第11讲.一元二次方程根系关系及应用题(答案版)
- 格式:doc
- 大小:6.80 MB
- 文档页数:13
提升训练2.2 一元二次方程的解集及其根与系数的关系一、选择题1.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=【答案】A【解析】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .2.若1x ,2x 是一元二次方程x 2+4x +3=0的两个根,则12x x 的值是( )A .4B .-3C .-4D .3【答案】D【解析】∵一元二次方程x 2+4x+3=0的二次项系数a=1,常数项c=3,∴x 1•x 2=ca =3.故选D .3.一元二次方程2320x x =--的两根分别为12x x ,,则下列结论正确的是( )A .1212x x =-=,B .1212x x ==-,C .123x x =+D .122x x =【答案】C【解析】∵方程2320x x =--的两根为12x x ,, ∴1212+=-3,2b c x x x x a a ===-∴C 选项正确.故选C4.若1x 、2x 是方程2x 2x 10--=的两个根,则1122x x x x ++的值为( )A .1B .-1C .3D .-3 【答案】A【解析】因为1x 、2x 是方程2x 2x 10--=的两个根,所以12122,1x x x x +=•=-所以1122x x x x ++=2-1=1故选A5.若,,则以,为根的一元二次方程是( ) A .B .C .D . 【答案】A【解析】 ∵, ∴, 而, ∴, ∴, ∴以,为根的一元二次方程为. 故选:A .6.若代数式2x 2-5x 与代数式x 2-6的值相等,则x 的值是( )A .-2或3B .2或3C .-1或6D .1或-6. 【答案】B【解析】因为这两个代数式的值相等,所以有: 2x 2-5x=x 2-6,x 2-5x+6=0,(x-2)(x-3)=0,x-2=0或x-3=0,∴x=2或3.所以选B7.x 1,x 2是关于x 的一元二次方程x 2﹣2mx ﹣3m 2=0的两根,则下列说法不正确的是( )A .x 1+x 2=2mB .x 1x 2=﹣3m 2C .x 1﹣x 2=±4mD .12x x =﹣3 【答案】D【解析】∵x 1,x 2是关于x 的一元二次方程x 2﹣2m ﹣3m 2=0的两根,∴x 1+x 2=2m ,x 1x 2=﹣3m 2,|x 1﹣x 2|==|4m |=±4m , 解方程x 2﹣2mx ﹣3m 2=0得:x =3m 或﹣m , ∴12x x =-3或13-. 故选D .8.若a b ,是方程220180x x =+-的两个实数根,则22a a b ++= ( )A .2018B .2017C .2016D .2015【答案】B【解析】∵a 是方程220180x x =+-的根,∴220180a a -=+,∴22018a a =-+,∴22201822018a a b a a b a b ++=-+++=++.∵a b ,是方程220180x x +-=的两个实数根,∴1a b +=-,∴22201812017.a a b +=-=+故选B.9.关于x 的一元二次方程x 2+kx ﹣3=0有一个根为﹣3,则另一根为( )A .1B .﹣2C .2D .3【答案】A【解析】设方程x 2+kx ﹣3=0的另一个根为a ,∵关于x 的一元二次方程x 2+kx ﹣3=0有一个根为﹣3, ∴由根与系数的关系得:﹣3a =﹣3,解得:a =1,即方程的另一个根为1,故选:A .10.关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为()A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =【答案】A【解析】设1x ,2x 是2220x mx m m +++=的两个实数根,∴40m ∆=-≥,∴0m ≤,∴122x x m +=-,212x x m m ⋅=+,∴()2221212122x x x x x x +=+-⋅2224222212m m m m m =--=-=,∴3m =或2m =-,∴2m =-,故选A .11.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .2019【答案】A【解析】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=;故选A .12.