函数的最值专题复习课解读
- 格式:ppt
- 大小:560.50 KB
- 文档页数:25
第18课时:第二章 函数——函数的最值一.课题:函数的最值 二.教学目标:掌握函数最值的一般求法,并能利用函数的最值解决一些实际问题,提高分析和解决问题的能力.三.教学重点:函数最值的一般求法以及应用.四.教学过程:(一)主要知识:1.函数最值的意义;2.求函数最值的常用方法:(1)配方法:主要适用于可化为二次函数或可化为二次函数的函数,要特别注意自变量的范围;(2)判别式法:主要适用于可化为关于x 的二次方程2()()()0a y x b y x c y ++=的函数()y f x =.在由0∆≥且()0a y ≠,求出y 的值后,要检验这个最值在定义域内是否有相应的x 的值;(3)不等式法:利用基本不等式求最值时一定要注意应用的条件;(4)换元法:用换元法时一定要注意新变元的取值范围;(5)数形结合法:对于图形较容易画出的函数的最值问题可借助图象直观求出;(6)利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.(二)主要方法:1.函数的最值问题实质上是函数的值域问题,因此求函数值域的方法,也是求函数的值域的方法,只是答题的方式有所差异;2.无论用什么方法求最值,都要考查“等号”是否成立,不等式法及判别式法尤其如此.(三)例题分析:例1.求下列函数的最大值或最小值:(1) 4y =-(2)y x =-;(3)222251x x y x x ++=++.解:(1)4y =4=-,由2320x x +-≥得13x -≤≤,∴当1x =时,函数取最小值2,当 1 3x or x =-=时函数取最大值4.(21 (0,)2t t x =≥≤,则212t x -=,∴2211(1)122t y t t -=-=-++, 当0t =,即12x =时取等号,∴函数取最大值12,无最小值.(3)解法(一)用判别式法: 由222251x x y x x ++=++得2(2)(2)50,y x y x y x R -+-+-=∈, ①若2y =,则25=矛盾, ∴2y ≠,②由2y ≠,这时,22(2)4(2)(5)0y y y y ≠∆=----≥⎧⎨⎩,解得:26y <≤,且当6y =时,12x =-, ∴函数的最大值是6,无最小值. 解法(二)分离常数法: 由222251x x y x x ++=++2321x x =+++23213()24x =+++ ∵2133()244x ++≥,∴26y <≤ ,∴函数的最大值是6,无最小值. 例2.(1)函数x y a =在[0,1]上的最大值与最小值的和为3,则a = 2 .(2)对于满足40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,则x 的取值范围为(,1)(3,)-∞-+∞ .(3)已知函数()21x f x =-,2()1g x x =-,构造函数()F x ,定义如下:当|()|()f x g x ≥时,()|()|F x f x =,当|()|()f x g x <时,()()F x f x =-,那么()F x( B )()A 有最小值0,无最大值 ()B 有最小值1-,无最大值()C 有最大值1,无最小值 ()D 无最小值,也无最大值例3.(《高考A 计划》考点17“智能训练第14题”)已知113a ≤≤,若2()21f x ax x =-+在[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-,(1)求()g a 的函数表达式; (2)判断函数()g a 的单调性,并求出()g a 的最小值. 答案参看教师用书93P .(四)巩固练习:1.函数2(62)[0,3], y x x x =-∈的最大值为 16 ; 2.若,,3212x y R x y +∈+=,则xy 的最大值是 6 ;3.若221,x y +=则34x y -的最小值是5-;4.3()3f x ax x a b =-+-,在[2,1]--和 [1,2]上是单调递减函数,则a 的最大值为16.。
高中数学《函数的最值》基础知识与讲义专题一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≤,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≥,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值 (3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。
例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。
()f x 没有最大值。
(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个。
