当前位置:文档之家› 钢轨波磨对地铁列车振动噪声的影响

钢轨波磨对地铁列车振动噪声的影响

钢轨波磨对地铁列车振动噪声的影响
钢轨波磨对地铁列车振动噪声的影响

钢轨波磨对地铁列车振动噪声的影响

摘要轨道交通车辆主要噪声来源于两部分,即轮轨噪声和车辆本身部件噪声,轮轨噪声主要是车辆在轨道上正常运行、加减速、过弯道等产生的轮轨滚动噪声、冲击噪声、啸叫噪声、刹车噪声,车辆本身部件噪声主要由其具有噪声源的电气部件产生,如受流装置、空桶与通风系统、牵引辅助系统、制动风源系统、PIS广播系统等。

关键词地铁;橡胶隔振垫轨道;钢轨波磨;振动;车内噪声

轨道交通系统作为一种公共交通形式,目前已发展成为现代化大中型城市公共交通的骨干。轨道交通系统通常具备安全快捷、省地节能、全天候、运量大及污染少等特点,可在缓解人口密集城市交通压力、拓展城市空间及治理城市环境污染等过程中起到至关重要的作用在城市轨道交通快速发展的同时,随着人们生活水平的提高、环保意识的加强以及噪声防治相关法律的强制实施,地铁列车车内噪声问题日益突出,受到了社会上的广泛关注[1]。

地鐵列车噪声源主要包括轮轨噪声、辅助设备噪声、集电系统噪声、牵引系统噪声等。国内外相关研究结果表明,车辆运行速度小于60 km/h时,列车牵引电机及辅助设备噪声占主要成分;当车辆运行速度在60~200 km/h时,轮轨噪声占主要成分;当车辆运行速度大于200km/h时,空气动力噪声占主要成分[2],如图1所示。地铁列车运营时度通常为60~120 km/h,运行在该速度区间列车车内噪声的最为主要声源为轮轨噪声[2,3]。

通过国内外专家长期的分析与研究表明轮轨表面不平顺是激发轮轨振动的主要原因,而轮轨噪声的直接原因是轮轨振动。运用噪声辐射及传播理论和多体动力学理论,考虑了包括轮轨表面粗糙度、接触滤波、地面反射在内等因素对轮轨噪声的影响,建立了轮轨噪声预测模型,并通过轮轨噪声预测软件(如STTIN),预测并评价了钢轨、车轮及轨枕的振动辐射噪声。所有这些研究成果都是以钢轨、车轮、轨枕为研究对象,预测的是轮轨向环境的辐射噪声。而轮轨激励下车厢壁板振动所辐射的噪声,至今少见相关研究。实际上,车厢壁板振动所产生的声辐射是一个重要的噪声源。至于具体影响有多大,就需要根据现场测试数据进行定量的分析。

1 钢轨波磨测试

地铁轨道形式种类较多,不同軌道形式的减振效果也不相同,产生的噪声也存在差异。所以本文主要是针对橡胶隔振垫轨道的钢轨波磨对车内噪声的影响。现场调查了国内某地铁线路一段曲线半径为450m的橡胶隔振垫轨道。

图2为钢轨打磨前后表面不平顺频谱图,从图中可以看出打磨前曲线低轨存在明显的30~50mm波磨,高轨不存在明显的波磨。打磨后低轨的30~50mm波磨被打磨掉,特征不平顺水平下降了20dB。左右轨打磨磨痕覆盖了整个轨顶区

旅客列车尾部安全防护装置常见故障判断及处理2300字

旅客列车尾部安全防护装置常见故障判断及处理2300字 摘要:介绍列车尾部安全防护装置的工作原理及故障判断方法,总结车务站段在列车尾部安全防护装置使用过程中存在的常见故障、原因及处理措施。 关键词:列尾装置;工作原理;故障分析;处理措施 一、列尾?b置工作原理 列尾主机和司机控制盒的联系列尾主机和司机控制盒的联系如图1所示。 当首尾之间一对一的关系成功建立后,司机操作司机控制盒的按键,相应的操作编码就由机车电台发送出去,尾部列尾主机接收到编码后,通过发射盘将编码送入主控盘内的解码器还原成指令,列尾主机电气部件进行相应的处理,并将处理结果通过编码和模拟语音方式送入发射盘进行调制,由天线发射出去,当司机控制盒接收到一对一的编码时,再将其还原成数字显示和语音。 二、列尾装置故障排查及处理 (一)列尾主机故障排查 1、将输码器与列尾主机的相应插座连接,检查主机内置操作码是否发生变异,此方法适用于CP-B/C/D 型列尾主机。 2、对于机车乘务员反映无反馈信息,而常规检测又一切正常的列尾主机,用功率计检测主机发射盘的功率和天线的驻波比。 3、列尾主机通电后,闪光灯不亮,可采用替换法继续排查。 4、列尾主机发射性能检查。主机通电后,红键消号无反应,可通过检查主控盘内的PTT指示灯与发射盘的发射指示灯是否正常闪烁来排查,若主控盘PTT指示灯不亮,则可能是PTT电路故障,更换主控盘;若发射盘发射指示灯不亮则可能是发射盘故障,更换发射盘。 5、传感器性能检查。主机通电后,红键消号正常,风压达到480kPa或580kPa,但主机不提示输号请求。可用红外设备输号后,检查风压值的精度来判断是否传感器故障,若传感器正常,主机在风压达到输号规定值时仍无发射,则应更换主控盘。 6、主机接收性能检查。主机通电后,红键消号正常,风压达到480kPa或580kPa,主机提示输号请求,但无法进行无线输号。应先检查发射机接收指示灯是否有指示,无指示则说明发射机故障;若有指示,且发射机音量开关位置正常,故障可能产生在发射盘的接收或主控盘的解调方面,则应更换主控盘或发射盘进行判断。 (二)司机控制盒故障排查 1、检测司机控制盒参数。 2、利用无线电综合测试仪或示波器,检测司机控制盒发码信号频偏和失真度。 3、调节司机控制盒内SMC跳针的位置,并配合1/3衰减跳针位置,观察接受尾部主机反馈时,语音和显示是否正常,以判断解码器、语音芯片、数码显示管等是否工作正常。 4、按某键时,操作指示灯不亮,按其他键都正常,可判断该键失效。 5、按任一键,操作指示灯均不亮,重新拔插司机控制盒电缆,观察显示屏上是否有“P01”的复位显示,如无此显示,则是司机控制盒电源部分故障;如有此显示,则是司机控制盒PTT控制电路故障。 6、采集、分析司机控制盒的运行数据,并对照相应列尾主机内的数据,以判断故障是否发生在司机控制盒。 三、列尾装置常见故障及处理措施 (一)无电或按压红键无反馈。原因分析:电池无电,接触不良或电源反应;主机电源簧片故障;主控盘或发射硬件故障;红键故障;监控电台与主机频道不一致。处理方法:调整电池及簧片、更换电池更换主机按列尾故障行车办法处理;调整监控电台频道。