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】 (k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩, 解得:32k ≥且k≠2. 故选D .二、填空题13.若方程2410x x -+=的两根是12x x ,,则122(1)x x x ++的值为________.【答案】5【解析】根据题意得121241x x x x ==+,,所以12211221212141()5x x x x x x x x x x x ++=++=++=+=.故答案为5.14.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________【答案】2【解析】∵x 1、x 2是方程x 2−2x −1=0的两根,∴x 1+x 2=2,x 1×x 2=−1,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为:6.15.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.【答案】8.【解析】∵a,b 是方程x 2+2017x+2=0的两个根,∴2+2017a+a 2=0,2+2017b+b 2=0,ab=2,∴(2+2019a+a 2)(2+2019b+b 2)=(2+2017a+2a+a 2)(2+2017b+2b+b 2)=4ab=8,故答案为:8.16.若a 、b 是关于一元二次方程x 2+x ﹣3=0的两实数根,则11a b +的值为_____. 【答案】13 【解析】∵a 、b 是关于一元二次方程230x x +-=的两实数根,∴13a b ab +=-=-, ,∴111133a b a b ab +-+===- , 故答案为:13. 三、解答题17.关于x 的一元二次方程2380x mx =+-有一个根是23,求该一元二次方程的另一个根及m 的值. 【答案】该一元二次方程的另一个根是-4,m 的值为10.【解析】设方程的另一个根为t .依题意得22238033m ⎛⎫⨯+-= ⎪⎝⎭,解得10.m = 又2833t =-,所以4t =-. 故该一元二次方程的另一个根是-4,m 的值为10. 18.已知关于x 的方程x 2﹣2kx+k 2﹣k ﹣1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若x 1﹣3x 2=2,求k 的值.【答案】(1)k >﹣1;(2)k =3.【解析】(1)△=(﹣2k )2﹣4(k 2﹣k ﹣1)=4k+4>0,∴k>﹣1;(2)∵1212322x x x x k -=⎧⎨+=⎩, ∴1231212k x k x +⎧=⎪⎪⎨-⎪=⎪⎩, ∵x 1•x 2=k 2﹣k ﹣1,∴14(3k+1)(k ﹣1)=k 2﹣k ﹣1, ∴k 1=3,k 2=﹣1, ∵k>﹣1,∴k=3.19.按指定的方法解方程()21(9)250x +-=(直接开平方法)()226160x x --=(配方法)()()()33121x x x -=-(因式分解法)()242720x x -+=(公式法)【答案】(1)1x 4=-,2x 14=-;(2)1x 8=,2x 2=-;(3)12x 3=,2x 1=;(4)733x ±=.【解析】 ()1方程变形得:2(x 9)25+=,开方得:x 95+=或x 95+=-,解得:1x 4=-,2x 14=-;()2方程变形得:2x 6x 16-=,配方得:2x 6x 925-+=,即2(x 3)25-=,开方得:x 35-=或x 35-=-,解得:1x 8=,2x 2=-; ()3方程变形得:()()3x x 12x 10---=,分解因式得:()()3x 2x 10--=, 解得:12x 3=,2x 1=; ()4这里a 2=,b 7=-,c 2=,∵491633=-=,∴x =. 20.已知x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,使得(3x 1-x 2)(x 1-3x 2)=-80成立,求其实数a 的可能值【答案】a=-335. 