人教版高二数学必修五:第三章_章末测试题(A)有答案
- 格式:doc
- 大小:103.00 KB
- 文档页数:9
第三章测评A(基础过关卷)(时间:90分钟满分:100分)—、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设且a>b,c>d,则下列结论中正确的是()A.aObd B・ a-c>b-dC.a+c>b+dD.效家•厂2. 若集合A={x|-l<2x+l<3},B= ,则AcB=( )A.{x|-l<x<0}B.{x|0<x<l}C.{x|0<x<2)£). {x|0<x<l)解析:由于A={x|-l<2x+l<3}={x|-l<x<l ),B= ={x|0<x<2},故AnB={x|-l<x<l)n{x|0<x<2}={x|0<x<l}.答案:B3. 已知血,辺丘(0,1),记MpgNPi+dl,则M与N的大小关系是( )A.M<N RM>NC.M=N D不确定解析:M-N=aia2-(ai+a2-l)=a®2・ai・a2+1=(a r l )(a2-1).又a b a2e(0,l),则a r l<0,a2-1<0,则(a r l)(a2-l)>0,则M>N.答案:B4. 设x,y为正数,则(x+y) 一—的最小值为()46 B.9 C.12 D.15解析:x,y为正数,(x+y)・=1+4+_—29,当且仅当y=2x等号成立.答案:B4x y> 1C.[-l,6]D.'解析:作出可行域如图所示.目标函数z=3x-y可转化为y=3x-z,作l():3x-y=0,在可行域内平移1(),可知在A点处z取最小值为■,在B点处z取最大值为6,故选A.答案:A6. 已知不等式X2-2X-3<0的解集为A,不等式X2+X-6<0的解集为B,不等式x2+ax+b<0的解集是AcB,那么a+b等于( )A.-3 3.1 C.-l 0.3解析:由题意:A={x|-1 <x<3 },B={ x|-3<x<2}.AnB={x|-l<x<2},由根与系数的关系可知:a=-l,b=-2.・・.a+b=・3.故选A・答案:A7. 己知关于x的不等式<2的解集为P,若世P,则实数a的収值范围为()A.(・8,・1]U[O,+8)B[・1,O]C.(・8,・1)U(0,+OO)D(・1,0]解析:因为1国P,所以>2或者a=-l< <0或者a=-l<^l<a<0.答案:B.x > 18. 设O是坐标原点,点M的坐标为(2,1).若点N(x,y)满足不等式组,’则使得取得最大值时点”有()A.1个B.2个C.3个D.无数个解析:作出可行域为如图所示的△ABC,令z= =2x+y.•.•其斜率k=-2=k B c?z= =2x+y与线段BC所在的直线重合时取得最大值,.••满足条件的点N有无数个.答案:D9. 已知x>0,y>0.若——>nA2m恒成立,则实数m的取值范围是()A.m>4 或m<-2B.m>2或mS-4C.-2<m<4£).-4<m<2解析:J x>0,y>0.・•・—_ >8(当且仅当——时取“二").若——>n?+2m恒成立,则m2+2m<8,解之得-4<m<2.答案:Dx>0^/>0 .10. 设x,y满足约束条件,,'若目标函数z=ax+by(a>0,b>0)的最大值为12,则—一的最小值为()A. B. C. DA解析:在平面直角坐标系中画出不等式组所对应的可行域(如图).由z=ax+by可得y=・x+ .因为a>0,b>0,所以只有当直线y二一x+一的截距最大,即经过P点时,z的值才取得最大值.而由・可得P(4,6),所以有4a+6b=12,于是(4a+6b)当且仅当—一,即a=b时取等号,故—一的最小值是―,选A答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11. _____________________________________________ 如果/昭3皿+伽3心4,那么m+n的最小值为___________________________________________ .解析:T /og3m+/og3n=/og3m n》4,mn>34,又由已知条件隐含着m>0,n>0.故m+Q2\/—>2yT=\&当且仅当m=n=9时取到最小值.所以m+n的最小值为18.答案:1812. ___________________________________________________________________________________ 在R上定义运算O:aOb=ab+2a+b,^\满足兀O(x-2)<0的实数兀的取值范围为______________ . 解析:根据给岀的定义得xO(X-2)=X(X-2)+2X+(X-2)=X2+X-2=(X+2)(X- 1).又x O (x-2)<0,则(x+2)(x-1)vO,故这个不等式的解集是(-2,1 )•答案:(・2,1)13. 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为—天,且每件产品每天的仓储费用为1元•为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品__________ 件.解析:若每批生产x件产品,则每件产品的生产准备费用是—元,存储费用是—元,总的费用是— ~>2^1=20(元),当且仅当—一时取等号,即x=80.答案:80x 4- y 4-1 < 0 “ 亠14. 如果实数x,y满足条件_________ ',_的取值范围是.解析:画岀可行域如图中的阴影部分所示.设P(x,y)为可行域内的一点,M( 1,1),则■ =k PM.由于点P在可行域内,则由图知k M B^kp M<k MA.又可得A(O,-1),B(-1,O),则k M A=2,kMB=—,贝厂“PM S2,即^ 的取值范围是一’.答案:_'15. _________________________________________________________________________________ 如果关于x的不等式2kx2+kx-_<0对一切实数x都成立,则k的取值范围是________________解析:当k=0时满足条件;当好0时满足•解得-3<k<0.答案:-3<k<0三、解答题(本大题共4小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16. (6分)若a>l,解关于x的不等式・>1.—(・)解:不等式・>1可化为・>0.故原不等式可化为・>0.・••原不等式解集为・17. (6分)某种汽车,购车费用为10万元,每年的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.求这种汽车使用多少年时,它的年平均费用最少. 解:设汽车使用x年时,它的年平均费用最少.由于“年维修费第一年是0.2万元,以后逐年递增0.2万元",可知汽车每年维修费构成以0.2万元为首项,0.2万元为公差的等差数列,因此,汽车使用x年时总的维修费用为x万元.设汽车的年平均费用为y万元,% = X• •■贝寸y==1+_ _>1+2A I =3,当且仅当,即x=10时,y取得最小值.18. (6 分)已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16.(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)>(m+2)x-m-15成立,求实数m的取值范围. 解:(l)g(x)=2x2-4x-16<0,・・・(2x+4)(x・4)v0.・・・・2vxv4.・•・不等式g(x)<0的解集为{x|-2<x<4).(2) Vf(x)=x2-2x-8.当x>2 时,f(x)>(m+2)x-m-15 恒成立,x2-2x-8>(m+2)x-m-15,即x2-4x+7>m(x-l).对一切x>2,均有不等式- nm成立.而・1 ~=(x-l)+ - -2J -)・・2二2(当且仅当x=3时等号成立).・•・实数m的取值范围是(・8,2[.19. (7分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元.甲、乙两种产品都需要在A,B两种机床上加工,A,B两台机床上每加工一件甲种产品所需工时分别为1工吋、2工吋;加工一件乙种产品所需工吋分别为2工时和1工吋.若A,B两种机床每月有效使用时数分别为400工时、500工时,如何安排生产,才能使销售总收入最大?x > 0 y > 0xy N解:设生产甲种产品x件,乙种产品y件,销售收入z=3x+2y,则,e作出不等式组所表示的平面区域,如下图所示:作直线l():3x+2y=0,平移直线1。