NVH 特性概述

NVH特性概述 摘要:通过对汽车振动以及噪声控制的分析研究,简要介绍汽车NVH特性的概念以及主要研究方法,并提出汽车NVH控制的基本途径。 关键词:汽车;振动;噪声;特性;研究;控制 Abstract:This article briefly introduces the conception and research method of automobile NVH characters by analyzing the vibration and the noise of automobiles,then brings forward the basic approach of controlling automobile NVH. Key words:automobile;vibration;noise;character;research;control 噪声(Noise)、振动Vibration)与声振粗糙度(Harshness)统称为NVH,NVH 特性是衡量汽车设计和制造质量好坏的一个综合性问题,它给汽车用户所带来的感受也是最直接和最表面的。声振粗糙度(Harshness)是指噪声和振动的品质,是描述人体对振动和噪声的主观感觉的,不能直接用客观测量方法来度量。由于声振粗糙度描述的是振动和噪声使人不舒适的感觉,因此有人称Harshness为不平顺性。又因为声振粗糙度经常用来描述冲击激励产生的使人极不舒适的瞬态响应,因此也有人称Harshness为冲击特性。另外乘员在汽车中的舒适性感受以及忧郁汽车振动引起的汽车零部件强度和寿命问题都属于NVH的研究范畴,此外还包括汽车零部件由于振动引起的强度和寿命等问题。车辆的NVH问题是国际汽车业各大整车制造企业和零部件企业关注的问题之一。有统计资料显示,整车约有1/3的故障问题是和车辆的NVH问题有关系,而各大公司有近20%的研发费用消耗在解决车辆的NVH问题上。从NVH的观点来看,汽车是一个由激励源(发动机、变速器等)、振动传递器(由悬架系统和连接件组成)和噪声发射器(车身)组成的系统。汽车NVH特性的研究应该以整车作为研究对象,但由于汽车系统极为复杂,因此,经常将它分解为多个子系统进行研究,如发动机子系统(包括动力传动系统),底盘子系统(主要包括悬架系统),车身子系统等。 1、汽车振动 如果把汽车作为一个系统来研究,汽车本身就是一个具有质量,弹簧和阻尼的振动系统。由于汽车内部各部分的固有频率不同,汽车在行驶中常因路面不平、车速和运动方向的变化,车轮、发动机和传动系统的不平衡,以及齿轮的冲击等各种外部和内部的激励作用而极易产生整车和局部的强烈振动。汽车的这种振动是汽车的动力性能得不到充分的发挥,经济型变坏,同时,还要影响汽车的通过性、操作稳定性和平顺性,使得乘员产生不舒服和疲乏的感觉,甚至损坏汽车的零部件和运载的货物,缩短汽车的使用寿命。 汽车振动和一般的振动问题一样,可以用研究机械振动的方法来研究汽车振

制动噪声及振动介绍

1.制动噪音及振动介绍 1.1声学基本术语 声音: 由物体的振动所造成的,并经弹性界质以声波的方式将能量传送出. 频率:单位时间內质点振动的周数(Hz) 声压: 振动强度(Pa)0,00002 < p < 200 [Pa] 为避免以Pa来表达声音或噪音,使用分贝(dB)这个标度。该标度以20μPa 作为参考声压值,并定义这声压水平为0分贝. 分贝值= 20 log(p/p ref) dB

6.Rattle 7.Clonk 8.Wire-brush 9. Chirp 10.Creak 1.LF-Squeal 2.HF-Squeal 3.(Hot-)Judder 4.Groan 5. Moan 制动尖叫(Squeal)是制动刹车时最主要的噪音,可以通过减少振动来最小化噪音.制动时最常见十种噪音及振动问题 1.2制动噪音及振动的分类 500 1 k 10 k 20 k Hz Brake Shudder < 100Hz Groan Moan High Frequency Squeal LF Squeal Wire Brush

Shudder Groan/Moan LF squeal HF squeal Pad Calliper Rotor Knuckle Suspension Bea r ing Tire

1.3制动尖叫 1.3.1 一般知识 -由刹车片和制动盘摩擦引起,在一个或多个共振频率下发生; -主要由制动盘发出,制动盘充当了扩音器的功能。

影响低频尖叫的主要因素(低频尖叫1-3KHz) 制动盘制动钳转向节悬挂刹车片 -盘厚度偏差-钳体-刚性-刚度-摩擦系数-材质-支架-模态频率-模态频率-材质 -表面处理-紧固件-材质/质量/ -材质/质量/ -尺寸形状 阻尼特性阻尼特性 -导向支架-减振片 -活塞尺寸/材质

