自回归移动平均模型(课堂PPT)
- 格式:ppt
- 大小:999.00 KB
- 文档页数:105
自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA)[编辑]什么是ARIMA模型?ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。
其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。
[编辑]ARIMA模型的基本思想ARIMA模型的基本思想是:[编辑]ARIMA模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。
一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。
如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。
若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
(四)进行参数估计,检验是否具有统计意义。
(五)进行假设检验,诊断残差序列是否为白噪声。
(六)利用已通过检验的模型进行预测分析。
[编辑]相关链接[编辑]各国的box-jenkins模型名称[编辑]ARlMA模型案例分析[编辑]案例一:ARlMA模型在海关税收预测中的应用2008年。
什么是ARIMA模型?ARIMA模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。
其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。
ARIMA模型的基本思想ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。
ARIMA模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。
一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。
如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。
若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
(四)进行参数估计,检验是否具有统计意义。
(五)进行假设检验,诊断残差序列是否为白噪声。
(六)利用已通过检验的模型进行预测分析。
ARMA模型(Auto-Regressive and Moving Average Model)ARMA模型概述ARMA模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。
第二章 自回归移动平均模型一些金融时间序列的变动往往呈现出一定的平稳特征,由Box 和Jenkins 创立的ARMA 模型就是借助时间序列的随机性来描述平稳序列的相关性信息,并由此对时间序列的变化进行建模和预测。
第一节 ARMA 模型的基本原理ARMA 模型由三种基本的模型构成:自回归模型(AR ,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型(ARMA ,Auto-regressive Moving Average Model )。
2.1.1 自回归模型的基本原理 1.AR 模型的基本形式AR 模型的一般形式如下:t p t p t t t y y y y εφφφ+++++=--- 2211c其中,c 为常数项, p φφφ 21, 模型的系数,t ε为白噪声序列。
我们称上述方程为p 阶自回归模型,记为AR(p )。
2.AR 模型的平稳性此处的平稳性是指宽平稳,即时间序列的均值,方差和自协方差均与时刻无关。
即若时间序列}{t y 是平稳的,即μ=)(t y E ,2)(σ=t y Var ,2),(s s t t y y Cov σ=-。
为了描述的方便,对式(2.1)的滞后项引入滞后算子。
若1-=t t x y ,定义算子“L ”,使得1-==t t t x Lx y ,L 称为滞后算子。
由此可知,k t t kx x L -=。
对于式子(2.1),可利用滞后算子改写为:t t p p t t t y L y L Ly y εφφφ+++++= 221c移项整理,可得:t t p p y L L L εφφφ+=----c )1(221AR(p )的平稳性条件为方程01221=----pp L L L φφφ 的解均位于单位圆外。
3.AR 模型的统计性质(1)AR 模型的均值。
假设AR(p )模型是平稳的,对AR(p )模型两边取期望可得:)c (E )(Ε2211t p t p t t t y y y y εφφφ+++++=---根据平稳序列的定义知,μ=)(E t y ,由于随即干扰项为白噪声序列,所以0)(E =t ε,因此上式可化简为:021)1(φμφφφ=----p所以,pφφφφμ----=2101(2)AR 模型的方差。