【解析】∵x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,a=1,b=(3a-1),c=2a 2-1, ∴x 1+x 2=-b a =-(3a-1),x 1•x 2=c a=2a 2-1, ∵(3x 1-x 2)(x 1-3x 2)=-80,∴3x 12-10x 1x 2+3x 22=-80,即3(x 1+x 2)2-16x 1x 2=-80,∴3[-(3a-1)]2-16(2a 2-1)=-80,∴5a 2+18a-99=0,∴a=3或-335, 当a=3时,方程x 2+(3a-1)x+2a 2-1=0的△<0,∴不合题意,舍去∴a=-33521.已知关于x 的一元二次方程22(21)30x m x m +-+-=有实数根.(1)求实数m 的取值范围;(2)当m=2时,方程的根为12,x x ,求代数式221122(2)(42)x x x x +++的值.【答案】(1)134m ≤;(2)1. 【解析】 (1)△=2222(21)41(3)441412413m m m m m m --⨯⨯-=-+-+=-+∵原方程有实根,∴△=4130m -+≥ 解得134m ≤ (2)当m=2时,方程为x 2+3x+1=0,∴x 1+x 2=-3,x 1x 2=1,∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0,∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1-x 1)(x 22+3x 2+x 2+2)=(-1-x 1)(-1+x 2+2)=(-1-x 1)(x 2+1)=-x 2-x 1x 2-1-x 1=-x 2-x 1-2=3-2=1.22.已知关于x 的一元二次方程x 2﹣(2m +3)x +m 2+2=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.【答案】(1)m ≥﹣112;(2)m =2. 【解析】(1)根据题意得(2m +3)2﹣4(m 2+2)≥0,解得m ≥﹣112; (2)根据题意x 1+x 2=2m +3,x 1x 2=m 2+2,因为x 1x 2=m 2+2>0,所以x 12+x 22=31+x 1x 2,即(x 1+x 2)2﹣3x 1x 2﹣31=0,所以(2m +3)2﹣3(m 2+2)﹣31=0,整理得m 2+12m ﹣28=0,解得m 1=﹣14,m 2=2,而m≥﹣1 12;所以m=2.。
根系关系及应用题题型一:根与系数关系一元二次方程的根与系数的关系(韦达定理)若21,x x 是关于x 的一元二次方程)0(02≠=++a c bx ax 的两个根,则方程的两个根21,x x 和系数c b a ,,有如下关系:ac x x a b x x =⋅-=+2121,. 【例1】 不解方程,求下列方程两根的积与和.⑴25100x x --= ⑵22710x x ++= ⑶23125x x -=+ ⑷()137x x x -=+【例2】 已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .⑴求实数m 的取值范围;⑵当22120x x -=时,求m 的值.【例3】 已知一元二次方程2(1)230m x mx m +++-=有两个不相等的实数根,并且这两个根又不互为相反数. ⑴ 求m 的取值范围;⑵ 当m 在取值范围内取最小偶数时,方程的两根为12,x x ,求2123(14)x x -的值.【探究对象】根系关系的进一步应用 【探究方式】在做含参一元二次方程根系关系的问题时,先考虑二次项系数不为0→再判断∆→然后根据题意看是否有两根的特殊关系(如例3,已知中强调两根不互为相反数,则根据根系关系能够得出0m ≠).在这里主要探讨一下根的正负性问题: 利用根与系数的关系,我们可以不直接求方程2++=0ax bx c 的根,而知其根的正、负性. 在2=40b ac ∆-≥的条件下,我们有如下结论:①当<0c a时,方程的两根必一正一负.若0ba -≥,则此方程的正根不小于负根的绝对值;若<0ba-,则此方程的正根小于负根的绝对值.①当>0c a时,方程的两根同正或同负.若>0b a -,则此方程的两根均为正根;若<0b a -,则此方程的两根均为负根.【探究1】已知关于x 的一元二次方程x 2-2ax +a 2-9=0 (1)a 为何值时,方程有两个正根?(2)a 为何值时,方程有一正根、一负根?【探究2】已知关于x 的一元二次方程(m +2)x 2+2mx +232m -=0. (1)若方程有两个不相等的实数根,求m 的取值范围;(2)若 362m <<,试判断方程两个实数根的符号,并证明你的结论.