单片机复位电路设计
- 格式:doc
- 大小:215.50 KB
- 文档页数:10
C51复位电路是用于复位8051系列单片机(例如AT89C51)的电路,通过将单片机复位引脚置高或置低来实现复位功能。
以下是C51复位电路的工作原理:
1.复位信号源:C51复位电路的主要信号源是一个复位按钮或开关。
当用户按下复位按钮
时,复位信号产生。
2.复位脉冲发生器:复位按钮按下后,复位脉冲发生器会产生一个短暂的复位脉冲信号。
3.复位控制器:复位控制器接收到复位脉冲信号后,根据设计要求,将其转换为适合8051
单片机的复位信号。
4.复位引脚控制:复位控制器通过控制连接到8051单片机的复位引脚(一般为RST或
RESET引脚),将其拉高或拉低。
拉低复位引脚会将单片机置于复位状态,重新启动执行程序。
5.复位完成:一旦复位引脚被拉高,单片机完成复位操作,并开始按照程序中的指令继续
执行。
C51复位电路的目的是在需要时将8051单片机恢复到初始化状态,确保程序可以从头开始执行。
复位电路能够提供稳定可靠的复位功能,让单片机在出现异常情况或需要重新启动时能够正常运行。
单片机mcu一直有电,复位电路设计
复位电路是一种用来将单片机复位的电路,当单片机电源正常供电时,复位电路将保持在非激活状态。
当发生以下情况时,复位电路将激活并将单片机复位:
1. 电源上电:当电源首次接入或因电源故障导致电源恢复时,复位电路将激活;
2. 复位按钮按下:当复位按钮按下时,复位电路将激活;
3. 外部复位信号:在某些特殊应用中,可以通过外部触发信号来激活复位电路,将单片机复位。
下面是一种常见的复位电路设计:
1. 电源电压监测电路:通过一个电压比较器和一个电阻分压网络来监测电源电压。
当电源电压低于某个预设的阈值时,电压比较器将输出低电平,激活复位电路。
当电源电压恢复到正常范围时,电压比较器将输出高电平,复位电路将不再激活。
2. 复位按钮:一个简单的开关按钮,按下按钮时,通过连接到单片机的复位引脚,将单片机复位。
3. 外部复位信号:一些特殊应用中可能需要使用外部触发信号来激活复位电路,可以使用一个开关、一个触发器或其他逻辑电路来实现。
需要注意的是,复位电路设计需要考虑电源噪音、去抖动和电源稳定时间等因素,以确保单片机能够可靠地复位。
51单片机复位电路原理51单片机复位电路引言在嵌入式系统中,复位电路是一项非常重要的设计。
51单片机复位电路是指用于控制51单片机复位信号的电路。
本文将从浅入深地解释51单片机复位电路的相关原理。
什么是复位电路复位电路是一种用于将系统恢复到初始状态的电路。
在嵌入式系统中,由于硬件故障或异常情况的发生,需要将系统复位到初始状态,以确保其正常运行。
51单片机的复位电路设计原理51单片机复位电路的设计有以下几个主要原理:电源复位当系统启动时,复位引脚会检测电源电压,如果低于特定阈值,则会发出复位信号,将系统复位到初始状态。
这是最常见和基本的复位电路设计原理。
扩展复位除了电源复位之外,还可以通过外部信号触发复位。
例如,通过按下复位按钮来触发复位操作。
这种复位电路可以在系统故障或其他需要立即复位的情况下使用,以确保系统能够快速恢复。
独立看门狗复位独立看门狗复位是一种由独立的硬件电路触发的复位方式。
该电路通过定时器产生一个定时周期,如果在该周期内未收到特定信号,就会发出复位信号。
这种复位电路可以用于监控系统运行状态,并在系统崩溃或停止响应时进行复位。
外部看门狗复位外部看门狗复位是通过外部设备触发的复位方式。
这种复位电路通常与51单片机外部设备(如设备驱动器或传感器)相连,当外部设备检测到特定条件时,会触发复位操作。
如何设计51单片机复位电路设计51单片机复位电路需要考虑以下几个因素:复位信号的稳定性复位信号需要稳定且可靠。
在设计电路时,应该使用适当的稳压电路和滤波电路来确保复位信号的稳定性。
复位信号的时序复位信号的时序非常重要。
在复位电路设计中,需要确定复位信号的触发时间和持续时间,以确保系统能够在适当的时间内复位并恢复正常运行。
多重复位方式综合考虑系统的可靠性和稳定性,可以采用多重复位方式来设计51单片机复位电路。
例如,同时使用电源复位和独立看门狗复位,可以增加系统的安全性和可靠性。