关于地铁列车运行中振动和噪声问题的探讨

关于地铁列车运行中振动和噪声问题的探讨 作者:来瑞珉 地铁列车运行引起的噪声和环境振动问 题日趋突出,引起了各有关部门的高度重视。结合城市既有地铁线路两侧的噪声和环境振动出现的问题和影响以及对周围环境的影响程度和应该采取的不同减振减噪措施,以期对后续的地铁工程建设环境影响评价、工程设计提供一定的参考依据。 城市轨道交通在运营中不可避免地要产生噪声,对司机、乘客以及周围的行人、居民产生或多或少的影响。本线为市域快速线,行车速度较高,其车辆的减振降噪问题更是突出。因此,有针对性地寻求降低、衰减噪声的措施和途径,对现存的噪声进行防护,最大限度地降低对人体造成的损伤,是城市轨道交通减振降噪的主题。减振降噪主要从噪声源(车辆、线路)和传播途径上着手。地铁车辆运行中主要噪声有两种来源,一是因为轮轨接触而产生的轮轨滚动噪音,二是牵引电动机产生的电动-机械噪音。这些噪声源恶化了地铁车辆车厢内的环境。在地铁车辆编组中的拖车主要引起轮轨接触的滚动噪声,动车中还有电动-机械噪音。轮轨接触引起的噪音主要分为三种:滚动噪音、刺耳尖利的摩擦噪音和通过曲线时的蠕滑噪音。由于汉城地铁有很多曲线地段,因此摩擦噪音和蠕滑噪音出现比较频繁。其中车辆的减振降噪是从噪声源上降噪,涉及车辆动力系统、传动系统、车体、转向架等,这些都涉及车辆制造行业的技术进步。通过有关资料介绍在这方面的降噪是有一定限度的,在此限度以上,要降低每一分贝的成本都是极高的。因此车辆的减振降噪只能是在现有技术条件下,在投资控制范围内进行,以满足本线噪声指标要求。 列车运行噪声主要由轮轨噪声、车辆动力系统和非动力系统噪声。以及高架桥梁结构的振动辐射噪声组成。列车运行噪声不仅全方位向空间传播,而且具有声级高、频带宽、影响范围广、不易治理等特点。因此在线路规划阶段就应充分考虑尽量避绕噪声敏感建筑,以达到缩小列车运行噪声影响范围,减少噪声影响人数的目的。对噪声的防治最直接有效的办法是控制并降低噪声源强,噪声源强的控制,包括选用低噪声车辆、对轮轨系统和桥梁结构采取减振措施等,但是采取这些措施后仍不能保证沿线环境噪声达标,因此还应从噪声传播途径采取拦截措施,包括采用设置声屏障及对噪声敏感建筑采取保护性措施如对敏感建筑加设隔声门和双层玻璃窗密闭或对个别敏感建筑物采取搬迁或功能置换等。从多方面同时采取措施即采取综合防治措施,才能达到噪声防治的预期目标。

列车振动荷载作用下隧道衬砌结构动力响应特性分析

第25卷 第7期 岩石力学与工程学报 V ol.25 No.7 2006年7月 Chinese Journal of Rock Mechanics and Engineering July ,2006 收稿日期:2005–05–23;修回日期:2005–08–22 基金项目:广东省自然科学研究基金资助项目(5300512) 作者简介:王祥秋(1968–),男,博士,1989年毕业于本溪冶金高等专科学校,现任副教授,主要从事岩土与地下结构工程方面的教学与研究工作。E-mail :tongji_wxq@https://www.doczj.com/doc/4f8492956.html, 列车振动荷载作用下隧道衬砌结构 动力响应特性分析 王祥秋1,杨林德2,周治国3 (1. 佛山科学技术学院 环境与土木建筑工程学院,广东 佛山 528000; 2. 同济大学 地下建筑与工程系,上海 200092; 3. 广州市建筑科学研究院,广东 广州 510440) 摘要:论述隧道衬砌结构动力有限元分析的理论与数值计算方法,并以京广线朱亭隧道列车振动荷载现场测试成果为基础,通过对3种不同断面形状的隧道衬砌结构的动力响应特征进行分析研究,可获得隧道衬砌结构竖向位移、竖向加速度及各种内力时程曲线。研究成果对评价既有提速铁路隧道衬砌结构的动力稳定性和完善铁路隧道结构的设计理论具有一定的指导意义。 关键词:隧道工程;动力有限元分析;衬砌结构;列车振动荷载 中图分类号:U 45 文献标识码:A 文章编号:1000–6915(2006)07–1337–06 DYNAMIC RESPONSE ANALYSIS OF LINING STRUCTURE FOR TUNNEL UNDER VIBRATION LOADS OF TRAIN WANG Xiangqiu 1,YANG Linde 2,ZHOU Zhiguo 3 (1. School of Environment and Civil Engineering ,Foshan University ,Foshan ,Guangdong 528000,China ; 2. Department of Geotechnical Engineering ,Tongji University ,Shanghai 200092,China ; 3. Guangzhou Institute of Building Science ,Guangzhou ,Guangdong 510440,China ) Abstract :A theory of dynamic FEM and a numerical method for the lining structure of tunnels are put forward. Based on in-situ measurement results of vibration loads for the train running on the Zhuting tunnel of Beijing —Guangzhou Line ,the dynamic response characteristics for three types of tunnels with different cross-sections are investigated. And then ,the distributing characteristics of the vertical displacements and internal forces are obtained for the lining structures of three types of tunnels. The research results have important denotation not only for the dynamic stability evaluation of tunnel structures for speeded railway but also for the tunnel design and construction of railway. Key words :tunneling engineering ;dynamic analysis of finite elements ;lining structure of tunnel ;vibration loads of train 1 引 言 随着我国各主要铁路干线列车运行速度的不断提高,与铁路建设相关的技术问题已逐步展开研究。 隧道工程是铁路工程中不可避免的重要建设项目,列车运行速度的提高势必造成列车振动荷载进一步加大,从而对隧道结构的动力稳定性提出了更高的要求。因此,如何评价列车提速后原有隧道结构的抗振稳定性,已成为工程师们普遍关注的问题之一。