2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点 (2)极小值点不会是最大值点,极大值点也不会是最小值点 8、最值点的作用 (1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =−+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤− 二、典型例题: 例1:求函数()xf x xe−=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值 解:()()'1x fx x e −=−,令()'0f x >,解得:1x <()f x ∴的单调区间为:()()max 1f x f e∴==,无最小值 小炼有话说:函数()xf x xe−=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。
专题05函数的单调性与最值最新考纲1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.基础学问融会贯穿1.函数的单调性(1)单调函数的定义(2)单调区间的定义假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,假如存在实数M满意条件(1)对于随意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于随意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【学问拓展】函数单调性的常用结论(1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ]. (3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.重点难点突破【题型一】确定函数的单调性(区间) 命题点1 给出详细解析式的函数的单调性 【典型例题】下列函数中,值域为R 且在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =2x +1C .y =x 3+1D .y =(x ﹣1)|x |【解答】解:依据题意,依次分析选项:对于A ,y =x 2+2x =(x +1)2﹣1,其值域为[﹣1,+∞),不符合题意; 对于B ,y =2x +1,其值域为(0,+∞),不符合题意;对于C ,y =x 3+1,值域为R 且在区间(0,+∞)上单调递增,符合题意; 对于D ,y =(x ﹣1)|x |,在区间(0,1)上为减函数,不符合题意;故选:C .【再练一题】已知函数f (x )=ln ,则( )A .f (x )是奇函数,且在(﹣∞,+∞)上单调递增B .f (x )是奇函数,且在(﹣∞,+∞)上单调递减C .f (x )是偶函数,且在(0,+∞)上单调递增D .f (x )是偶函数,且在(0,+∞)上单调递减【解答】解:依据题意,函数f (x )=ln,其定义域为R ,有f(﹣x)=ln ln f(x),则函数f(x)为偶函数,设t,y=lnt,对于t,则导数t′,当x>0时,t′>0,即函数t在区间(0,+∞)上为增函数,又由y=lnt在区间(0,+∞)上为增函数,则函数f(x)=ln在0,+∞)上为增函数,故选:C.命题点2 解析式含参数的函数的单调性【典型例题】定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k 的取值范围是()A.(﹣∞,﹣2] B.[2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:依据题意,函数f(x)=﹣x3+m,其定义域为R,则R上f(x)为减函数,g(x)=f(x)+x3+x2﹣kx=x2﹣kx+m在[﹣1,1]上为减函数,必有x1,解可得k≥2,即k的取值范围为[2,+∞);故选:B.【再练一题】已知函数f(x)(a>0且a≠1)在R上单调递减,则a的取值范围是()A.[,1)B.(0,] C.[,] D.(0,]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满意0<a<1,依据二次函数开口向上,在(单调递减,可得,即,解得:.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+1]max故而得:3a≥1,解得:a.∴a的取值范围是[,],故选:C.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.【题型二】函数的最值【典型例题】若函数f(x),则函数f(x)的值域是()A.(﹣∞,2)B.(﹣∞,2]C.[0,+∞)D.(﹣∞,0)∪(0,2)【解答】解:当x<1时,0<2x<2,当x≥1时,f(x)=﹣log2x≤﹣log21=0,综上f(x)<2,即函数的值域为(﹣∞,2),故选:A.【再练一题】函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1] B.C.D.