结论通过本文的介绍,我们了解了51单片机复位电路的相关原理和设计要点。
去掉,或者减小RST引脚上的电容。
因为电容太大了编程器无法复位430。
因此检测失败。
如果仍未解决,可能还是你的引脚连接有问题。
没找到芯片。
如果电脑---仿真器----MSP430芯片的电气连接是正确可靠,没接触不良的话,可能的情况有:外部复位芯片复位引脚直接连至单片机引脚;并口仿真器中BIOS参数设置不正确;3.3V负载大,电路板没上电烧写;芯片引脚或电路板有短路、断路问题;USB-JTAG未能成功启动、运行;单片机熔丝烧过了或坏了;MSP430系列单片机复位电路系统设计分析2010年11月04日 10:59 本站整理作者:佚名用户评论(0)关键字:MSP430(105)复位电(1)0 引言TI公司的混合信号处理器MSP430系列单片机以其处理能力强大、外围器件集成度高、功率消耗低、产品系列全面、全系列工业级等特点,作为目前MCU主流市场的产品之一,在电子应用领域中得到广泛应用,被越来越多的电子设计师所青睐。
由于复位电路设计问题而导致的系统出现上电后不工作或状态不正确是很多MSP430单片机电路设计者们在设计、调试和应用中曾遇到过的问题,尽管这种情况发生的几率很低,但对于可靠性要求较高的应用场合,这个现象仍需引起电子设计人员的足够重视。
为此,本文对MSP430全系列单片机的复位系统和复位机制进行了详细深入的分析,并针对性地提出了具体的外围复位电路设计方案和有关电子元器件的详细介绍,以供同行参考和交流。
1 MSP430复位机制1.1 MSP430复位电路MSP430的复位电路包括一个上电复位(POR)和上电清除信号(PUC)。
POR是设备复位信号,它通常在以下三种事件发生时被触发:a.上电;b.复位模式下RST/NMI脚出现低电平;c.电压监控设备(Brownout)触发。
POR时序见图1(a)所示。
当供电电压VCC缓慢上升时,POR监测器保持POR信号有效直到VCC超出VPOR水平;当供电电压VCC快速上升时,POR延时t(POR DELAY)提供了足够长的有效POR信号以确保MSP430有足够的时间进行初始化。
51单片机复位电路设计方案单片机复位电路是一个重要的设计方案,它负责在单片机系统上电或复位时提供稳定且可靠的复位信号。
在这篇文章中,我将详细介绍关于51单片机复位电路设计方案的内容。
首先,我们需要了解什么是复位电路以及其作用。
复位电路是一种用于将电路或系统恢复到初始状态的电路。
在单片机系统中,复位电路主要用于在上电或复位时将单片机恢复到初始状态,并使其能够正常运行。
设计一个稳定可靠的51单片机复位电路需要考虑以下几个方面:1.复位信号的稳定性:复位信号应在一定时间内保持稳定,以确保单片机能够正确复位。
在电源上电或复位时,电压会有漂移或干扰,因此需要使用适当的电源抗扰动技术来确保复位信号的稳定性。
2.复位电路的响应时间:复位电路应能够在尽可能短的时间内产生复位信号,以确保单片机能够及时进入复位状态。
通常情况下,复位信号的响应时间应小于单片机的启动时间。
3.复位电路的保护机制:复位电路应具有过压、过流和电源反接保护功能,以防止由于异常情况导致单片机受损。
基于以上几个方面的要求,下面是一种常见的51单片机复位电路设计方案:1.采用稳压芯片:稳压芯片可以提供稳定的电源电压,从而保证复位信号的稳定性。
常见的稳压芯片有LM7805、LM1117等,可以根据实际需求选择合适的稳压芯片。
2.使用电源滤波元件:电源滤波元件如电容和电感可以滤除电源中的噪声和干扰,保证复位电路高质量的输出。
可以使用合适的电容和电感组合构建一个有效的电源滤波电路。
3.添加复位延时电路:复位延时电路可以延迟复位信号的产生,在电源上电或复位时给单片机一定的启动时间。
可以使用RC电路或者定时器芯片等构建复位延时电路。
4.引入保护电路:保护电路可以保护复位电路不受异常情况的干扰,常见的保护电路包括过压保护电路、过流保护电路和反接保护电路等。
可以选择合适的保护元件,如稳压二极管、保险丝等来构建保护电路。
以上是一种基于常见设计要求的51单片机复位电路设计方案,可以根据实际应用需求进行调整和改进。
89C51复位电路原理
1.复位条件