SS4改型电力机车常见故障处理

二、DK一1型电空制动机故障处理部分 (一)故障:均衡风缸与列车管均无压力 现象:空气制动阀手柄在“运转位”,电空制动器手柄在“运转位”,均衡风缸与列车管均不充风。 原因:1.电源开关未合; 2.电一空转换扳键未在电空位; 3.紧急阀及电联锁故障; 4.缓解电空阀故障。 处理:1.电空制动控制器在各位置均不能工作,则恢复电源开关。 2.空气制动阀移缓解位,均衡风缸有压力上升,但不能达定压,则转换扳键至电空位。 3.断开464开关即恢复充风。检查紧急阀及电联锁,一时无法恢复,即应断开464开关。 4.手按258缓解电空阀头部,即能恢复充风。检查258电空阀,一时无法恢复,转空气位操纵。 (二)故障:均衡风缸有压力,列车管无压力 现象:空气制动阀手柄在“运转位",电空制动器手柄在“运转位”,均衡风缸充风正常,列车管不充风。 原因:1.253中立电空阀下阀口未复位或被异物垫住; 2.中断阀遮断阀卡,不复位。 处理:1.电空制动控制器手柄置中立位2~3次,看是否能恢复正常,若运转位253中立电空阀继续排风不止,关闭157塞门,转换至空气位操纵。检测更换253中立位电空阀。 2.转空气位操纵后,列车管仍无压力,拆检遮断阀,一时修不好,抽出遮断阀,维持运行,到段检修。 (三)故障:制动后中立位移运转位,均衡风缸不充风。 现象:空气制动阀手柄在“运转位",电空制动器手柄,制动后中立位移运转位,均衡风缸不充风。 原因:1.258缓解电空阀接线松脱或803线无电; 2.203止回阀固着或过风慢; 3.157塞门关闭。 处理:1.检查258缓解电空阀接线及803线无法修复,转空气位操纵。 2.抽出,203止回阀清洗,并吹扫管路。 3.恢复157塞门至开位。 (四)故障:均衡风缸及列车管充风缓慢 现象:空气制动阀手柄在“运转位",电空制动器手柄在“运转位”,均衡风缸及列车管充风缓慢。 原因:1.中继阀主膜板破; 2.二极管263、264同时击穿;。 3.259重联电空阀卡漏。 处理:1.电空制动控制器放制动位不减压,拆检中继阀。运行中则用手动放风阀减压,待停车后拆中继阀,抽出供风阀,维持运行。 2.充风先快后慢。转空气位恢复正常,则可切除264二极管(断开800-264接线),维持运行。 3.转空气位操作正常。则确认259重联电空阀故障,检修此阀。运行中,则转空气位操作。 (五)故障:制动后中立位,均衡风缸风压继续下降。 现象:空气制动阀手柄在“运转位”电空制动器手柄,制动后中立位,均衡风缸风压继续下降。 原因:1.某端空气制动阀转换柱塞第二道0形圈漏: 2.257制动电空阀上阀口不严: 3.二极管262断路。 处理:1.检查调压阀53(54)溢流孔,判断泄漏端。操纵端0形圈漏,可在减压后放中立后,将电空扳键转至空气位,空气制动阀回运转位后,扳键再扳回电空位即可缓解。非操纵端0形圈漏,则须转至空气位运行。

广州地铁列车故障援救应急处置需要注意的问题

XX地铁列车故障援救应急处置需要注意的问题 列车故障救援,指电客车在正线或必经辅助线运行,当发生车辆故障(主要包括车辆供电、牵引、制动、控制回路类故障),无法凭自身动力出清正线线路,造成行车中断,需要组织状态良好电客车将故障车拖离所在线路的情况。对于工程车故障救援以及需要组织工程车担任救援任务的故障类型不作考虑。 1 救援组织原则 1.1时间控制原则 运营期间,列车在正线出现故障无法动车时,将造成行车中断,对全线运营造成较大的影响。因此,需做好时间控制,将故障影响控制在可控X围内。 由于故障车地点不同,救援造成影响正线行车的时间亦随之不同,因此,救援应急处置影响时间以中断正线行车时间为评价标准。中断正线行车时间由以下部分组成:T中断时间=T故障处理时间+T连挂准备时间+T连挂时间 对于连挂准备及连挂流程,XX地铁司机有标准作业程序,完成时间基本固定不变,因此,故障处理时间是行车中断时间控制的关键变量。 XX地铁自开通以来,列车救援造成行车中断最长时间为45min,最短时间为11min。按照《XX地铁XX生产安全事故(事件)调查处理规则》的规定,造成正线行车(上、下行正线之一)中断20min以上即为事件苗头,中断正线行车(上、下行正线之一)30min以上为一般事件。因此,列车故障救援中断正线行车的时间成为考核该应急事件处置成功与否的关键指标。在充分总结以往救援经验的基础上,XX地铁致力于将救援应急处置的中断行车时间控制在15min以内,以最大限度降低故障影响。 故障处理时间过短,则可能无法有效排除本不需救援的故障,导致影响扩大。但故障处理时间过长,又可能使救援中断时间过长,因此,XX地铁规定: XX地铁1、2、8号线电客车故障处理时间原则上为5min,其它线路原则上为6mm(APM系统除外);在故障处理期间,需要控制好各环节的时间点。以3号线为例,故障发生3min时组织后续列车清客,4min时即组织故障车尝试后端(司机室)动车(是否试后端视具体情况而定),6min时决定救援,各环节环环相扣,调度决策需及时、果断、节奏紧凑。 1.2 合理利用资源原则 当发生车辆故障需要组织救援时,需要合理调用资源,压缩各环节的完成时间。 l.2.1司机、车站等现场资源 调度员需要充分掌握司机、车站作业流程及人员配备,以便在救援组织时充分利用司机、车站等现场资源。如在折返站除故障车司机外,可充分利用司机轮值、接车/到达司机,提前安排支援司机上车,在换端尝试动车、切除气制动、清客等环节加快作业时间。可提前安排车站加派人员在站台待令,做好应急处理准备。