【探究3】已知方程22430x x k -+-=,k 为实数且k ≠0,证明:此方程有两个实数根,其中一根大于1,另一根小于1.题型二:一元二次方程的应用题列一元二次方程解应用题的时候,要注意检验得到的根是否符合题意.【引例】 ⑴某汽车销售公司2019年盈利1500万元, 2020年盈利2160万元,且从2019年到2020年,每年盈利的年增长率相同.设每年盈利的年增长率为x ,根据题意,下面所列方程正确的是( ).A .()2150012160x += B .2150015002160x x += C .215002160x = D .()()215001150012160x x +++=⑵某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 . (3)某厂一月份生产产品50台,计划二、三月份共生产产品120台,设 二、三月份平均每月增长率为x ,根据题意,可列出方程为( ) A .50(1+x )2=60 B .50(1+x )2=120C .50+50(1+x )+50(1+x )2=120D .50(1+x )+50(1+x )2=120【例4】 某商品进价为40元的衬衫按50元售出时.每月能卖500件.这种衬衫每涨价1元,其销售量减少10件.如果商场计划每月赚8000元利润.售价应定为多少?练习1.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
一元二次方程根与系数的关系习题精选(含答案)x+m 2=0有两个相等的实数根,且满足 x 1+x 2=x 1x 2,贝U m 的值是( C . - 2D . - 3 或 22元二次方程 x + ( k+3) x+2=0的一个根是-2,则另一个根是( C . - 1 D .2 2(2014?黄冈样卷)设 a , b 是方程x +x - 2015=0的两个实数根,则 a +2a+b 的值为( 2012B . 2013C . 2014D .11. (2014?江西模拟)一元二次方程 x 2- 2x - 3=0与3x 2- 11x+6=0的所有根的乘积等于()A . -6B . 6C . 3D .-3 12 . (2014?峨眉山市二模) 已知X 1、X 2是方程X 2 - (k - 2) x+k 2+3k+5=0的两个实数根,则的取大值疋( )A .19 B . 18 C . 15 D . 1313 . (2014?陵县模拟)已知:x 1、x 2是一元二次方程 x 2+2ax+b=0的两根,且x 1+x 2=3, x 1x 2=1,贝U a 、b 的值分别 是( )参考学习(2014?威海)方程X 2- (m +6) -2或3B .3 (2014?长沙模拟)若关于 X的 2 B .1 1. A .选择题(共(2014?宜宾) 2 .x +3x - 2=022小题)若关于x 的一元二次方程的两个根为 B . x 2- 3x+2=0 X 1=1, X 2=2,则这个方程是( )C . x 2- 2x+3=0D . X 2+3X +2=02. A (2014?昆明) -4已知 X 1,X 2是一元二次方程 x 2- 4X+仁0的两个实数根,则 X 1?x 2等于( B . - 1 C . 1 3. (2014 ?玉林) X 1, x 2是关于x 的一元二次方程 x 2- mx+m - 2=0的两个实数根,是否存在实数m 使・X 1=0成立?则正确的结论是( A . m=0时成立 m=2时成立C . m=0或2时成立D .不存在4. A (2014?南昌) 10a,x 2 - 2x - 3=0的两个实数根,则 a 2+ 3的值为( 9C . 75. A .(2014 ?贵港) -10 若关于x 的一元二次方程 x 2+bx+c=0的两个实数根分别为 x 仁-2, B . 10 C . -6 x 2=4,则b+c 的值是(D . - 16. A(2014?烟台)-1或5关于 x 的方程x 2- ax+2a=0的两根的平方和是 5,贝V a 的值是(B . 1C . 57. A .2(2014?攀枝花)若方程 x +x -仁0的两实根为 a + 3 - 1 3,那么下列说法不正确的是(C . a 2+ 3=3) D .二 "a=-110. A . )20158.A .9. A .15.(2013?