人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)5、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}6、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00aB ⎩⎨⎧<∆>00aC ⎩⎨⎧>∆<00aD ⎩⎨⎧<∆<00a2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3 8.已知集合A ={x |x 2-x-2<0},B ={x |-1<x <1},则( )A. A B ⊆B.B AC. A = BD. A ∩B =∅8、已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A 1B 21C 22D 41 10、设b a ,为实数且,3=+b a 则ba22+的最小值是 ( )A 6B 24C 22D 6211、不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方 10. 设U =R ,M ={x |x 2-2x >0},则 C U M =( )A.[0,2]B.RC.(-∞,0)∪(2,+∞)D.(-∞,0]∪[2,+∞)12、在直角坐标系内,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是( )二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15、不等式255122x x -+>的解集是 .三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0; (3) 0322322≤--+-x x x x18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.19、当1>x 时,求11222-+-=x x x y 的最小值. (12分)20、已知15,13a b a b ≤+≤-≤-≤,求32a b -的取值范围。
高中数学学习材料唐玲出品第三章不等式(数学人教实验A版必修5)7.已知函数f(x)=1,1,0,x xx x-+<0,⎧⎨-≥⎩则不等式x+(x+1)f(x+1)≤1的解集是()A.{x|-1≤x-1}B.{x|x≤1}C.{x|x-1}D.{x|1≤x-1}8. 设,且a b (a、b、),则M的取值范围是()A.,18B. [,1)C.[,)D.[8,+∞)9.对于满足等式x2+(y-1)2=1的一切实数x、y,不等式x+y+c≥0恒成立,则实数c的取值范围是()A.(-∞,0]B.+∞)C.-1,+∞)D.[1,+∞)10.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d 的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d 的取值不唯一11. 一个直角三角形的周长为2p,则其斜边长的最小值为()A.B.C.D.12.某市的一家报刊摊点,从报社买进一种晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报. A.250 B.400C.300D.350二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.不等式2242x x+-≤12的解集为.14.函数y=1xa-(a>0,a≠1)的图像恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则1m+1n 的最小值为.15.若不等式x22a x a>0对x∈R恒成立,则关于t的不等式a2t1<a t22t3的解集为 .16.设x,y,z∈R,则最大值是 .三、解答题(解答应写出文字说明,证明过程或演算步骤,共74分)告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告版面的高与宽的尺寸(单位:cm )能使矩形广告的面积最小?18.(12分)不等式(m 2-2m-3)x 2-(m-3)x-1<0对一切x ∈R 恒成立,求实数m 的取值范围.19.(12分)某人上午7时乘摩托艇以匀速 v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)从B 港向距 300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h.若所需的经费p =100+3(5-y )+2(8-x )元,那么v ,w 分别为多少时,所需经费最少?并求出这时所花的经费.20.(12分)已知二次函数f(x)满足f(-2)=0,且2x≤f(x)≤242x+对一切实数x都成立.(1)求f(2)的值;(2)求f(x)的解析式;(3)设b n=1()f n,数列{b n}的前n项和为S n,求证:S n>43(3)nn+.21.(12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?22.(14分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第三章不等式(数学人教实验A版必修5)答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第三章 不等式(数学人教实验A 版必修5)参考答案一、选择题1.D 解析:∵ y 2x 是增函数,而0<b <a <1,∴ 1<2b <2a <2.2.D 解析:∵ t-s =a+2b-a-b 2-1=-(b-1)2≤0,∴ t ≤s .3.C 解析:不等式组表示的平面区域如图所示, 由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又B ,C 两点的坐标分别为(0,4),(0,43), 故S △ABC =12 (4-43)×1=43. 第3题答图 4.B 解析:特殊值法.令a =7,b =3,c =1,满足a >b >c >0,∴2log (11)1+>2log (31)3+>2log (71)7+. 5. A 解析:不等式组可化为 xy >0,x y >0,或 xy <0,x y <0,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示, ∴ 不等式组(x y )(x y )>0,0 x2表示的平面区域为三角形. 第5题答图6.B 解析:取测试点(0,1)可知C ,D 错,再取测试点(0,-1)可知A 错,故选B.7.C 解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,11x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈≤≤⎪⎩⎩R 或x <-1或-1≤x-1 x-1,故选C. 8. D 解析:M≥9.C 解析:令x = cos θ,y =1+ sin θ,则-(x+y )=- sinθ-cos θ-1=sin (θ+π4)-1.∴ -(x+y )max-1.∵ x+y+c ≥0恒成立,故c ≥-(x+y )max-1,故选C.10.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.11.A 解析:设直角三角形的一个锐角为θ,斜边长为c , 则根据题意得c (sin θ+cos θ+1)=2p , ∴ c =2sin cos 1p θθ++∵ π,当θ=π时,等号成立,∴ c,当此三角形为等腰直角三角形时,等号成立. ∴ 斜边c.