3章2伯努利方程
- 格式:ppt
- 大小:1.05 MB
- 文档页数:47
思考题3.1 什么是连续性方程?答:假设以闭合外表内既无源,又无负源,那么根据质量守恒,进入该闭合外表的净流量等于闭合外表内物质的增加率,应用在稳定流动的流管中,我们得到连续性方程:ρ1A1v1=ρ2A2v2。
其中,ρ为密度,假设它在截面积 A处是均匀的; v为经过截面积A处的平均速度〔v与A垂直〕。
假设流体又是不可压缩的,连续性方程简化为A1v1=A2v2。
3.2 什么是伯努利方程?答:流体是稳定的,非黏性的,不可压缩的,伯努利方程给出同一流线任两点处的压强p,流速v,高度y满足p1+12ρv1²+ρgy1= p2+12ρv2²+ρgy2注意伯努利方程中每一项都是取的单位面积的内的量值。
方程指出:压力沿流线所作的功等于动能和势能的改变〔都指单位面积〕。
3.3 在定常流动中,流体是否可能加速运动?答:定常流动是指宏观上流体在空间某位置的流速保持不变,对某个流体质点而言,它在空间各点速度可能不同,也就是说,它可能是加速运动。
3.4 从水龙头徐徐流出的水流,下落时逐渐变细,为什么?答:据连续性原理知,,流速大处截面积小,所以下落时水的流速逐渐增大,面积逐渐减少变细。
3.5 两船平行前进时,假设靠的较近,极易碰撞,为什么?答:两船平行前进时,两条流线方向相同,,如果靠的较近,两船之间的流速将大于两船外侧的流速,这样两船都将受到一个指向对方的一个压力的作用,极易造成两船碰撞,稍有晃动,流线重合,船体就会相撞。
3.6 两条流线不能相交,为什么?答:如果两条流线相交,那么焦点处就会出现两个速度,这个结论是错误的,所以两条流线不能相交。
3.7 层流和湍流各有什么特点?引入雷诺数有哪些意义?答:流线是相互平行的流动称层流。
流体微团作复杂的无规那么的运动称为湍流。
无量纲的量雷诺数是层流向湍流过渡的一种标志。
以临界雷诺数为准,小于它为层流,大于它为湍流。
习题3.1 假设被测容器A内水的压强比大气压大很多时,可用图中的水银压强计。
第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程连续性方程——质量守恒*伯努利方程——能量守恒** 重点动量方程——动量守恒** 难点方程的应用第一节研究流体运动的两种方法流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。
5、优点: 可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t)y = y(x,y,z,t) z = z(x,y,z,t)速度: u x =u x (x,y,z,t )u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。
伯努利方程流体宏观运动机械能守恒原理的数学表达式。
1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。
它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。
它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。
方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得:Zg+22u P +ρ=常数式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。
方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。
方程表明三种能量可以相互转换,但总和不变。
当流体在水平管道中流动时Z 不变,上式可简化为:ρPu +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。
对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为:gu g P Z g u g P Z 2222222111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压力而变化。
若这一变化是可逆等温过程,则方程可写成下式:1211222211ln 22P PP u gZ u gZ ρ++=+若为可逆绝热过程,方程可写为:1211222211ln 22P PP u gZ u gZ ρ++=+式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。
对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。
此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f ,若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为:α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。