钢轨波磨对地铁列车振动噪声的影响

钢轨波磨对地铁列车振动噪声的影响 摘要轨道交通车辆主要噪声来源于两部分,即轮轨噪声和车辆本身部件噪声,轮轨噪声主要是车辆在轨道上正常运行、加减速、过弯道等产生的轮轨滚动噪声、冲击噪声、啸叫噪声、刹车噪声,车辆本身部件噪声主要由其具有噪声源的电气部件产生,如受流装置、空桶与通风系统、牵引辅助系统、制动风源系统、PIS广播系统等。 关键词地铁;橡胶隔振垫轨道;钢轨波磨;振动;车内噪声 轨道交通系统作为一种公共交通形式,目前已发展成为现代化大中型城市公共交通的骨干。轨道交通系统通常具备安全快捷、省地节能、全天候、运量大及污染少等特点,可在缓解人口密集城市交通压力、拓展城市空间及治理城市环境污染等过程中起到至关重要的作用在城市轨道交通快速发展的同时,随着人们生活水平的提高、环保意识的加强以及噪声防治相关法律的强制实施,地铁列车车内噪声问题日益突出,受到了社会上的广泛关注[1]。 地鐵列车噪声源主要包括轮轨噪声、辅助设备噪声、集电系统噪声、牵引系统噪声等。国内外相关研究结果表明,车辆运行速度小于60 km/h时,列车牵引电机及辅助设备噪声占主要成分;当车辆运行速度在60~200 km/h时,轮轨噪声占主要成分;当车辆运行速度大于200km/h时,空气动力噪声占主要成分[2],如图1所示。地铁列车运营时度通常为60~120 km/h,运行在该速度区间列车车内噪声的最为主要声源为轮轨噪声[2,3]。 通过国内外专家长期的分析与研究表明轮轨表面不平顺是激发轮轨振动的主要原因,而轮轨噪声的直接原因是轮轨振动。运用噪声辐射及传播理论和多体动力学理论,考虑了包括轮轨表面粗糙度、接触滤波、地面反射在内等因素对轮轨噪声的影响,建立了轮轨噪声预测模型,并通过轮轨噪声预测软件(如STTIN),预测并评价了钢轨、车轮及轨枕的振动辐射噪声。所有这些研究成果都是以钢轨、车轮、轨枕为研究对象,预测的是轮轨向环境的辐射噪声。而轮轨激励下车厢壁板振动所辐射的噪声,至今少见相关研究。实际上,车厢壁板振动所产生的声辐射是一个重要的噪声源。至于具体影响有多大,就需要根据现场测试数据进行定量的分析。 1 钢轨波磨测试 地铁轨道形式种类较多,不同軌道形式的减振效果也不相同,产生的噪声也存在差异。所以本文主要是针对橡胶隔振垫轨道的钢轨波磨对车内噪声的影响。现场调查了国内某地铁线路一段曲线半径为450m的橡胶隔振垫轨道。 图2为钢轨打磨前后表面不平顺频谱图,从图中可以看出打磨前曲线低轨存在明显的30~50mm波磨,高轨不存在明显的波磨。打磨后低轨的30~50mm波磨被打磨掉,特征不平顺水平下降了20dB。左右轨打磨磨痕覆盖了整个轨顶区

动车组列车车门发生故障的应急处理

动车组列车车门发生故障的应急处理 动车组发车前车门出现故障,列车长应立即通知司机和随车机械师,由随车机械师处理,乘务员做好安全防护。列车运行中车门出现故障时,列车员应立即通知列车长、随车机械师到现场检查确认并处理。 列车长、随车机械师到现场前,列车员应坚守车门,禁止旅客靠近车门,做好安全宣传工作,防止发生意外事故。动车组自动开关门装置故障时,由司机使用对讲机通知随车机械师和列车长,列车长负责组织乘务员手动开关门,随车机械师负责处理相关故障。 动车组到站时车门发生故障,列车员通过对讲机报告列车长,列车长立即通知司机和随车机械师,通过广播向旅客做好宣传解释,并组织乘务员分车厢手动开门,组织旅客下车。若手动开关车门无效,列车长应向车站报告车厢号,调整旅客等候上车位置,同时迅速组织旅客从非故障车门乘降,注意防止旅客拥挤或越站。 一、非正常情况的车门开启 1、在有电情况下司机释放车门,手动开门 (1)由司机释放车门,车门开关按钮亮起。 (2)按下所开车门的车门开关按钮。 (3)关门时,由司机复位集控关门。 2、在有电情况下的手动紧急开门 (1)用三角钥匙开关“本地操作”,黄灯亮起。 (2)用三角钥匙开关“开/关本地车门”,红灯亮起,在车门完全打开前不得松手。 (3)用三角钥匙插入“开/关本地车门”复位即可关门。 3、在无电情况下的手动开门 (1)打开车内紧急开门装置,按下红色手柄,用手拉开车门。 (2)关门时,手动开门把门合上,并用三角钥匙将内部开门装置中的锁芯复位。 二、动车组列车车门夹旅客

列车工作人员应在车门口做好宣传和提示,发现异常情况应立即通知列车长和随车机械师。工作人员应提醒旅客远离车门,更不得将头、手及身体伸出车门外。特别加强对携带儿童旅客、站台吸烟和散步旅客的安全提示,告诉旅客车站铃响必须登车。车站发车铃响完毕,列车员和列车长应对旅客乘降情况进行确认。每名列车员负责确认所值守车厢旅客乘降情况。确认旅客乘降完毕后,列车员必须通过客运对讲机向本组列车长汇报。在确认本组车旅客上下车完毕后,前进方向后组列车长需通过对讲机向前组列车长汇报“后列旅客乘降完毕”,前组列车长得到汇报后,再次瞭望确认全列旅客上下完毕后,方可通知司机关闭车门。 列车员发现车门夹旅客后应立即通知列车长,列车长应通过对讲机立即通知司机“××车门旅客被夹”,司机自动释放车门或按司机要求由乘务员手动开启指定车门。若列车已经启动,乘务员需在停车后经司机允许,方可手动开启指定车门。车门释放被夹旅客后,乘务员手动关闭车门。列车长和随车机械师一同检查确认车门正常关闭后,方可通知司机“车门正常关闭”。被夹旅客若受伤,应根据受伤情况通过广播寻医(车上无医生时由列车红十字救护员)进行现场救治,若需下车治疗,列车应编制记录交车站处理(若时间紧迫可后补记录及材料)。车门处理完毕后,应立即发车,不得因处理不及时而延误发车。开车后,列车长应收集两份以上旅客旁证材料及事故现场有关证据材料(包括文字和图片),同时尽快向段调度室、动车车队、动车台客调报告详细情况。列车长及乘务员应共同维护好车内秩序,避免车门夹旅客引发车内混乱,防止事件影响扩大。列车需防护时,列车长应听从司机的指挥,妥善处理有关事宜。

