焦点距离,a为长轴的一半,也就是半长轴。
为了求解题目中的离心率,我们可以使用以下的技巧:1. 获取椭圆的焦点坐标。
根据椭圆的定义,我们可以知道椭圆的焦点坐标位于椭圆的主轴上。
主轴是一条椭圆的对称轴,垂直于副轴。
焦点的位置取决于椭圆的离心率和主轴的长度。
2. 确定椭圆的长轴和短轴。
椭圆的长轴是横向的轴,短轴是纵向的轴。
一般来说,长轴长度大于短轴长度,因此可以通过观察椭圆的形状来确定长轴和短轴的长度。
3. 确定椭圆的焦距。
焦距是指从椭圆的中心点到任意一点的距离与椭圆的半长轴之间的关系。
具体计算焦距需要使用直线段的长度公式。
4. 计算离心率。
根据椭圆的焦距和半长轴的定义,我们可以使用离心率公式直接计算。
下面是一个例题的求解过程:已知一个椭圆的焦点坐标为(-6,0)和(6,0),离心率为4/5。
求椭圆的长轴和短轴长度。
步骤1:获取椭圆的焦点坐标。
已知椭圆的焦点坐标为(-6,0)和(6,0)。
步骤2:确定椭圆的长轴和短轴。
应该注意到在这个例题中,我们并没有提供任何关于长轴和短轴的具体信息,因此无法确定长轴和短轴的长度。
需要通过其他方式获得这些信息。
步骤3:确定椭圆的焦距。
由于焦点在椭圆上,我们可以使用两个焦点之间的距离来计算焦距。
根据距离公式,我们可以计算出两个焦点之间的距离为12。
焦距是指从椭圆的中心点到任意一点的距离与椭圆的半长轴之间的关系,因此焦距的值等于半长轴的长度。
步骤4:计算离心率。
根据离心率的定义,我们可以使用公式 E = c / a 来计算离心率。
已知焦距的值是12,我们可以将其代入公式中:4/5 = 12 / a接下来我们可以通过求解这个方程来计算出半长轴的值。
通过求解这个方程,我们可以得到半长轴的值为15。
由于离心率的定义是长轴与短轴之间的差异与长轴的比值,我们可以使用长轴和半长轴的值来计算短轴的值:短轴= sqrt(半长轴^2 - 长轴^2) = sqrt(15^2 - 12^2) = sqrt(225 - 144) = sqrt(81) = 9因此,这个椭圆的长轴长度为30,短轴长度为18。
ʏ河南省郑州市第二高级中学 韦道田椭圆的离心率是椭圆的重要几何性质之一,下面就求解椭圆的离心率(或取值范围)给出几种重要方法,供同学们参考㊂一㊁利用椭圆离心率的定义求解例1 (1)在平面直角坐标系中,椭圆x 2a 2+y2b2=1(a >b >0)的焦距为2,以O 为圆心,a 为半径的圆,过点P a2c ,0作圆的两条切线且互相垂直,则离心率e =㊂(2)设M 为椭圆x 2a 2+y2b2=1(a >b >0)上一点,F 1,F 2为两个焦点,过M 作M F 1ʅx 轴,且øF 1M F 2=60ʎ,则椭圆的离心率为( )㊂A.12 B .22 C .33 D .32图1解析:(1)如图1,切线互相垂直,又半径O A ʅP A ,所以әO A P 是等腰直角三角形㊂因为2c=2,即c =1,所以a 2c=a 2,|O P |=2|O A |,a 2=2a ,则a =2㊂所以e =c a =22㊂(2)设|M F 1|=d ,因为øF 1M F 2=60ʎ,所以|M F 2|=2d ,|F 1F 2|=3d ㊂因此e =2c 2a =|F 1F 2||M F 1|+|M F 2|=3d d +2d =33,选C ㊂点评:e =2c2a =|F 1F 2||P F 1|+|P F 2|,其中F 1,F 2为椭圆的焦点,P 为椭圆上任意一点㊂二㊁利用圆锥曲线的统一定义求解依据e =|M F |d ,其中|M F |表示椭圆上的点M 到焦点F 的距离,d 表示椭圆上的点M 到焦点F 相应准线l 的距离㊂例2 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( )㊂A.2 B .22 C .12 D .24解析:设过焦点F 1且垂直于长轴的弦为A B ,则|A B |=2㊂焦点F 1到准线l 的距离为1,则点A 到l 的距离也为1㊂由圆锥曲线的统一定义得离心率e =|A F 1|1=22,选B ㊂点评:利用圆锥曲线的统一定义,可以较快地求出圆锥曲线的离心率㊂三㊁构造离心率的方程(不等式)求解例3 (1)已知A ,B 为椭圆x 2a2+y 2b2=1(a >b >0)的长轴与短轴端点,F 为一个焦点,若A B ʅB F ,则该椭圆的离心率为( )㊂A.-1+52 B .1-22C .2-1D .22(2)已知椭圆x 2a 2+y 2b2=1(a >b >0)的42 解题篇 经典题突破方法 高二数学 2023年10月Copyright ©博看网. All Rights Reserved.