89C51单片机复位需要一个长达24个时钟周期的高电平才能复位,复位的作用就是使程序的指针指向地址0,每个程序都是从地址0开始执行,所以复位的概念就是让程序从头开始执行。
2.复位电路原理图
3.原理说明
该复位电路具有上电复位的功能,此功能是由C1(极性电容)实现的。
当系统上电时C1有一个充电放电的过程,放电过程会产生一个高电平,放电的时间根据公式(t=RC开平方)计算。
R为电阻R2的阻值,C为极性电容C1的大小。
系统正常运行时,按下按键S1时,RST端的电平为VCC*10/11,也是一个高电平,此时芯片也会产生一个高电平复位信号。
4.关于时钟的概念
机器周期和指令周期的概念:
振荡周期: 也称时钟周期, 是指为单片机提供时钟脉冲信号的振荡源的周期。
状态周期: 每个状态周期为时钟周期的 2 倍, 是振荡周期经二分频后得到的。
机器周期: 一个机器周期包含6 个状态周期S1~S6, 也就是12 个时钟周期。
在一个机器周期内, CPU可以完成一个独立的操作。
指令周期: 它是指CPU完成一条操作所需的全部时间。
每条指令执行时间都是有一个或几个机器周期组成。
MCS - 51 系统中, 有单周期指令、双周期指令和四周期指令。
5.经验总结
不懂得东西还是很多啊,虎风真菜……。
stm32复位电路设计浅析stm32复位电路方法说到复位,我们都不会陌生,系统基本都有一个复位按键。
复位的种类有很多:上电复位、掉电复位、复位引脚复位、看门狗复位、软件复位等。
本文探讨的就是在stm32中复位电路如何设计。
STM32介绍STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex®-M0,M0+,M3, M4和M7内核在STM32F105和STM32F107互连型系列微控制器之前,意法半导体已经推出STM32基本型系列、增强型系列、USB基本型系列、互补型系列;新系列产品沿用增强型系列的72MHz处理频率。
内存包括64KB到256KB 闪存和20KB到64KB嵌入式SRAM。
新系列采用LQFP64、LQFP100和LFBGA100三种封装,不同的封装保持引脚排列一致性,结合STM32平台的设计理念,开发人员通过选择产品可重新优化功能、存储器、性能和引脚数量,以最小的硬件变化来满足个性化的应用需求。
stm32复位电路设计复位电路的作用是为了是系统恢复到初始状态的,单片机的复位方式也是存在好几种的:上电复位,系统复位,备份区域复位上电复位:其产生的条件是,当系统上电、掉电,以及系统从待机模式返回时,发生电源复位。
电源复位能够复位除了备份区域寄存器之外的所有寄存器的状态。
系统复位:以下任一事件发生时,均能产生一个系统复位:1. NRST引脚上的低电平(外部复位)2. 窗口看门狗计数终止(WWDG复位)3. 独立看门狗计数终止(IWDG复位)4. 软件复位(SW复位)5. 低功耗管理复位系统复位能够复位除时钟控制寄存器CRS中的复位标志和备份区域中的寄存器之外的所有寄存器。
备份区域复位:对于备份区域的复位,一种是在软件复位的时候设定备份区域控制寄存器。
51单片机最小系统复位电路
51单片机是一款广泛应用的单片机,它的复位电路十分重要。
本文将介绍51单片机最小系统的复位电路设计。
复位电路的作用是在单片机启动时对其进行初始化,确保其能够正常工作。
51单片机的复位电路主要包括复位电源、复位电路元件和复位控制器三部分。
首先是复位电源,它是复位电路的基础。
复位电源可以是单独的电源,也可以是单片机电源的一部分。
在一般情况下,复位电源应该保证在单片机电源上电之前就能够正常工作。
如果复位电源是单片机电源的一部分,那么它的电源电压应该低于单片机的最小工作电压,以保证单片机能够正常工作。
接下来是复位电路元件,它是复位电路的核心。
复位电路元件主要包括电容器和电阻器两种。
其中,电容器用来储存电荷,电阻器用来限制电流。
在51单片机最小系统的复位电路中,电容器的电容量应该在1uf左右,电阻器的阻值应该在10k左右。
最后是复位控制器,它是复位电路的决策者。
复位控制器主要有两种类型,一种是基于电路的复位控制器,另一种是基于软件的复位控制器。
在51单片机最小系统的复位电路中,我们可以使用基于电路的复位控制器来实现复位功能。