故选A. 12. B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份晚报,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份晚报,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].∵ 函数y =0.5x +625在[250,400]上单调递增,∴ 当x =400时,y =825. 即摊主每天从报社买进400份晚报时,每月所获得的利润最大,最大利润为825元.13.{x |-3≤x ≤1} 解析:依题意x 2+2x-4≤-1 (x+3)(x-1)≤0 x ∈[-3,1]. 14.4 解析:由题意知A (1,1),∴ m+n-1=0,∴ m+n =1,∴1m +1n =(1m +1n )(m+n )=2+n m +mn≥2+=4. 15.(-2,2) 解析:由x 2-2ax +a >0对x ∈R 恒成立得Δ 4a 24a <0,即0<a <1, ∴ 函数y ax是R 上的减函数,∴ 2t 1>t22t3,解得-2<t <2.16.222 解析: x22y 2z222221 22xy z 2x 22y 2z 21122xy z 2.17.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.①广告版面的高为a+20,宽为2b+25,其中a >0,b >0.广告的面积S =(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b ≥18 500+=18 500+当且仅当25a =40b 时等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500.故广告版面的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 18.解:若m 2-2m-3=0,则m =-1或m =3.当m =-1时,不合题意;当m =3时,符合题意.若m 2-2m-3≠0,设f (x )=(m 2-2m-3)x 2-(m-3)x-1,则由题意,得22230,230,m m m m m ∆2⎧--<⎨=[-(-3)]+4(--)<⎩解得-15<m <3.综合以上讨论,得-15<m ≤3.19.解:依题意得 4 50x 20,30 300y 100, 9 x y 14,x >0,y >0,考察z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0, 当直线经过点(4,10)时,z 取得最大值38.故当v =12.5,w =30时所需要经费最少,此时所花的经费为93元. 20.(1)解:∵ 242()2+≤≤x x f x 对一切实数都成立,∴ 4≤f (2)≤4,∴ f (2)=4.(2)解:设f (x )=ax 2+bx+c (a ≠0).∵ f (-2)=0,f (2)=4,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩∵ ax 2+bx+c ≥2x ,即ax 2-x+2-4a ≥0,∴ Δ=1-4a (2-4a )≤0⇒(4a-1)2≤0,∴ a =14,c =2-4a =1,故f (x )=24x +x+1. (3)证明:∵ b n =1()f n =24(2)n +>4(2)(3)n n ++=4(12n +-13n +), ∴ S n =b 1+b 2+…+b n >4[(13-14)+(14-15)+…+(12n +-13n +)] =4×13-13n +=43(3)n +. 21.解:设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y =0,并作平行于直线l 0的一组直线x+0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y =10与直线0.3x+0.1y =1.8的交点. 第21题答图解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z =4+0.5×6=7(万元). ∴ 当x =4,y =6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.22.解:设矩形温室的左侧边长为a m,后侧边长为b m,则ab=72,蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=80-2(a+2b)≤80-(m2).当且仅当a=2b,即a=12,b=6时,S max=32.答:矩形温室的边长为6 m,12 m时,蔬菜的种植面积最大,最大种植面积是32 m2.。
第三章一、选择题(每小题分,共分).不等式-->的解集是( ).{≥或≤-} .{>或<-}.{-<<} .{-≤≤}解析:不等式-->化为-->,解得>或<-.答案:.设集合={+-<},={≤≤},则∩等于( ).[) .[].(] .[]解析:易知=(-),∴∩=[).故选.答案:.设集合={-<},={<},则( ).∩=∅.∩=.∪=.∪=解析:={-<}={<<},={<}={-<<},所以∩=.答案:.函数=+(-+)的定义域为( ).[-) .[-)∪(,+∞) .[-,+∞) .(-∞,-)∪(,+∞) 解析:由题意得(\\(+≥,-+>,))解得(\\(≥-,<或>.))∴-≤<或>,故其定义域为[-)∪(,+∞).故选.答案:二、填空题(每小题分,共分).满足不等式≤-≤的的取值范围是.解析:原不等式等价于(\\(-≥,--≤.))解得-≤≤或≤≤.答案:[-]∪[].二次函数=++(∈)的部分对应值如下表:解析:由题表得方程++=的两根为-,∴=++=(+)(-).将(-)代入二次函数得=>,∴不等式++>的解集为{<-,或>}.答案:{<-,或>}三、解答题(每小题分,共分).解下列不等式:()-->;()-+>;()--+≥;()-≥-;()-+<.解析:()∵Δ=(-)-××(-)=>,∴方程--=有两个不同实根,分别是-,,∴原不等式的解集为.()∵Δ=(-)-×=-<,∴-+>的解集为.()原不等式可化为+-≤,∵Δ=-××(-)=>,∴方程+-=有两个不同实根,分别是-,,∴原不等式的解集为.()原不等式可化为-+≤,即(-)≤.∴原不等式的解集是.()∵Δ=(-)-××=-<,∴不等式-+<的解集为∅..若不等式++>的解集为{-<<},求不等式+--<的解集.。
新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。
章末综合测评(三)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·菏泽高二期末)对于任意实数a,b,c,d,下列四个命题中:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b>0,c>d,则ac>bd.其中真命题的个数是()A.1B.2C.3 D.4【解析】若a>b,c<0时,ac<bc,①错;②中,若c=0,则有ac2=bc2,②错;③正确;④中,只有c>d>0时,ac>bd,④错,故选A.【答案】 A2.直线3x+2y+5=0把平面分成两个区域.下列各点与原点位于同一区域的是()A.(-3,4) B.(-3,-4)C.(0,-3) D.(-3,2)【解析】当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x +2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0.【答案】 A3.设A=ba+ab,其中a,b是正实数,且a≠b,B=-x2+4x-2,则A与B的大小关系是()A.A≥B B.A>BC.A<B D.A≤B【解析】∵a,b都是正实数,且a≠b,∴A =b a +a b >2b a ·a b =2,即A >2,B =-x 2+4x -2=-(x 2-4x +4)+2 =-(x -2)2+2≤2, 即B ≤2,∴A >B . 【答案】 B4.