[0,e﹣1]【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得微小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再视察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最终结合端点值,求出最值.(5)换元法:对比较困难的函数可通过换元转化为熟识的函数,再用相应的方法求最值.【题型三】函数单调性的应用命题点1 比较大小【典型例题】已知函数,若,则a、b、c之间的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.b<a<c【解答】解:依据题意,函数,其定义域为R,则f(﹣x)=|ln(x)|=|ln|=|﹣ln(x)|=|ln(x)|=f (x),即函数f(x)为偶函数,设g(x)=ln(x)=ln,有g(0)=ln1=0,设t,则y=lnt,当x≥0时,t为减函数且t>0,而y=lnt在(0,+∞)为增函数,则g(x)=ln(x)=ln在[0,+∞)上为减函数,又由g(0)=0,则在区间[0,+∞)上,g(x)≤0,又由f(x)=|g(x)|,则f(x)在区间[0,+∞)上为增函数,a=f()=f(log94),b=f(log52)=f(log254),又由log254<log94<1<1.80.2,则有b<a<c;故选:D.【再练一题】已知函数f(x)=x•ln,a=f(),b=f(),c=f(),则以下关系成立的是()A.c<a<b B.c<b<a C.a<b<c D.a<c<b【解答】解:,,;∵;∴;∴c<a<b.故选:A.命题点2 解函数不等式【典型例题】已知函数f(x)=e x﹣e﹣x,则关于x的不等式f(x)+f(x2﹣2)<0的解集为()A.(﹣2,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)【解答】解:依据题意,函数f(x)=e x﹣e﹣x,有f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则函数f(x)为奇函数,又由f′(x)=e x+e﹣x>0,则函数f(x)在R上为增函数,f(x)+f(x2﹣2)<0⇒f(x)<﹣f(x2﹣2)⇒f(x)<f(2﹣x2)⇒x<2﹣x2,即x2+x﹣2<0,解可得﹣2<x<1,即其解集为(﹣2,1);故选:A.【再练一题】设定义在R上的奇函数f(x)满意f(x)=x3﹣8(x>0),则{x|f(x﹣2)≥0}=()A.[﹣2,0)∪[2,+∞)B.(﹣∞﹣2]∪[2,+∞)C.[0,2)∪[4,+∞)D.[0,2]∪[4,+∞)【解答】解:∵f(x)是R上的奇函数,且x>0时,f(x)=x3﹣8;∴f(0)=f(2)=f(﹣2)=0,且f(x)在(0,+∞),(﹣∞,0)上都单调递增;∴①x=2时,满意f(x﹣2)≥0;②x>2时,由f(x﹣2)≥0得,f(x﹣2)≥f(2);∴x﹣2≥2;∴x≥4;③x<2时,由f(x﹣2)≥0得,f(x﹣2)≥f(﹣2);∴x﹣2≥﹣2;∴x≥0;∴0≤x<2;综上得,f(x﹣2)≥0的解集为[0,2]∪[4,+∞).故选:D.命题点3 求参数范围【典型例题】若函数f(x)在R上是增函数,则a的取值范围为()A.(﹣∞,1] B.(0,2)C.(0,1] D.[1,2)【解答】解:∵f(x)在R上是增函数;∴;解得0<a≤1;∴a的取值范围为:(0,1].故选:C.【再练一题】若(a≠1),在定义域(﹣∞,+∞)上是单调函数,则a的取值范围是()A.B.C.D.【解答】解:f(x)在定义域(﹣∞,+∞)上是单调函数时,①函数的单调性是增函数时,可得当x=0时,(a2﹣1)e ax≤ax2+1=1,即a2﹣1≤1,解之得a∵x≥0时,y=ax2+1是增函数,∴a>0又∵x<0时,(a2﹣1)e ax是增函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:1<a②函数的单调性是减函数时,可得当x=0时,(a2﹣1)e ax≥ax2+1=1,即a2﹣1≥1,解之得a或a.∵x≥0时,y=ax2+1是减函数,∴a<0又∵x<0时,(a2﹣1)e ax是减函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:a综上所述,得a∈故选:C.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f”符号脱掉,转化为详细的不等式求解,应留意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需留意若函数在区间[a,b]上是单调的,则该函数在此区间的随意子集上也是单调的;③分段函数的单调性,除留意各段的单调性外,还要留意连接点的取值.基础学问训练1.若,则下列不等式正确的是()A.B.C.D.【答案】D【解析】∵,对A选项,变形为log a x3<log a y2,而函数y=是单调递减函数,x3<y2,∴log a x3>log a y2,故A不正确;对B选项,,函数y=cosx是单调递减函数,∴,故B不正确;对C选项,y=是单调递减函数,∴, 故C不正确;而D选项,幂函数y=是单调递增函数,∴,故应选D.2.