综上所述,51单片机最小系统的复位电路设计需要注意复位电源、复位电路元件和复位控制器三个方面。
只有这三个方面都得到了充分的考虑和设计,才能保证51单片机最小系统的复位电路能够正
常工作。
单片机复位电路设计
:blog.sina.. /s/blog_4b7b591401000ai0.html
一、概述
影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:
1、外因
射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;
电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。
2、内因
振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。
二、复位电路的可靠性设计
1、基本复位电路
复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。
为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。
图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。
但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整RC 常数改变延时会令驱动
能力变差。
左边的电路为高电平复位有效右边为低电平Sm为手动复位开关Ch 可避免高频谐波对电路的干扰调频FM发射话筒制作套件
图1RC复位电路
图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。
图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果电子元件邮购
图2增加放电回路的RC复位电路
使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。
图4 是一个实例当VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复
位。
Q1的放大作用也能改善电路的负载特性,但跳变门槛电压Vt 受VCC 影响是该电路的突出缺点,使用稳压二极管可使Vt 基本不受VCC影响。
见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。
图3RC复位电路输入-输出特性
图4 带电压监控功能的复位电路
图5稳定门槛电压
图6 实用的复位监控电路
在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图6所示。
调节C1可调整延时时间,调节R1可调整负载特性,如图7所示上半部分是图5 电路的特性,下半部分对应图6。
图7带电压监控功能的复位电路的输入-输出特性
2、电源监控电路
上述的带电压监控的复位电路又叫电源监控电路监控电路必须具备如下功能:上电复位,保障上电时能正确地启动系统;
掉电复位,当电源失效或电压降到某一电压值以下时,复位系统;
市面上有类似的集成产品,如PHILIPS半导体公司生产的MAX809、MAX810。
此
类产品体积小、功耗低,而且可选门槛电压。
可保障系统在不同的异常条件下可靠地复位,防止系统失控。
图8中的Rm和Sm实现手动复位无需该功能时可把Reset端(或/Reset)端直接与单片机的RST端(或/RST端)相连最大限度地简化外围电路也可选择PHILIPS半导体公司带手动复位功能的产品MAX708。
电子元件邮购
图8 集成复位监控电路
此外,MAX708还可以监视第二个电源信号,为处理器提供电压跌落的预警功能,利用此功能,系统可在电源跌落时到复位前执行某些安全操作,保存参数,发送警报信号或切换后备电池等。
图9电表的应用实例利用MAX708 电表可在电源毛刺或停电前把当前电度数保存到E2PROM中再配合保存多个电度数备份算法,可有效解决令工程师头疼E2PROM中的电度数掉失问题使用该电路必须选择适当的预警电压点,以保证靠电源的储能供电情况下,VCC电压从预警电压跌到复位电压的维持时间(tB)必须足够长E2PROM的写周期约为10-20ms 一般取tB>200ms就可确保数据稳定写入。