已知0<a <b <1,则下列不等式成立的是( ) 【导学号:05920084】 A .a 3>b 3 B.1a <1b C .a b >1D .lg(b -a )<0【解析】 由0<a <b <1,可得a 3<b 3,A 错误;1a >1b ,B 错误;a b <1,C 错误;0<b -a <1,lg(b -a )<0,D 正确.【答案】 D5.在R 上定义运算☆:a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)【解析】 根据定义得,x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得-2<x <1,所以所求的实数x 的取值范围为(-2,1).【答案】 B6.已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2【解析】 0<x <y <a <1, 即0<x <a,0<y <a,0<xy <a 2.又0<a <1,f (x )=log a x 是减函数,log a (xy )>log a a 2=2,即log a (xy )>2. 【答案】 D7.不等式2x 2+2x -4≤12的解集为( ) A .(-∞,-3] B .(-3,1]C .[-3,1]D .[1,+∞)∪(-∞,-3]【解析】 由已知得 2x 2+2x -4≤2-1,所以x 2+2x -4≤-1,即x 2+2x -3≤0,解得-3≤x ≤1.【答案】 C8.(2014·安徽高考)x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12 C .2或1D .2或-1【解析】 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.【答案】 D9.已知正实数a ,b 满足4a +b =30,当1a +1b 取最小值时,实数对(a ,b )是( ) A .(5,10) B .(6,6) C .(10,5) D .(7,2)【解析】 1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·130·30=130⎝ ⎛⎭⎪⎫1a +1b (4a +b )=130⎝ ⎛⎭⎪⎫5+b a +4a b≥130⎝⎛⎭⎪⎫5+2b a ·4a b =310. 当且仅当⎩⎪⎨⎪⎧b a =4a b,4a +b =30,即⎩⎨⎧a =5,b =10时取等号. 【答案】 A10.在如图1所示的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值是( )图1A .-3B .3C .-1D .1【解析】 若最优解有无数个,则y =-1a x +za 与其中一条边平行,而三边的斜率分别为13,-1,0,与-1a 对照可知a =-3或1,又因z =x +ay 取得最小值,则a =-3. 【答案】 A11.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设车站到仓库距离为x ,土地费用为y 1,运输费用为y 2,由题意得y 1=k 1x ,y 2=k 2x ,∵x =10时,y 1=2,y 2=8,∴k 1=20,k 2=45,∴费用之和为y =y 1+y 2=20x +45x ≥220x ×45x =8,当且仅当20x =4x5,即x =5时取等号.【答案】 A12.设D 是不等式组⎩⎨⎧x +2y ≤10,2x +y ≥3,0≤x ≤4,y ≥1表示的平面区域,则D 中的点P (x ,y )到直线x +y =10的距离的最大值是( )A.2 B .2 2 C .32 D .4 2【解析】 画出可行域,由图知最优解为A (1,1),故A 到x +y =10的距离为d =4 2.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.函数y =2-x -4x (x >0)的值域为________. 【解析】 当x >0时,y =2-⎝ ⎛⎭⎪⎫x +4x ≤2-2x ×4x =-2.当且仅当x =4x ,x=2时取等号.【答案】 (-∞,-2]14.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k <3,则k 的取值范围为________.【解析】 由题意得k +1+k <3,即(k +2)·(k -1)<0,且k >0,因此k 的取值范围是(0,1).【答案】 (0,1)15.(2015·山东高考)若x ,y 满足约束条件⎩⎨⎧y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为________.【解析】 根据约束条件画出可行域如图所示,平移直线y =-13x ,当直线y =-13x +z3过点A 时,目标函数取得最大值.由⎩⎨⎧y -x =1,x +y =3,可得A (1,2),代入可得z =1+3×2=7.【答案】 716.(2015·浙江高考)已知实数x ,y 满足x 2+y 2≤1,则|2x +y -4|+|6-x -3y |的最大值是________.【解析】 ∵x 2+y 2≤1,∴2x +y -4<0,6-x -3y >0,∴|2x +y -4|+|6-x -3y |=4-2x -y +6-x -3y =10-3x -4y .令z =10-3x -4y如图,设OA 与直线-3x -4y =0垂直,∴直线OA 的方程为y =43x . 联立⎩⎪⎨⎪⎧y =43x ,x 2+y 2=1,得A ⎝ ⎛⎭⎪⎫-35,-45,∴当z =10-3x -4y 过点A 时,z 取最大值,z max =10-3×⎝ ⎛⎭⎪⎫-35-4×⎝ ⎛⎭⎪⎫-45=15.【答案】 15三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2016·苏州高二检测)已知函数f (x )=x 2+2x ,解不等式f (x )-f (x -1)>2x -1.【解】 由题意可得x 2+2x -(x -1)2-2x -1>2x -1,化简得2x (x -1)<0,即x (x -1)<0, 解得0<x <1.所以原不等式的解集为{x |0<x <1}. 18.(本小题满分12分)设x ∈R ,比较11+x与1-x 的大小. 【解】 作差:11+x -(1-x )=x 21+x ,①当x =0时,∵x 21+x =0,∴11+x =1-x ;②当1+x <0,即x <-1时, ∵x 21+x <0,∴11+x<1-x ; ③当1+x >0且x ≠0,即-1<x <0或x >0时, ∵x 21+x >0,∴11+x>1-x . 19.(本小题满分12分)已知x ,y ,z ∈R +,且x +y +z =1,求证:1x +4y +9z ≥36. 【导学号:05920085】【证明】 ∵(x +y +z )⎝ ⎛⎭⎪⎫1x +4y +9z =14+y x +4x y +z x +9x z +4z y +9y z ≥14+4+6+12=36,∴1x +4y +9z ≥36.当且仅当x 2=14y 2=19z 2,即x =16,y =13,z =12时,等号成立.20.(本小题满分12分)一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?【解】 设水稻种x 亩,花生种y 亩,则由题意得⎩⎨⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0,即⎩⎨⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,画出可行域如图阴影部分所示而利润P =(3×400-240)x +(5×100-80)y =960x +420y (目标函数),可联立⎩⎨⎧x +y =2,3x +y =5,得交点B (1.5,0.5).故当x =1.5,y =0.5时,P 最大值=960×1.5+420×0.5=1 650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大.21.(本小题满分12分)(2015·周口高二检测)已知函数f (x )=x 2+3x -a (x ≠a ,a为非零常数).(1)解不等式f (x )<x ;(2)设x >a 时,f (x )有最小值为6,求a 的值. 