已知函数且满意,则的取值范围为()A.B.C.D.【答案】C【解析】因为,所以,所以函数为定义在R上的偶函数;又时,单调递减,所以由偶函数的对称可得:时,单调递增,所以由可得,解得.故选C3.已知函数,则函数有()A.最小值,无最大值 B.最大值,无最小值C.最小值1,无最大值 D.最大值1,无最小值【答案】D【解析】∵函数f(x)的定义域为(﹣∞,]设t,则t,且x,∴f(x)=g(t)t2+t(t﹣1)2+1,t,∴g(t)≤g(1)即g(t)≤1∴函数f(x)的最大值1,无最小值.故选D.4.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A.16 B.17 C.32 D.33【答案】B【解析】函数f(x)=log2(x2-2x+a)的最小值为4,可得y= x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.5.高斯是德国闻名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】A【解析】.∴当时,;当时,;∴函数的值域是.故选A.6.已知函数的最小值为8,则A.B.C.D.【答案】B【解析】函数的最小值为8,可得,明显的最小值不为8;时,由对数函数的性质可得当时,的最小值为,由题意可得,设递增,,可得,故选:B.7.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. B. C. D.【答案】A【解析】由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x),①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满意条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,故f(a)+f(b)>2.再由f(a)+f(b)>f(c)恒成立,可得2≥t,结合大前提t﹣1>0,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得 2t≥1,解得1>t.综上可得,t≤2,故选:A.8.奇函数单调递减,若,则满意的取值范围是()A.B.C.D.[1,3]【答案】D【解析】因为奇函数单调递减,所以函数单调递减,且为奇函数,所以,因为,所以,所以,解得,即满意的取值范围是,故选D.9.假如对定义在R上的奇函数,对随意两个不相邻的实数,全部,则称函数为“H函数”,下列函数为H函数的是A.B.C.D.【答案】D【解析】依据题意,对于全部的不相等实数,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.10.已知定义在上的函数,对随意,有,且时,有,设,则()A.B.C.D.【答案】A【解析】因为对随意,所以,因为时,有,所以函数在区间上是增函数,因为,所以,即,所以,故选A.11.已知定义在R上的函数f(x)=-1(m为实数)为偶函数,记a=f(log0.53),则a,b,c的大小关系为( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【答案】B【解析】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选:B.12.已知t为常数,函数在区间上的最大值为2,则t的值为A.B.C.D.【答案】A【解析】令上的增函数.当,即时,,舍去.当,即时,由于单调递增,故函数的最值在端点处取得..若,解得(舍去).当时,符合题意.当,解得.当时,,不符合题意.当时,符合题意.故.所以选A.13.假如奇函数在区间上是减函数,值域为,那么______.【答案】12【解析】由f(x)在区间上是递减函数,且最大值为5,最小值为-2,得f(3)=5,f(7)=-2,∵f(x)是奇函数,∴.故答案为:12.14.已知函数,若上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=上单调递减,故只需满意,解得:k∈[,0)故答案为:[,0)15.设函数f(x)=|x-1|在x∈[t,t+4](t∈R)上的最大值为M(t),则M(t)的最小值为______.【答案】2【解析】作出函数f(x)=|x-1|的图象,如图所示,当t+4≤1即t≤-3时,f(x)在[t,t+4]递减,可得最大值M(t)=f(t)=|t-1|=1-t,由M(t)在t≤-3递减,可得M(t)≥4,即最小值为4;当t≥1时,f(x)在[t,t+4]递增,可得最大值M(t)=f(t+4)=|t+3|=t+3,由M(t)在t≥1递增,可得M(t)≥4,即最小值为4;当t<1<t+4,即-3<t<1时,f(x)在(t,1)递减,在(1,t+4)递增,可得f(x)的最小值为0;当t=-1时,f(t)=f(t+4)=2;当-1<t<1时,f(t)<f(t+4),f(x)的最大值M(t)=f(t+4)=t+3,且M(t)∈(2,4);当-3<t<-1时,f(t)>f(t+4),f(x)的最大值M(t)=f(t)=1-t,且M(t)∈(2,4);综上可得M(t)的最小值为2.