预警电压调整方法当VDC等于预警电压时调整R1和R2使PFI的电压为1.25V 此时可检测/PFO来确认内部的电压比较器是否动作,调整时必须注意此比较器是窗口比较器。
图10是该应用的程序流程图
图9MAX708的典型应用
单片机学习HPOO
图10. 电表应用中E2PROM数据保护程序流程图
3. 多功能电源监控电路
除上电复位和掉电复位外,很多监控电路集成了系统所需的功能,如:
电源测控,供电电压出现异常时提供预警指示或中断请求信号,方便系统实现异常处理;
数据保护,当电源或系统工作异常时,对数据进行必要的保护,如写保护、数据备份或切换后备电池;
看门狗定时器,当系统程序“跑飞”或“死锁”时,复位系统;
其它的功能,如温度测控、短路测试等等。
单片机编程器HPOO
我们把其称作多功能电源监控电路。
下面介绍两款特别适合在工控、安防、金融行业中广泛应用多功能的监控电路:
Catalyst 公司的CAT1161 是一个集成了开门狗、电压监控和复位电路的16K 位E2PROM(I2C 接口)不但集成度高、功耗低(E2PROM部分静态时真正实现零功耗)而且清看门狗是通过改变SDA的电平实现的,节省系统I/O 资源,其门槛电压可通过编程器修改,该修改X围覆盖绝大多数应用。
当电源下降到门槛电压以下时硬件禁止访问E2PROM 确保数据安全。
使用时注意的是RST,/RST 引脚是I/O 脚,CAT1161 检测到两引脚中任何一个电压异常都会产生复位信号,与RST /RST 引脚相连的下拉电阻R2 和上拉电阻R1 必须同时连接,否则CAT1161将不断产生复位!同样不需要手动复位功能时可节省Rm和Sm两个元件。
图11. 内置WDT RESET /RESET E PROM监控器件接口电路
PHILIPS 公司的SA56600-42 被设计用在电源电压降低或断电时作保护微电脑系统中SRAM 的数据。
当电源电压下降到通常值4.2V 时,输出CS 变为逻辑低电平,把CE 也拉低,从而禁止对SRAM 的操作。
同时,产生一个低电平有效的复位信号,供系统使用,如果电源电压继续下降,到达通常值3.3V或更低时,SA56600-42切换系统操作,从主电源供电切换到后备锂电池供电,当主电源恢复正常(电压上升至3.3V或更高时)将SRAM的供电电源将由后备锂电池切换回主电源,当主电源上升至大于典型值4.2V 时输出CS 变为逻辑高电平,使CE 变为高电平,使能SRAM 的操作,复位信号一直持续到系统恢复正常操作为止。
在系统电源电压不足或突然断电的时候,这个器件能可靠地保护系统在SRAM内的数据。
图12. 内置SRAM数据保护电路的监控器件SA56600-42的典型应用单片机编程器HPOO
4. ARM 单片机的复位电路设计
无论在移动高端手持仪器还是嵌入式系统,32 位单片机ARM 占据越来越多的份额,ARM 已成为事实的高端产品工业标准。
由于ARM 高速、低功耗、低工作电压导致其噪声容限低这是对数字电路极限的挑战,对电源的纹波、瞬态响应性能、时钟源的稳定度、电源监控可靠性等诸多方面也提出了更高的要求。
ARM 监控技术是复杂并且非常重要的。
分立元件实现的监控电路,受温度、湿度、压力等外界的影响大而且对不同元件影响不一致较大板面积,过多过长的引脚容易引入射频干扰,功耗大也是很多应用难以接受,而集成电路能很好的解决此类问题。
目前也有不少微处理器中集成监控电路,处于制造成本和工艺技术原因,此类监控电路大多数是用低电压CMOS工艺实现的,比起用高电压、高线性度的双极工艺制造的专用监控电路性能还有一段差距。
结论是:使用ARM而不用专用监控电路,可能导致得不偿失,经验也告诉我们使用专用监控电路可以避免很多离奇古怪的问题。
ARM的应用工程师,切记少走弯路!
图13. 用PHILIPS MAX708实现的ARM复位电路
单片机学习HPOO
图13 是实用可靠的ARM 复位电路。
ARM 内核的工作电压较低。
R1 可保证电压低于MAX708 的工作电源还能可靠复位。
其中TRST 信号是给JTAG 接口用的。
使用HC125 可实现多种复位源对ARM 复位,如通过PC机串口或JTAG接口复位ARM。