【解】 (1)f (x )<x ,即x 2+3x -a <x ,整理得(ax +3)(x -a )<0. 当a >0时,⎝ ⎛⎭⎪⎫x +3a (x -a )<0,∴解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3a <x <a; 当a <0时,⎝ ⎛⎭⎪⎫x +3a (x -a )>0,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-3a 或x <a. (2)设t =x -a ,则x =t +a (t >0). ∴f (x )=t 2+2at +a 2+3t=t +a 2+3t +2a ≥2t ·a 2+3t +2a=2a 2+3+2a . 当且仅当t =a 2+3t , 即t =a 2+3时,等号成立, 即f (x )有最小值2a 2+3+2a . 依题意有:2a 2+3+2a =6, 解得a =1.22.(本小题满分12分)(2015·济南师大附中检测)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.【解】(1)g(x)=2x2-4x-16<0,∴(2x+4)(x-4)<0,∴-2<x<4,∴不等式g(x)<0的解集为{x|-2<x<4}.(2)∵f(x)=x2-2x-8.当x>2时,f(x)≥(m+2)x-m-15恒成立,∴x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).∴对一切x>2,均有不等式x2-4x+7x-1≥m成立.而x2-4x+7x-1=(x-1)+4x-1-2≥2(x-1)×4x-1-2=2(当且仅当x=3时等号成立),∴实数m的取值范围是(-∞,2].附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。
数学必修5第三章测试及答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章:不等式 [基础训练A 组]一、选择题1.若02522>-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45-2.下列各对不等式中同解的是( ) A .72<x 与 x x x +<+72 B .0)1(2>+x 与 01≠+xC .13>-x 与13>-xD .33)1(x x >+与xx 111<+ 3.若122+x≤()142x -,则函数2x y =的值域是( )A .1[,2)8B .1[,2]8C .1(,]8-∞ D .[2,)+∞4.设11a b >>>-,则下列不等式中恒成立的是 ( ) A .ba 11< B .b a 11> C .2a b > D .22a b >5.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值6.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小, 则a 的取值范围是 ( )A .31a -<<B .20a -<<C .10a -<<D .02a <<二、填空题1.若方程2222(1)34420x m x m mn n ++++++=有实根,则实数m =_______;且实数n =_______。
2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为________________。
3.当=x ______时,函数)2(22x x y -=有最_______值,且最值是_________。
人教版高二必修5数学第三章不等式章末训练题(含答案)不等式,用不等号将两个整式连结起来所成的式子。
查字典数学网为大家引荐了高二必修5数学第三章不等式章末训练题,请大家细心阅读,希望你喜欢。
一、选择题(本大题共12小题,每题5分,共60分)1.原点和点(1,1)在直线x+y=a两侧,那么a的取值范围是()A.a0或aB.0答案 B2.假定不等式ax2+bx-20的解集为x|-2A.-18B.8C.-13D.1答案 C解析∵-2和-14是ax2+bx-2=0的两根.-2+-14=-ba-2-14=-2a,a=-4b=-9.a+b=-13.3.假设aR,且a2+a0,那么a,a2,-a,-a2的大小关系是()A.a2-a2B.-a-a2aC.-aa-a2D.a2a-a2答案 B解析∵a2+a0,a(a+1)0,-1a2a.4.不等式1x12的解集是()A.(-,2)B.(2,+)C.(0,2)D.(-,0)(2,+)答案 D解析 1x1x-122-x2x0x-22xx0或x2.5.设变量x,y满足约束条件x+y3,x-y-1,y1,那么目的函数z=4x+2y的最大值为()A.12B.10C.8D.2答案 B解析画出可行域如图中阴影局部所示,目的函数z=4x+2y可转化为y=-2x+z2,作出直线y=-2x并平移,显然当其过点A时纵截距z2最大. 解方程组x+y=3,y=1得A(2,1),zmax=10.6.a、b、c满足cA.abB.c(b-a)C.ab2cb2D.ac(a-c)0答案 C解析∵c0,c0.而b与0的大小不确定,在选项C中,假定b=0,那么ab2cb2不成立.7.集合M={x|x2-3x-280},N={x|x2-x-60},那么MN为()A.{x|-4-2或3B.{x|-4C.{x|x-2或x3}D.{x|x-2或x3}答案 A解析∵M={x|x2-3x-280}={x|-47},N={x|x2-x-60}={x|x-2或x3},MN={x|-4-2或38.在R上定义运算:xy=x(1-y),假定不等式(x-a)(x+a)1对恣意实数x成立,那么()A.-1答案 C解析 (x-a)(x+a)=(x-a)(1-x-a)-x2+x+(a2-a-1)0恒成立=1+4(a2-a-1)-129.在以下各函数中,最小值等于2的函数是()A.y=x+1xB.y=cos x+1cos x (0C.y=x2+3x2+2D.y=ex+4ex-2答案 D解析选项A中,x0时,y2,x0时,y选项B中,cos x1,故最小值不等于2;选项C中,x2+3x2+2=x2+2+1x2+2=x2+2+1x2+2,当x=0时,ymin=322.选项D中,ex+4ex-22ex4ex-2=2,当且仅当ex=2,即x=ln 2时,ymin=2,适宜.10.假定x,y满足约束条件x+y-12x-y2,目的函数z=ax+2y 仅在点(1,0)处取得最小值,那么a的取值范围是()A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)答案 B解析作出可行域如下图,直线ax+2y=z仅在点(1,0)处取得最小值,由图象可知-12,即-411.假定x,yR+,且2x+8y-xy=0,那么x+y的最小值为()A.12B.14C.16D.18答案 D解析由2x+8y-xy=0,得y(x-8)=2x,∵x0,y0,x-80,失掉y=2xx-8,那么=x+y=x+2xx-8=x+2x-16+16x-8=(x-8)+16x-8+102x-816x-8+10=18,当且仅当x-8=16x-8,即x=12,y=6时取=.12.假定实数x,y满足x-y+10,x0,那么yx-1的取值范围是()A.(-1,1)B.(-,-1)(1,+)C.(-,-1)D.[1,+)答案 B解析可行域如图阴影,yx-1的几何意义是区域内点与(1,0)连线的斜率,易求得yx-11或yx-1-1.二、填空题(本大题共4小题,每题4分,共16分)13.假定A=(x+3)(x+7),B=(x+4)(x+6),那么A、B的大小关系为________.答案 A14.不等式x-1x2-x-300的解集是___________________________________________________ _____________________.答案 {x|-56}15.假设ab,给出以下不等式:①1a②a3③a2④2ac2⑤ab⑥a2+b2+1ab+a+b.其中一定成立的不等式的序号是________.