2.1.1简单随机抽样
- 格式:ppt
- 大小:1.33 MB
- 文档页数:53
§2.1.1 简单的随机抽样学习目标正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;重点难点正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
.学法指导(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
知识链接复习初中所学的概率知识。
问题探究一、情景设置:要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断?二、探究新知:知识探究(一):简单随机抽样的基本思想思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?思考3:一般地,从N个个体中随机抽取n个个体作为样本,则每一个个体被抽到的概率是多少?思考4:食品卫生工作人员,要对校园食品店的一批小包装饼干进行卫生达标检验,打算从中抽取一定数量的饼干作为检验的样本.其抽样方法是,将这批小包装饼干放在一个麻袋中搅拌均匀,然后逐个不放回抽取若干包,这种抽样方法就是简单随机抽样.那么简单随机抽样的含义如何?简单随机抽样的含义:思考5:根据你的理解,简单随机抽样有哪些主要特点?思考6:在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?知识探究(二):简单随机抽样的方法思考1:假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?思考2:用抽签法(抓阄法)确定人选,具体如何操作?思考3:一般地,抽签法的操作步骤如何?思考4:你认为抽签法有哪些优点和缺点?思考5:从0,1,2,…,9十个数中每次随机抽取一个数,依次排列成一个数表称为随机数表(见教材P103页),每个数每次被抽取的概率是多少?思考6:假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时应如何操作?思考7:如果从100个个体中抽取一个容量为10的40 样本,你认为对这100个个体进行怎样编号为宜?思考8:一般地,利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?三、典例分析:例1 为调查央视春节联欢晚会的收视率,有如下三种调查方案:方案一:通过互联网调查.方案二:通过居民小区调查.方案三:通过电话调查. 上述三种调查方案能获得比较准确的收视率吗?为什么?例2 为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,试利用简单随机抽样法抽取样本,并简述其抽样过程.例3 利用随机数表法从500件产品中抽取40件进行质检.(1)这500件产品可以怎样编号?(2)如果从随机数表第10行第8列的数开始往左读数,则最先抽取的5件产品的编号依次是什么?目标检测1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生C、样本是40名学生D、样本容量是2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )A 、总体B 、个体是每一个零件C 、总体的一个样本D 、样本容量 3、在简单随机抽样中,某个个体被抽到的可能性是( )A 、与第一次抽样有关,且第一次抽到的可能性最小B 、与第一次抽样无关,且每次抽到的可能性都相等C 、与第一次抽样有关,最后一次抽到的可能性最小D 、与第一次抽样无关,每次抽到的可能性都不相等4、利用简单随机抽样从有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的可能性是( )A 、12B 、13C 、14D 、165、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是 。
2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。
2.1 随机抽样2.1.1 简单随机抽样学习目标:1.理解简单随机抽样的定义、特点及适用范围.(重点).2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点).[自主预习·探新知]1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点下是行之有效的方便快捷1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)抽签时,先抽的比较幸运.( )(2)抽签法中,“搅拌均匀”是没有必要的. ( )(3)随机数表法比抽签法好.( )[答案] (1)× (2)× (3)×2.在简单随机抽样中,某一个个体被抽中的可能性( )A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B [在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是( )A.总体是302名学生 B.个体是每1名学生C.样本是30名学生 D.样本容量是30D [本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]4.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.【导学号:49672143】④①③②⑤ [抽签法的步骤:编号、制签、摇匀、抽签、取样.][合作探究·攻重难]简单随机抽样的概念 下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解] (1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.【导学号:49672144】[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用 某单位对于支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.[思路探究] 抽签法的步骤流程:―→―→―→―→[解] 方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.[规律方法] 1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.2.应用抽签法时应注意以下几点:(1)编号时,如果已有编号可不必重新编号;(2)签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)要逐一不放回的抽取.2.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,则是抽签法的序号为________.【导学号:49672145】(1)将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;(2)将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.(1) [(1)满足抽签法的特征,是抽签法;(2)不是抽签法,因为抽签法中所有的号签编号是互不相同的,而其中39个白球无法相互区分.][1.什么情况下使用随机数表法抽样?它比抽签法的优势体现在哪里?提示:当总体中个体数较多时适合用随机数表法,与抽签法相比,可以节约大量的人力和制号签的成本.2.随机数表法和抽签法都要对个体进行编号,它们的编号方法有何不同点?提示:抽签法和随机数法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号、产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100.随机数表法编号要看总体的个数,且所编号码数位必须相同,如总体数为100,通常为00,01,…,99.总体数大于100小于1 000,从000开始编起,然后是001,002,…. 为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数表法抽取10人作为样本,写出抽样过程.[思路探究] (1)使用药品服用者的已有编号还是再重新编号?(2)使用随机数表时,第一个数字怎样确定?[解] 第一步,将120名服药者重新进行编号,分别为001,002,003,…,120;第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.母题探究:1.(变条件)如果本例改为“从编号1,2,3,…,100的服药者中用随机数表法抽取10人作为样本”.请写出抽样过程.[解] 第一步,将100名服药者重新编号,分别为00,01,02, (99)第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3.第三步,从选定的数3开始向右读,每次读取两位数,凡在00~99中的读取出来,前面已读数字跳过不读,依次可得,34,29,78,64,56,07,82,52,42,44.第四步,以上10个号码对应的服药者即是要抽取的对象.2.(设问)本题其他条件不变,若要用抽签法取样,则:(1)要不要对服药者进行重新编号?(2)所选出的10人是不是相同的?[解] (1)若运用抽签法取样,对已有编号的个体不用再重新进行编号.(2)用抽签法选出的10人与用随机数表法选出的10人不一定相同,其实既使用相同的方法抽样,不同两次的抽取结果也不一定完全相同.1.抽签法中确保样本代表性的关键是( )【导学号:49672146】A.抽签 B.搅拌均匀C.逐一抽取 D.抽取后不放回B [逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,抽签也一样.]2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为( )A.0.4 B.0.5C.0.6 D.A [在简单随机抽样中,每个个体被抽到机会相等,即=0.4.]3.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )【导学号:49672147】A.①②③④ B.①③④②C.③②①④ D.④③①②B [由随机数表法的步骤知选B.]4.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本A [5 000名居民的阅读时间的全体是总体,每位居民的阅读时间是个体,200是样本容量.]5.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.【导学号:49672148】[解] 第一步:编号,把43名运动员编号为1~43;第二步:制签,做好大小、形状相同的号签,分别写上这43个数;第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步:抽签入样,每次从中抽取一个,连续抽取5次(不放回抽取),从而得到容量为5的入选样本.。