故答案为:2.16.已知函数,若当时,都有,则a的取值范围为______.【答案】【解析】①当时,即②当时,若,即时,若,即时,③当时,综上所述,17.对于区间,若函数同时满意:上是单调函数;函数的值域是,则称区间为函数的“保值”区间.求函数的全部“保值”区间.函数是否存在“保值”区间?若存在,求出实数m的取值范围;若不存在,说明理由.【答案】(1);(2)函数存在“保值”区间,此时m的取值范围是.【解析】因为函数的值域是,且的值域是,所以,所以,从而函数在区间上单调递增,故有,解得,又,所以,所以函数的“保值”区间为;若函数存在“保值”区间,若,由可得函数的“保值”区间为;若,此时函数在区间上单调递减,可得,消去m得,整理得,因为,所以,即,即有,因为,可得;若,此时函数在区间上单调递增,可得,消去m得,整理得.因为,所以,可得,可得.由,即有.综合得,函数存在“保值”区间,此时m的取值范围是.18.已知函数常数.证明上是减函数,在上是增函数;时,求的单调区间;对于中的函数和函数,若对随意,总存在,使得成立,求实数a的值.【答案】(1)见解析;(2)见解析;(3)【解析】证明::设,且,,,,当时,即,当时,即,时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故上是减函数,在上是增函数;时,,,设,则,,由可知上是减函数,在上是增函数;,即,即上是减函数,在上是增函数;由于为减函数,故又由(2)得由题意,的值域为的值域的子集,从而有,解得.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.【答案】(1)见解析;(2).【解析】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为;,由在区间上是单调减函数,可得,解得.即a的范围是.20.已知函数.判定并证明函数的单调性;是否存在实数m,使得不等式对一切都成立?若存在求出m;若不存在,请说明理由.【答案】(1)见解析;(2)【解析】函数上R上的单调递增函数.证明如下:设,,,且,,函数上R上的单调递增函数.函数,,是R上的奇函数,不等式对一切都成立,,对一切都成立,是R上的增函数,,对一切都成立,.存在实数,使得不等式对一切都成立.实力提升训练1.已知是自然对数的底数),,则的大小关系是( ) A.B.C.D.【答案】A【解析】记,可得x=e可知:上单调递增,又∴,即故选:A2.若函数,设,则的大小关系A.B.C.D.【答案】D【解析】依据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,则有,则;故选:D.3.已知函数,若的最小值为,则实数m的值为A. B. C.3 D.或3【答案】C【解析】函数,即,当时,不成立;当,即时,递减,可得取得最小值,且,解得成立;当,即时,递增,可得取得最小值,且,不成立;综上可得.故选:.4.若函数上的最大值与最小值的差为2,则实数的值为( ).A.2 B.-2 C.2或-2 D.0【答案】C【解析】解:①当a=0时,y=ax+1=1,不符合题意;②当a>0时,y=ax+1在[1,2]上递增,则(2a+1)﹣(a+1)=2,解得a=2;③当a<0时,y=ax+1在[1,2]上递减,则(a+1)﹣(2a+1)=2,解得a=﹣2.综上,得a=±2,故选C.5.已知直线分别与函数的图象交于两点,则两点间的最小距离为()A. B. C. D.【答案】D【解析】依据题意得到PQ两点间的距离即两点的纵坐标的差值,设t+1=u,t=u-1>0,原式等于依据均值不等式得到当且仅当u=1,t=0是取得最值.故答案为:D.6.已知函数的值域为()A. B. C. D.【答案】C【解析】由题意,设,则,又由指数函数的性质,可知函数为单调递减函数,所以函数的值域为,故选C.7.已知函数的定义域为(1)试推断的单调性;(2)若,求的值域;(3)是否存在实数,使得有解,若存在,求出的取值范围;若不存在,说明理由. 【答案】(1)单调递增(2)(3)存在,且取值范围为【解析】解:(1)设单调递增.(2)令的值域为(3)由而当时,令,所以的取值范围为8.已知函数(1)设的两根,且,试求的取值范围(2)当时,的最大值为2,试求【答案】(1)(2)【解析】(1)由题意可得的两根,且,解得故(2)当时,的最大值为2,由,可知抛物线开口向上,对称轴为①若,则当时取得最大值,即,解得②若,则当时取得最大值,即,解得故9.已知函数.(1)若,求a的值.(2)推断函数的奇偶性,并证明你的结论.(3)求不等式的解集.【答案】(1);(2)奇函数;(3).【解析】,则,得,即,则.函数的定义域为R,,即函数是奇函数.由不等式,,在R上是增函数,不等式等价为,即,即,得.即不等式的解集为.10.已知函数.(Ⅰ)推断并证明的单调性;(Ⅱ)设,解关于的不等式.【答案】(Ⅰ)上单调递增;(Ⅱ).【解析】解:(Ⅰ)的定义域为,由是奇函数;任取,则,上单调递增;又由(Ⅰ)知,上的奇函数,上单调递增;上单调递增.(Ⅱ),由是奇函数;又由(Ⅰ)知上单调递增,上单调递增,等价于,可得:,解得:不等式的解集是.。