答案②⑥解析①假定a0,b0,那么1a1b,故①不成立;②∵y=x3在xR上单调递增,且ab.a3b3,故②成立;③取a=0,b=-1,知③不成立;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成立;⑤取a=1,b=-1,知⑤不成立;⑥∵a2+b2+1-(ab+a+b)=12[(a-b)2+(a-1)2+(b-1)2]0,a2+b2+1ab+a+b,故⑥成立.16.一批货物随17列货车从A市以v千米/小时匀速中转B 市,两地铁路途长400千米,为了平安,两列货车的间距不得小于v202千米,那么这批货物全部运到B市,最快需求________小时.答案 8解析这批货物从A市全部运到B市的时间为t,那么t=400+16v202v=400v+16v4002 400v16v400=8(小时),当且仅当400v=16v400,即v=100时等号成立,此时t=8小时.三、解答题(本大题共6小题,共74分)17.(12分)假定不等式(1-a)x2-4x+60的解集是{x|-3(1)解不等式2x2+(2-a)x-a(2)b为何值时,ax2+bx+30的解集为R.解 (1)由题意知1-a0且-3和1是方程(1-a)x2-4x+6=0的两根,1-a041-a=-261-a=-3,解得a=3.不等式2x2+(2-a)x-a0即为2x2-x-30,解得x-1或x32.所求不等式的解集为x|x-1或x32.(2)ax2+bx+30,即为3x2+bx+30,假定此不等式解集为R,那么b2-430,-66.18.(12分)解关于x的不等式56x2+ax-a20.解原不等式可化为(7x+a)(8x-a)0,即x+a7x-a80.①当-a70时,-a7②当-a7=a8,即a=0时,原不等式解集为③当-a7a8,即a0时,a8综上知,当a0时,原不等式的解集为x|-a7当a=0时,原不等式的解集为当a0时,原不等式的解集为x|a819.(12分)证明不等式:a,b,cR,a4+b4+c4abc(a+b+c). 证明∵a4+b42a2b2,b4+c42b2c2,c4+a42c2a2,2(a4+b4+c4)2(a2b2+b2c2+c2a2)即a4+b4+c4a2b2+b2c2+c2a2.又a2b2+b2c22ab2c,b2c2+c2a22abc2,c2a2+a2b22a2bc.2(a2b2+b2c2+c2a2)2(ab2c+abc2+a2bc),即a2b2+b2c2+c2a2abc(a+b+c).a4+b4+c4abc(a+b+c).20.(12分)某投资人计划投资甲、乙两个项目,依据预测,甲、乙项目能够的最大盈利率区分为100%和50%,能够的最大盈余率区分为30%和10%,投资人方案投资金额不超越10万元,要求确保能够的资金盈余不超越1.8万元,问投资人对甲、乙两个项目各投资多少万元,才干使能够的盈利最大? 解设投资人区分用x万元、y万元投资甲、乙两个项目,由题意知x+y10,0.3x+0.1y1.8,x0,y0.目的函数z=x+0.5y.上述不等式组表示的平面区域如下图,阴影局部(含边界)即可行域.作直线l0:x+0.5y=0,并作平行于直线l0的一组直线x+0.5y=z,zR,与可行域相交,其中有一条直线经过可行域上的M点,且与直线x+0.5y=0的距离最大,这里M点是直线x+y=10和0.3x+0.1y=1.8的交点.解方程组x+y=10,0.3x+0.1y=1.8,得x=4,y=6,此时z=14+0.56=7(万元).∵70,当x=4,y=6时,z取得最大值.答投资人用4万元投资甲项目、6万元投资乙项目,才干在确保盈余不超越1.8万元的前提下,使能够的盈利最大.21.(12分)设aR,关于x的一元二次方程7x2-(a+13)x+a2-a-2=0有两实根x1,x2,且0解设f(x)=7x2-(a+13)x+a2-a-2.由于x1,x2是方程f(x)=0的两个实根,且0所以f00,f10,f20a2-a-20,7-a+13+a2-a-20,28-2a+13+a2-a-20a2-a-20,a2-2a-80,a2-3aa-1或a2,-23-2所以a的取值范围是{a|-222.(14分)某商店预备在一个月内分批购置每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,贮存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,假定每批购入4台,那么该月需用去运费和保管费共52元,如今全月只要48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f(x);(2)能否恰外地布置每批进货的数量,使资金够用?写出你的结论,并说明理由.解 (1)设题中比例系数为k,假定每批购入x台,那么共需分36x批,每批价值20x.由题意f(x)=36x4+k20x,由x=4时,y=52,得k=1680=15.f(x)=144x+4x (0(2)由(1)知f(x)=144x+4x (0f(x)2144x4x=48(元).当且仅当144x=4x,即x=6时,上式等号成立.故只需每批购入6张书桌,可以使资金够用.小编为大家提供的高二必修5数学第三章不等式章末训练题,大家细心阅读了吗?最后祝同窗们学习提高。
第三章不等式(数学人教实验A版必修5)7.已知函数f(x)=1,1,0,x xx x-+<0,⎧⎨-≥⎩则不等式x+(x+1)f(x+1)≤1的解集是()A.{x|-1≤x-1}B.{x|x≤1}C.{x|x-1}D.{x|1≤x-1}8. 设,且a b (a、b、),则M的取值范围是()A.,18B. [,1)C.[,)D.[8,+∞)9.对于满足等式x2+(y-1)2=1的一切实数x、y,不等式x+y+c≥0恒成立,则实数c的取值范围是()A.(-∞,0]B.+∞)C.-1,+∞)D.[1,+∞)10.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d 的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d 的取值不唯一11. 一个直角三角形的周长为2p,则其斜边长的最小值为()A.B.C.D.12.某市的一家报刊摊点,从报社买进一种晚报的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主应每天从报社买进( )份晚报. A.250 B.400C.300D.350二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.不等式2242x x+-≤12的解集为.14.函数y=1xa-(a>0,a≠1)的图像恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则1m+1n 的最小值为.15.若不等式x22a x a>0对x∈R恒成立,则关于t的不等式a2t1<a t22t3的解集为 .16.设x,y,z∈R,则最大值是 .三、解答题(解答应写出文字说明,证明过程或演算步骤,共74分)告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告版面的高与宽的尺寸(单位:cm )能使矩形广告的面积最小? 18.(12分)不等式(m 2-2m-3)x 2-(m-3)x-1<0对一切x ∈R 恒成立,求实数m 的取值范围.19.(12分)某人上午7时乘摩托艇以匀速 v km/h(4≤v ≤20)从A 港出发到距50 km 的B 港去,然后乘汽车以匀速w km/h(30≤w ≤100)从B 港向距 300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘摩托艇、汽车去所需要的时间分别是x h 、y h.若所需的经费p =100+3(5-y )+2(8-x )元,那么v ,w 分别为多少时,所需经费最少?并求出这时所花的经费.20.(12分)已知二次函数f(x)满足f(-2)=0,且2x≤f(x)≤242x+对一切实数x都成立.(1)求f(2)的值;(2)求f(x)的解析式;(3)设b n=1()f n,数列{b n}的前n项和为S n,求证:S n>43(3)nn+.21.(12分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,则投资人对甲、乙两个项目各投资多少万元才能使可能的盈利最大?22.