旅客列车信息显示屏常见故障处理方法

旅客列车信息显示屏常见故障处理方法旅客列信息显示系统由: 主控站、顺号调节器、LED信息显示屏、数据通讯线路等构成。整个系统以主控站为中心,顺号调节器为节点,显示屏为控制对象。 旅客列车信息显示系统主要是由主控站、顺号调节器.、LED信息显示屏.数剧通信线路等构成。整个系统以主控站为中心,顺号调节器为节点,显示屏为主控对象。系统采用RS485总线标准,最大传输距离可达 1.2KM。系统的通讯对象以顺号调节器为主体,主控站通过安装在列车顶部的GPS天线接收美国24颗公共导航卫星发送数据,然后由主控站进行处理,与事先存储在存储器内的列车运行信息进行比较生成列车运行时的动态公共信息,这些信息包括: (1)当前时间、日期和星期 (2)前方到达车站名、正点时间和停留时间 (3)列车运行速度 (4)车厢外温度 (5)列车运行状态、包括晚点信息和临时停车信息 (6)列车距前方站的距离;此外显示屏还可以显示一些预先存在存储器内的固态信息: 如广告、列车的运行线路等。 一、主控站及其常见故障 主控站是由显示模式的LCD液晶显示器,GPS天线、车外温度传感器、通讯总线光隔离接口、PCMCIA存组成。主控站在一般情况下无需人工干预便能自动运行。这在很大程度上降低了它故障率。但也由几种常见的故障,在日常检修中会出现,在这里介绍以下我们的工作经验和检修方法。

1.故障现象 (1)LCD液晶显示器显示不正常 这样的故障应先检查其接插件是否有松动现象,若有松动使其接触良好。如果没有松动,查看其后面的拨码开关的位置是否正确,如果位置不对,请恢复。如以上均正常,请更换主机板。 (2)LCD液晶显示器不亮 先检查器接插件是否有松动,若松动使其接触良好,若正常在检查开关电源是否有+12V电压输出,若没有请更换开关电源,若以上均正常用替换法检查液晶显示器和主机板,至找出故障所处。 (3)主控站不能定位 首先要确定GPS天线所在的位置是否可以接收到GPS信号,如果可以接收到信号,就应检查一下开关电源输出电压是否正常,接收器的工作电压是+5V,若电压不正常,须更换开关电源,若电压正常请进行下一步,退出工作界面,在TOOLS目录下键入C: >\GPS U/C2←,若液晶显示器上能检测到GPS信号,说明GPS与主机间的工作正常,应检查天线与GPS的接插间是否接触良好,若接触不好,重新插上插头使其接触良好;若接触良好,请用替换法检验天线,若能定位更换天线;也可以通过测量天线阻值来确定其好坏.若液晶显示器仍检测不到GPS信号,首先应更换GPS试验,若能定位更换GPS,否则应更换扩展板试验.若能定位,可能是主机板损坏,若仍不能定位请更换主机板. (4)不显示车外温度 不显示车外温度多数是由车外温度传感其损坏造成的.其判断方法: 测量外温传感器的工作电压是否正常,工作电压应为+ 4.8~+

汽车整车制动系统噪音路试规范

汽车整车制动系统噪音路试规范 1 适用范围 本标准为吉利汽车研究院和各基地进行乘用车整车制动系统噪音路试依据和标准,不涉及台架试验部分,主要测试整车制动过程中的噪音情况。 2 试验目的 2.1 获得制动器总成制动噪音类型、频次和发生条件,进行主观评分。 2.2 验证制动器总成和悬架系统等相关零部件整改或者变更(包括材料和结构)对制动噪音的影响。 2.3 试验过程通过不同制动压力,温度条件和行驶工况,来再现和模拟正常行驶工况下产生的噪音,(如在不同速度和制动系统温度下的直行,转弯,坡道,包括前进和后退方向)。 2.4 根据获得的数据和信息,提出降低制动噪音的方案和措施。 3 试验依据 本标注使用SAE 主观打分标准(N45),主观打分值分数从1到10,1表示最差噪音评分,而10表示没有噪音发生。 3.1 SNI 定义 SNI= 总制动次数 (噪音评分值) 噪音出现次数VER )(?∑

3.2 SNI 接受标准 3.3 ONI 定义 ONI= 总制动次数 强度因数 噪音出现次数?∑)( 3.4 ONI 接受标准 3.5 主要制动噪声 3.5.1 尖叫:1~10kHz 发生在制动过程或非制动过程。 3.5.2 刮擦声: 在一定范围内,几个同时发生的高频噪声,声音类似一种持续变化的嘶嘶声。 3.5.3 闷叫:100~450Hz 发生在制动过程中或非制动过程,表现为车体共振引起的低频声和振动,在向前、向后和转弯行驶中,低行驶速度及低制动压力条件下发生,最初制动时系统湿度高。