左㊁右焦点分别为F 1(-c ,0)㊁F 2(c ,0),若椭圆上存在点P ,使a s i n øP F 1F 2=cs i n øP F 2F 1,则该椭圆离心率的取值范围为㊂解析:(1)在R tәA B F 中,|A F |2=|A B |2+|B F |2,即(a +c )2=(a 2+b 2)+(b 2+c 2)㊂因为e =c a,所以整理得e 2+e -1=0,e =-1+52,选A ㊂(2)由已知条件及正弦定理求得|P F 1|=ca|P F 2|㊂又|P F 1|+|P F 2|=2a ,则|P F 2|=2a 2c +a ㊂由|P F 2|<a +c ,得2a2c +a<a +c ,即e 2+2e -1>0㊂结合0<e <1,解得2-1<e <1㊂点评:如果直接求解椭圆离心率的值(或取值范围)有困难,那么可以通过构造离心率的方程(或不等式)求解㊂四㊁利用数形结合思想求解例4 ʌ第12届希望杯 试题ɔ设F 1㊁F 2是椭圆的两个焦点,若椭圆上存在点P ,使øF 1P F 2=120ʎ,则椭圆离心率e 的取值范围是㊂图2解析:如图2,当点P 与短轴端点B 重合时,øF 1P F 2最大㊂于是得øF 1P F 2ȡ120ʎ,故t a n øF 1P O ȡt a n 60ʎ=3,即cbȡ3㊂所以e =c a =cb 2+c 2=1bc2+1ȡ113+1=32㊂又0<e <1,所以32ɤe <1㊂点评:利用数形结合思想求椭圆的离心率e ,可回避繁杂的推理与计算过程㊂五㊁利用椭圆的光学性质求解例5 ʌ第一届 希望杯 高二试题ɔ椭圆的两个焦点是F 1(3,-6),F 2(6,3),一条切线方程为4x =3y ,这个椭圆的离心率是㊂解析:设切点为P ,切线为l ,作F 1㊁F 2关于l 的对称点F 1'㊁F 2',则由椭圆的光学性质知点P 是等腰梯形F 1F 2F 2'F 1'对角线的交点,对角线的长应等于椭圆长轴的长㊂由点到直线的距离公式,得F 1㊁F 2到直线l 的距离分别为6㊁3,可见梯形上㊁下底长分别为6㊁12㊂该等腰梯形的腰长即椭圆的焦距310㊂利用6,12,310,求出梯形的对角线长为92,从而得到椭圆的离心率e =31092=53㊂练一练:1.若椭圆的两个焦点与短轴的一个顶点构成一个等边三角形,则椭圆的离心率是( )㊂A.12 B .32 C .34 D .642.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且B F ʅx 轴,直线A B 交y 轴于点P ㊂若A Pң=2P B ң,则椭圆的离心率是( )㊂A.32 B .22 C .13 D .123.已知F 1㊁F 2是椭圆的两个焦点,满足M F 1ң㊃M F 2ң=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )㊂A.(0,1) B .0,12C .0,22D .22,14.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 且倾斜角为60ʎ的直线交椭圆于A ,B 两点,若|F A |=2|F B |,则椭圆的离心率等于( )㊂A.33 B .22 C .12 D .23参考答案:1.A2.D3.C4.D(责任编辑 徐利杰)52解题篇 经典题突破方法 高二数学 2023年10月Copyright ©博看网. All Rights Reserved.。
数学离心率题解题技巧
解决数学离心率问题的技巧可以分为以下几个步骤:
1.了解离心率的定义:离心率是一个椭圆的形状指标,它与椭圆的焦点之间的距离比以及椭圆的长短轴的长度有关。
2.确定已知条件:在解题之前,需要确定已知条件,包括椭圆的焦点坐标、长轴长度或离心率等。
3.判断椭圆的方程:根据已知条件,可以确定椭圆的方程,一般可以使用标准方程或一般方程来表示椭圆。
4.根据方程求解离心率:如果已知椭圆的方程,可以通过方程中的参数来求解离心率。
5.利用离心率的性质解题:根据离心率的定义和性质,可以利用离心率来解决一些具体的问题,比如求解椭圆的焦距、焦点和长轴长等。
6.应用解题策略:在解题过程中,可以利用数学的一些基本技巧和定理来简化计算或找到解题的途径,比如使用二次方程求根公式、平移旋转椭圆等。
总之,解决数学离心率问题需要理解离心率的定义和性质,确定已知条件,推导方程,应用解题策略,并灵活运用数学知识进行计算和推理。
掌握这些技巧可以帮助你更好地解决离心率相关的数学问题。
专题:椭圆的离心率2,利用定义求椭圆的离心率(e C 或e 21 b )aa综上m 或333,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是X y6,设椭圆 — 亍=1 (a > b >0)的右焦点为F 1,右准线为11,若过F 1且垂直于x 轴的弦的长等于点ab 1 距离,则椭圆的离心率是 一。