(14分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时蔬菜的种植面积最大?最大种植面积是多少?第三章不等式(数学人教实验A版必修5)答题纸得分:一、选择题二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第三章 不等式(数学人教实验A 版必修5)参考答案一、选择题1.D 解析:∵ y 2x 是增函数,而0<b <a <1,∴ 1<2b <2a <2.2.D 解析:∵ t-s =a+2b-a-b 2-1=-(b-1)2≤0,∴ t ≤s .3.C 解析:不等式组表示的平面区域如图所示, 由34,34x y x y +=⎧⎨+=⎩得交点A 的坐标为(1,1),又B ,C 两点的坐标分别为(0,4),(0,43), 故S △ABC =12 (4-43)×1=43. 第3题答图 4.B 解析:特殊值法.令a =7,b =3,c =1,满足a >b >c >0,∴2log (11)1+>2log (31)3+>2log (71)7+. 5. A 解析:不等式组可化为 xy >0,x y >0,或 xy <0,x y <0,在平面直角坐标系中作出符合上面两个不等式组的平面区域,如图中的阴影部分所示, ∴ 不等式组(x y )(x y )>0,0 x2表示的平面区域为三角形. 第5题答图6.B 解析:取测试点(0,1)可知C ,D 错,再取测试点(0,-1)可知A 错,故选B.7.C 解析:依题意得10,10,(1)()1(1)1x x x x x x x x +<+≥⎧⎧⎨⎨++-≤++≤⎩⎩或,所以1,1,11x x x x ≥-⎧<-⎧⎪⇒⎨⎨∈≤≤⎪⎩⎩R 或x <-1或-1≤x-1 x-1,故选C. 8. D 解析:M≥9.C 解析:令x = cos θ,y =1+ sin θ,则-(x+y )=- sinθ-cos θ-1=sin (θ+π4)-1.∴ -(x+y )max-1.∵ x+y+c ≥0恒成立,故c ≥-(x+y )max-1,故选C.10.A 解析:因为a+b =cd =4,由基本不等式得a+b ≥ab ≤4.又cd ≤2()4c d +,故c+d ≥4,所以ab ≤c+d ,当且仅当a =b =c =d =2时,等号成立.故选A.11.A 解析:设直角三角形的一个锐角为θ,斜边长为c , 则根据题意得c (sin θ+cos θ+1)=2p , ∴ c =2sin cos 1p θθ++∵ π,当θ=π时,等号成立,∴ c,当此三角形为等腰直角三角形时,等号成立. ∴ 斜边c.故选A. 12. B 解析:若设每天从报社买进x (250≤x ≤400,x ∈N )份晚报,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份晚报,每月获得的总利润为y 元,则依题意,得 y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400].∵ 函数y =0.5x +625在[250,400]上单调递增,∴ 当x =400时,y =825. 即摊主每天从报社买进400份晚报时,每月所获得的利润最大,最大利润为825元.13.{x |-3≤x ≤1} 解析:依题意x 2+2x-4≤-1 (x+3)(x-1)≤0 x ∈[-3,1]. 14.4 解析:由题意知A (1,1),∴ m+n-1=0,∴ m+n =1,∴1m +1n =(1m +1n )(m+n )=2+n m +mn≥2+=4. 15.(-2,2) 解析:由x 2-2ax +a >0对x ∈R 恒成立得Δ 4a 24a <0,即0<a <1, ∴ 函数y ax是R 上的减函数,∴ 2t 1>t22t3,解得-2<t <2.16.222 解析: x22y 2z222221 22xy z 2x 22y 2z21122xy z 2.17.解:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000.①广告版面的高为a+20,宽为2b+25,其中a >0,b >0.广告的面积S =(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b ≥18 500+=18 500+当且仅当25a =40b 时等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24 500.故广告版面的高为140 cm ,宽为175 cm 时,可使广告的面积最小. 18.解:若m 2-2m-3=0,则m =-1或m =3.当m =-1时,不合题意;当m =3时,符合题意.若m 2-2m-3≠0,设f (x )=(m 2-2m-3)x 2-(m-3)x-1,则由题意,得22230,230,m m m m m ∆2⎧--<⎨=[-(-3)]+4(--)<⎩ 解得-15<m <3.综合以上讨论,得-15<m ≤3.19.解:依题意得 4 50x 20,30 300y 100, 9 x y 14,x >0,y >0,考察z =2x +3y 的最大值,作出可行域,平移直线2x +3y =0, 当直线经过点(4,10)时,z 取得最大值38.故当v =12.5,w =30时所需要经费最少,此时所花的经费为93元. 20.(1)解:∵ 242()2+≤≤x x f x 对一切实数都成立,∴ 4≤f (2)≤4,∴ f (2)=4.(2)解:设f (x )=ax 2+bx+c (a ≠0).∵ f (-2)=0,f (2)=4,∴424,1,42024.a b c b a b c c a ++==⎧⎧⇒⎨⎨-+==-⎩⎩ ∵ ax 2+bx+c ≥2x ,即ax 2-x+2-4a ≥0,∴ Δ=1-4a (2-4a )≤0⇒(4a-1)2≤0,∴ a =14,c =2-4a =1,故f (x )=24x +x+1. (3)证明:∵ b n =1()f n =24(2)n +>4(2)(3)n n ++=4(12n +-13n +), ∴ S n =b 1+b 2+…+b n >4[(13-14)+(14-15)+…+(12n +-13n +)] =4×13-13n +=43(3)n +. 21.解:设投资人分别用x ,y 万元投资甲,乙两个项目,由题意,得10,0.30.1 1.8,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数为z =x+0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.作直线l 0:x+0.5y =0,并作平行于直线l 0的一组直线x+0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的点M ,此时z 最大,这里点M 是直线x+y =10与直线0.3x+0.1y =1.8的交点. 第21题答图解方程组10,0.30.1 1.8,x y x y +=⎧⎨+=⎩得4,6,x y =⎧⎨=⎩此时,z =4+0.5×6=7(万元).∴ 当x =4,y =6时,z 取得最大值.答:投资人用4万元投资甲项目,6万元投资乙项目,才能使可能的盈利最大.22.解:设矩形温室的左侧边长为a m,后侧边长为b m,则ab=72,蔬菜的种植面积S=(a-4)(b-2)=ab-4b-2a+8=80-2(a+2b)≤80-(m2).当且仅当a=2b,即a=12,b=6时,S max=32.答:矩形温室的边长为6 m,12 m时,蔬菜的种植面积最大,最大种植面积是32 m2.。