3.5.4 吱嘎声:150~200Hz, 受通风盘肋条数影响 仅在车内感受到,该噪声频率随车速降低而降低。 3.5.5 吱吱声:40~100Hz, 1、低频低压噪声:低频噪声发生在升温降温循环之后,速度在25km/h左右,在车辆停止之前发生持续时间很长。 2、低频低压低温噪声:主要发生在自动变速箱车辆上;在交通灯路口或者坡道上,带着制动并且车辆速度小于2km/h 时发生的噪音,制动片从静态摩擦切换到动态摩擦时发生滑动现象。 4 试验要求 4.1 要求提供两辆以上工装车。各项功能完备,性能优良。 4.2 依照此标准的测试车辆必须装备认可状态的新制动盘和/鼓,新摩擦片/蹄片: 1、所测试盘式制动器不得超过300℃高温; 2、所测试鼓式制动器不得超过150℃高温; 3、所测试的制动盘需要进行盘面跳动测量,测试点位于制动盘外周向内10mm处。 4.3 整个测试过程要在车窗开启的状态下,路面干燥下进行噪音试验最适宜;在试验前必须固定所有车身附件,以免产生额外噪音,影响测试结果. 5 基本测试方法 5.1 车辆速度:0~50km/h 5.2 温度范围(摩擦片温度):<80℃, 80~100℃,100~150℃,150~200℃,升温过程结束后进行相反的降温过程,直至温度降至80℃以下。 5.3 制动压力范围:3~5bar,5~10bar,10~15bar,15~20bar,20~25bar,25~30bar,30~35bar,40~45bar,对于每个温度区间,只允许进行两个压力的测试。 5.4 噪声出现后,记录车速,主缸压力,摩擦片温度;同时用FFT噪音分析仪读取噪声频率和分贝值(dBA),并用SAE评分标准(N45)对噪音评分。 注意:摩擦片加热过程在试验中只能进行一次,否则会引起摩擦片/蹄片物理性质和化学性质的变化。 5.5 试验程序

天津地铁正线列车故障数据分析及应急处理

天津地铁正线列车故障数据分析及应急处理 正线列车故障发生较为频繁,列车故障的应急处理是地铁司机的培训重点。通过对一整年的列车故障数据进行统计分析,得出客室门故障、空压机故障、VVVF故障为重点高发故障。针对以上车辆故障在故障处理时间、故障现象、故障处理流程等方面进行规范,地铁司机依照此处理故障程序进行故障判断和故障处理,可最大限度地将列车故障对正线运营的影响降到最低。 标签:地铁;列车故障;数据分析;应急处理 城市轨道交通由于高密度运转,列车行车时间间隔短,行车速度高,列车编组辆数多而具有较大的客流运输能力。地铁列车在长期的运行中,难免会发生故障,地铁车辆构造复杂、技术密集、操作要求高,且地铁司机岗位多为单独作业,如果应急处理效率比较低,就会对正线运营造成很大影响。为了进一步提高列车故障应急处理效率,有针对性的培训地铁司机处理故障能力,减少对正线运营的影响,文章对列车故障数据进行分析并就重点高发故障的应急处理进行规范。 1 列车故障数据分析 通过对2013年7月1日至2014年6月30日的行车事件进行统计,全路网因设备故障(排除人为因素和天气因素)造成两分钟及以上晚点的行车事件共计252件,其中可由地铁司机处理的车辆故障84件,占总行车事件数的33.3%(各设备故障数见图1)。其中因车辆故障造成清客、救援的行车事件19件,占总清客、救援数的65.5%。 图1 2013年下半年至2014年上半年设备类行车事件统计图 分析以上数据可以看出,清客、救援等对正线运营影响最大的行车事件多由车辆故障引起,且具有较高的发生频率。 通过对2013年下半年至2014年上半年接报的车辆故障进行统计,全路网共计接报车辆故障121件(各车辆设备故障数见图2),其中84件为造成两分钟及以上晚点的行车事件,车辆故障引起的晚点发生率为69.4%,若在某些故障发生时,地铁司机处理及时得当,可降低由车辆故障引起的晚点数量,从而有效减少运营中断的时间,由此可见培训和巩固地铁司机处理故障方面技能的重要性。 图2 2013年下半年至2014年上半年车辆故障接报统计图 由图2统计可以看出,客室门故障数为62件,经统计其中44件为造成两分钟及以上晚点的行车事件,占总车辆故障引发晚点数的52.4%。在车辆故障引发的清客、救援行车事件中,客室门故障、空压机故障、VVVF故障是主要原因。 2 列车故障应急处理