2,运用几何图形中线段的几何意义结合椭圆的定义求离心率1,在 Rt ABC 中,A 90 ,AB AC 1 ,如果一个椭圆过 A B 两点, 它的一个焦点为 C,另一个焦点在AB 上,求这个椭圆的离心率 2,如图所示,椭圆中心在原点 则椭圆的离心率为 [解析]b ( b ) c 3,以椭圆的右焦点 ,F 是左焦点,直线 AB 1与BF 交于D,且BDB 1M.5 1 2 2a c ac e ----------- 2 F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率 e2,椭圆—1的离心率为-,则m m 2[解析]当焦点在x 轴上时,4 m -2 2m 3 ;当焦点在y 轴上时,16 m -, 34,已知m,n,m+n 成等差数列,m n , mn 成等比数列,则椭圆2—1的离心率为 ________________n2n 2m n[解析]由2n2m n m 22 2椭圆Xy1的离心率为2n 4m n2mn 01 5,已知一 21(m 0.n0) 则当 2xmn 取得取小值时,椭圆 22 y_ 21的的离心率为」m nmn22 2F 1到l 1的MF 与圆相切,则椭圆的离心率是,3 1解:TI F 1F 2 I =2c I BF 1 I =c I BF 2 I = 3c c+2 2X y变式(1):椭圆 君 + ~b^=1(a>b >0)的两焦点为 F 1、 寸3c=2a --e= aF 2,点P 在椭圆上,使厶OPF 为正三角形,求椭圆离心率?22X y相似题:椭圆 —+ —=1(a>b >0) , A 是左顶点,F 是右焦点,B 是短轴的一个顶点,/a b 解:I AO I =a I OF I =c I BF I =a I AB | = a 2+b 2点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率是一个重要的概念,涉及到椭圆、双曲线等几何图形的性质和参数。
掌握离心率的相关知识和解题技巧,能够有效地解决与离心率有关的各类题型。
以下是关于高中数学离心率题型解法的有效解决技巧。
一、椭圆离心率题型解法技巧1. 椭圆的离心率定义为焦距之差与主轴长度的比值。
在解题过程中,可以利用该定义进行计算。
2. 根据椭圆的性质,离心率的取值范围为0到1之间。
当离心率等于0时,椭圆退化为一个圆;当离心率等于1时,椭圆退化为一个抛物线。
3. 在解题过程中,常常需要利用椭圆的焦点坐标和长轴、短轴长度等已知条件,结合离心率的定义进行求解。
4. 对于已知椭圆方程的离心率题型,可以根据方程中离心率的特点进行推导和变形,从而得到所求的答案。
5. 利用椭圆的离心率特点,可以解决与焦点、直径、坐标轴的关系有关的题目。
比如利用离心率的定义,可以求解椭圆上的点到焦点的距离。
1. 对于已知双曲线方程的离心率题型,可以利用离心率的定义,结合方程中的已知条件进行推导和变形。
常见的已知条件有焦点坐标、直角双曲线的方程等。
2. 双曲线的离心率大于1,可以利用该特点解决相关题目。
4. 在解题过程中,可以利用双曲线的渐近线特点和离心率的性质,解决与渐近线、离心率和焦点坐标有关的问题。
五、需要注意的问题1. 离心率的定义是椭圆、双曲线等几何图形的重要参数,在解题过程中要对其有清晰的概念。
3. 充分利用已知信息,对问题进行分析和推导,可以采取代数方法或几何方法进行求解。
4. 对于复杂或较难的题目,可以根据已知条件进行建立方程,并进行逐步推导和化简,在最后得到所求的答案。
例1椭圆x 2a 2+y 2
b 2=1(a >b >0)的左右焦点分别为21,F F ,若椭圆上存在一点P 使得2
21π=∠PF F ,求离心率e 的取值范围。
基于曲线方程蕴含的几何要素:
①请根据条件作出图形,并研究图形具有什么样的几何特征? ②请问上述几何图形具有怎样的边角关系?
③你能寻找到曲线离心率与上述几何图形边角的关系吗?
④根据题意所蕴含的几何量,能否找出与a,b,c ,e 的关系呢?要求e 的范围,能否列出有关e 的不等式呢?
解法1
[]
1222,242
2,222222222222212121<≤≤≤∈=+==+=∠=+==∆e a b b a b mn b mn c b a c n m PF F a
n m n PF m PF PF F 所以,所以因为得又因为,所以因为由椭圆定义得中,设在π
解法2
1221
0,02
0.2
,22222222
2222222121<≤<<≤≤-=-==+==∠e e a x b a a x a
x b b y c y x P F P F PF F y x P 所以因为解得又椭圆方程得即,所以因为)
(设π
解法3
122)45sin(2122cos sin sin sin 90
sin 2,021*********<≤+==++====∠=∠∆e a c e PF PF PF PF c F PF F PF PF F 即所以由正弦定理得中,设在αααβαβ
α。