第三章 章末测试题(A)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个命题:①若a >b ,则1a <1b; ②若ac 2>bc 2,则a >b ;③若a >|b |,则a >b ; ④若a >b ,则a 2>b 2. 其中正确的是( ) A .②④ B .②③ C .①② D .①③答案 B2.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 2<0 C .b +a >0 D .a 2-b 2<0答案 C解析 由a -|b |>0⇒|b |<a ⇒-a <b <a ⇒a +b >0,故选C.3.设集合U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是( )A .M =PB .P MC .M PD .∁U M ∩P =∅答案 C4.设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( ) A .∅ B .(3,4) C .(-2,1) D .(4,+∞)答案 B解析 ∵x -1x -4<0⇔(x -1)(x -4)<0,∴1<x <4,即B ={x |1<x <4},∴A ∩B=(3,4),故选B.5.在下列函数中,最小值是2的是( )A .y =x 2+2xB .y =x +2x +1(x >0)C .y =sin x +csc x ,x ∈(0,π2)D .y =7x +7-x 答案 D解析 y =x 2+2x 的值域为(-∞,-2]∪[2,+∞);y =x +2x +1=x +1+1x +1>2(x >0); y =sin x +csc x =sin x +1sin x>2(0<sin x <1);y =7x +7-x ≥2(当且仅当x =0时取等号).6.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B .(12,1)C .(0,12)D .(1,+∞)答案 B7.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]答案C解析 画可行域如图:当直线y =x -z 过A 点时,z min =-1. 当直线y =x -z 过B 点时,z max =2. ∴z ∈[-1,2].8.不等式(x -2y +1)(x +y -3)<0表示的区域为()答案 C9.f (x )=ax 2+ax -1在R 上满足f (x )<0,则a 的取值范围是( ) A .(-∞,0] B .(-∞,-4) C .(-4,0) D .(-4,0]答案 D10.由⎩⎪⎨⎪⎧x +2y +1≤0,x +y +2≥0,y ≥0组成的平面区域的面积为( )A .2B .1C .4 D.12答案 D11.函数y =3x 2+6x 2+1的最小值是( )A .32-3B .-3C .6 2D .62-3答案 D12.设a >0,b >0.若3是3a与3b的等比中项,则1a +1b的最小值为( )A .8B .4C .1 D.14答案 B 解析 3是3a 与3b 的等比中项⇒3a ·3b =3a +b =3⇒a +b =1,∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14. ∴1a +1b =a +b ab =1ab ≥114=4. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________. 答案 (23,+∞)14.函数y =13-2x -x2的定义域是________.答案 {x |-3<x <1}15.如下图,有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各2 dm ,左右空白各1 dm ,则四周空白部分面积的最小值是________dm 2.答案 56解析 设阴影部分的高为x dm ,宽为72xdm ,则四周空白部分面积是y dm 2,由题意,得y =(x +4)(72x +2)-72=8+2(x +144x)≥8+2×2x ×144x=56.16.已知当x >0时,不等式x 2-mx +4>0恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 由题意得当x >0时,恒有m <x +4x 成立.设f (x )=x +4x,x >0,则有f (x )=x +4x≥2x ×4x =4,当且仅当x =4x,即x =2时,等号成立.所以f (x )=x +4x,x >0的最小值是4.所以实数m 的取值范围是(-∞,4).三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 答案 (1)(2,+∞) (2)[1,2]18.(12分)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.答案 16解析 因为x >0,y >0,1x +9y=1,所以x +y =(x +y )(1x +9y )=y x +9xy+10≥2y x ·9xy+10=16. 当且仅当y x =9x y 时,等号成立,又因为1x +9y=1.所以当x =4,y =12时,(x +y )min =16.19.(12分)已知a ,b ,c 都是正数,且a +b +c =1. 求证:(1-a )(1-b )(1-c )≥8abc .证明 ∵a 、b 、c 都是正数,且a +b +c =1, ∴1-a =b +c ≥2bc >0, 1-b =a +c ≥2ac >0, 1-c =a +b ≥2ab >0.∴(1-a )(1-b )(1-c )≥2bc ·2ac ·2ab =8abc . ∴原不等式成立.20.(12分)某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工时最少?解析 设A 厂工作x 小时,B 厂工作y 小时,总工作时数为t 小时,则目标函数t =x +y ,x ,y 满足⎩⎪⎨⎪⎧x +3y ≥40,2x +y ≥20,x ≥0,y ≥0.可行域如图所示,而符合题意的解为此内的整点,于是问题变为要在此可行域内,找出整点(x ,y ),使t =x +y 的值最小.由图知当直线l :y =-x +t 过Q 点时,纵截距t 最小.解方程组⎩⎪⎨⎪⎧x +3y =40,2x +y =20,得Q (4,12).答:A 厂工作4小时,B 厂工作12小时,可使所费的总工时最少. 21.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =144vv 2-58v +1 225(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(2)若要求在该时段内车流量超过9千辆/时,则汽车的平均速度应在什么范围内?思路分析 (1)利用基本不等式求最大车流量,(2)转化为解不等式. 解析 (1)依题意,有y =144v +1 225v-58≤1442 1 225-58=12,当且仅当v =1 225v,即v =35时等号成立,∴y max =12,即当汽车的平均速度v 为35千米/时,车流量最大为12. (2)由题意,得y =144v v 2-58v +1225>9.∵v 2-58v +1225=(v -29)2+384>0, ∴144v >9(v 2-58v +1225). ∴v 2-74v +1225<0.解得25<v <49. 即汽车的平均速度应在(25,49)内.22.(12分)甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )和g (x ),当甲公司投入x 万元作宣传时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险.(1)试解释f (0)=10,g (0)=20的实际意义;(2)设f (x )=14x +10,g (x )=x +20,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?解析 (1)f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的风险,至少要投入20万元宣传费.(2)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当⎩⎪⎨⎪⎧y ≥f x =14x +10, ①x ≥g y=y +20, ②成立,双方均无失败的风险.由①②得y ≥14(y +20)+10⇒4y -y -60≥0,∴(y -4)(4y +15)≥0. ∵4y +15>0,∴y ≥4.∴y ≥16.∴x ≥y +20≥4+20=24.∴x min =24,y min =16.即要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.。