汽车摩擦制动噪声研究进展与发展趋势

2007年(第29卷)第5期 汽 车 工 程Aut omotive Engineering 2007(Vol .29)No .5 2007089 汽车摩擦制动噪声研究进展与发展趋势 原稿收到日期为2006年4月13日,修改稿收到日期为2006年7月4日。 黄学文1 ,张金换1 ,董光能2 ,谢友柏 2 (11清华大学汽车安全与节能国家重点实验室,北京 100084; 21西安交通大学润滑理论及轴承研究所,西安 710049) [摘要] 总结汽车摩擦制动噪声的产生机理、噪声特点和影响因素,回顾并分析抑制和防治制动噪声的理论 与工程研究进展,提出开发新型高阻尼摩擦制动材料来降低或抑制制动噪声的思路和措施。 关键词:摩擦学系统;摩擦;制动噪声 Pr ogress and Devel opment Trend of Research on Fricti on 2induced B rake Squeal of Vehicles Huang Xuewen,Zhang J i n huan,D ong Guangneng &X i e Y ouba i 11Tsinghua U niversity,S take Key Laboratory of A uto m otive Safety and Energy,B eijing 100084; 21Theory of Lubrication and B earing Institute,X i πan J iaotong U niversity,X i πan 710049 [Abstract] The generati on mechanis m ,features and influencing fact ors of brake squeal caused by fricti on 2induced vibrati on are summarized .The theory and research p r ogress on the supp ressi on and p reventi on measures of brake squeal are revie wed and analyzed .Finally,the idea on devel opment of ne w fricti on materials with high da mp 2ing for reducing brake squeal is pointed out . Keywords:Tr i bo 2syste m;Fr i cti on;Brake squea l 前言 汽车制动时产生的尖叫声和振颤声是城市交通噪声的组成部分之一,它既影响汽车乘坐的舒适性,又污染环境,损害人们的健康。开发与研制新型和环境友好的绿色高效摩擦制动系统、抑制制动噪声已成为重要的研究方向。 1 制动噪声的产生和特点 制动摩擦噪声的产生不仅与经典的摩擦振动理论有关,还受到制动系统自身结构和复杂的工况条件的强烈影响,是目前摩擦振动和噪声控制研究领域的重点、热点和难点。如果制动器设计不合理、摩擦材料的老化或制动工况的改变,制动时就可能引起强烈的振动,向环境中辐射制动噪声。制动器的振动不仅包括摩擦材料特性引起的摩擦振动,还包 括机械部件振动特性引起的部件振动 [1] 。 制动时干摩擦接触物体间的摩擦力增大,使摩擦副接触表面的瞬间摩擦系数增大,在制动力作用下接触比压增加,瞬间温度突然升高,接触表面出现局部凸起点“粘着”与“分离”,引起摩擦特性发生变化。表现为接触面比压的增大而使摩擦材料磨损增加,因而摩擦副各构件间相对位置发生变化,从而出现振动;对高速时的强制制动,这种振动尤为剧烈。 摩擦振动与摩擦材料的硬度、表面处理、压缩弹性率、拉伸强度、气孔率、黏弹性、摩擦因数-温度关 系曲线、摩擦因数-速度关系曲线等参数有关。摩擦振动的趋势随着表面接触压力的增加而增加,也随着摩擦材料表面温度的升高而加强。 相对滑动速度增加时,摩擦因数也随着变化,因而出现振动噪声的可能性也会增加。摩擦因数-速度曲线的负斜率是产生制动噪声的重要因素之一 [2] 。制动器部件的摩擦振动是由于作为相对速度 函数的摩擦因数变化的结果,而相对速度又产生于

XX地铁应急预案

xx 线车辆专业运营突发事件专项应急处置预案

总则 运营突发事件是指在运营线路、车场内发生人员伤亡、火灾或因车辆、设备故障及损坏、大客流冲击、自然灾害、恐怖袭击等其它异常原因造成影响运营的非正常情况。 为做好XX 线运营突发事件的防范与处置,确保抢险救援工作的及时、有序、快速、高效。减少人员伤亡和财产损失,维护社会稳定,支持和保障经济发展,特编制本预案。 第一章先期处置 第一节地铁列车发生突发事件的先期处置 1. 突发事件的先期处置应本着:先保证乘客安全,尽量疏散乘客,再进行列车救援,尽最大可能减少运营损失的原则。 2. 对于列车小故障或可在运营期间乘务司机排除的故障,乘务司机应根据实际情况判断是否影响行车,乘务司机按预案进行及时处置,并报告行调,若不影响行车,应继续运营,待运营结束后回库检修。 3. 对于乘务司机无法处理且影响列车运营的故障,在接触网故障或者列车故障,致使列车无法牵引时,在不影响行车安全的情况

下,乘务司机应将主控手柄回到零位,利用列车速度或坡度使列车尽量滑行到最近的车站或平直的线路上,乘务司机应及时报告行调。 4. 若有危及行车安全等故障发生时,应报告行调,通知检修人员上车进行抢修。若故障较大,检修人员在车辆运营的过程中不能处理的,乘务司机应根据相应的应急预案处理。同时乘务司机应尽量将列车停靠在站台上,或平直的线路上,对于较大的故障,乘务司机应做好等待救援的准备。 5. 如果列车故障,需要抢修人员上车顶进行作业时,乘务司机应向行调申请接触网停电,现场进行验电接地后放准上车顶作业。 6. 当列车出现故障,影响正点时,乘务司机应向乘客做好安抚和解释工作;如果需要进行救援工作时,还应做好乘客的疏导工作。 第二节地铁列车救援管理组织 1、车间级应急响应机制: 1)乘务应急抢险小组 XX线组长:乘务段段长

浅析高速铁路振动产生的噪声及防治措施

专业:机械电子工程 班级:机械0904 姓名:张牧 学号:200904000326 指导老师: 郑海明

浅析高速铁路振动产生的噪声及防治措施 摘要:针对高速铁路行车速度造成噪声污染急剧增加的问题,从噪声控制理论 出发,对高速铁路产生噪声对沿线环境的影响特点和干扰程度进行了分析,提出了控制轮轨噪声、列车整体噪声、隧道反射噪声以降低高速铁路噪声源,以及在线路两侧设置绿化带及防声屏障限制噪声的传播等措施,从而实现高速铁路对环境保护的要求。 关键词:高速铁路;振动噪声;噪声源;轮轨噪声;辐射噪声;防声屏障 在交通运输高速发达的今天,世界许多发达国家都已经有了自己的高速铁路系统。随着京津高速铁路和合武新干线、石太客远专线的开通运行,以及郑西高铁、武广高铁和京沪高铁的开通,我国也已经跨人了世界行列,大大加速了我国铁路高速化的进程。然而与高速铁路行车速度有关的环境因素,主要为噪声污染已严重影响了铁路两侧居民的正常工作和学习生活。国际上已把振动噪声列为七大环境公害之一,高速铁路的噪声问题日益受到各方关注。如何降低铁路环境噪声对敏感点的影响,一直是环境保护工作者的重要任务之一。因此,如何减小高铁噪声污染,是当前车辆制造和铁路建设中的一个十分重要的课题. 1 、高速铁路的噪声源 1.1高速铁路噪声的特点 相对于普速铁路,高速铁路具有高速、高架、电气化等特点,因而其噪声传播的空间和时间也较普速铁路远,其噪声的构造也较普速铁路复杂。尤其是高速铁路穿越人口稠密的区域时,问题尤其严重。 1、2 高速铁路的噪声源分析 高速铁路噪声是由各种不同类型的噪声组合而成,按发生部位的不同,可分为轮轨噪声、空气动力性噪声、集电系统噪声和桥梁构造物噪声。如图1所示。

相关主题
文本预览
相关文档 最新文档