桂林)已知关于x 的一元二次方程 x 2+2x+a -仁0有两根为x 1和x 2,且x 12 -X 1x 2=0,则a 的值是( ) A . a=1 B . a=1 或 a= - 2C . a=2D . a=1 或 a=216.(2013?天河区二模)已知一元二次方程 x 2- 4x+3=0两根为X 1、x 2,则x 1+x 2=( )A . 4B . 3C . - 4D . - 317 . (2013?青神县一模)已知 m 和n 是方程2x 2- 5x - 3=0的两根,则一 一一的值等于() m n A .空B . 5C . _3D . _主53318 . (2012?莱芜)已知 m 、n 是方程x 2+2 . :x+仁0的两根,则代数式 JnA 口%nn 的值为( )A . 9B .均C . 3D . 519 . (2012?天门)如果关于 x 的一元二次方程 x 2+4x+a=0的两个不相等实数根 X 1, X 2满足X 1X 2 -2x 1 - 2x 2- 5=0, 那么a 的值为( )A . 3B .-3C .13 D . -1320. (2011?锦江区模拟)若方程 x 2- 3x - 2=0的两实根为X 1、 X 2,则(X 1+2) (X 2+2) 的值为()A . -4B . 6C . 8D . 1221. (2011?鄂州模拟)已知 2 P - p - 1=0, 1 -q -q 2=0,且pq 为,则竺乜的值为( Q )A . 1B.2 C . 1D .Vs ■ 12222. (2010?滨湖区一模)若 △ ABC 的一边 a 为4,另两边b 、 c 分别满足b 2- 5b+6=0, c 2 -5c+6=0, 则厶ABC 的周 长为( )A . 9B .10C . 9或10D . 8或9或10二.填空题(共4小题)23 . (2014?莱芜)若关于x 的方程x 2+ (k - 2) x+k 2=0的两根互为倒数,则 k= ______________ .2 224 . (2014?呼和浩特)已知 m , n 是方程x +2x - 5=0的两个实数根,则 m - mn+3m+n= _______________ 25 . (2014?广州)若关于 x 的方程x +2mx+m +3m - 2=0有两个实数根 x 1、x 2,则x 1 (x 2+x 1) +x 2的最小值为 —26 . (2014?桂林)已知关于 x 的一元二次方程 x + (2k+1 ) x+k - 2=0的两根为X 1和乂2,且(X 1 - 2) (X 1 - X 2)=0, 则k 的值是 _________ .A . a= — 3, b=1B . a=3, b=1C - a 」,b=- 16D ,p, b =114. (2013?湖北)已知 A . - 1a, B 是一兀二次方程B . 9x 2- 5x - 2=0的两个实数根,则C . 23a 2+ a + B 的值为(D . 27三.解答题(共4小题)2 227. (2014?泸州)已知x i, x2是关于x的一元二次方程x - 2 (m+1) x+m +5=0的两实数根.(1)若(x i - 1) (X2 - 1) =28,求m 的值;(2)已知等腰△ ABC的一边长为7,若X1, x2恰好是△ ABC另外两边的边长,求这个三角形的周长.3x1 28. (2014?日照二模)已知X1, x2是关于x的一元二次方程x2+ (3a- 1) x+2a2-仁0的两个实数根,其满足( -X2) (x1 -3x2) = - 80.求实数a的所有可能值.2 一 229. (2013?孝感)已知关于x的一元二次方程x -( 2k+1) x+k +2k=0有两个实数根x1, x2.(1)求实数k的取值范围;(2)是否存在实数k使得X1?x2- X12-X22茅成立?若存在,请求出k的值;若不存在,请说明理由.30. (2001 ?苏州)已知关于x的一元二次方程/ - 2kx+-k2 - 2=02(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设X1、x2是方程的两个根,且x12- 2kx1+2x1x2=5,求k的值.一元二次方程根与系数的关系习题精选(含答案)参考答案与试题解析一 •选择题(共22小题) 1.(2014?宜宾)若关于x 的一元二次方程的两个根为 x l =1, x 2=2,则这个方程是()2229A . X 2+3X - 2=0B . x 2 - 3x+2=0C . x 2- 2x+3=0D . x 2+3x+2=0考点: 根与系数的关系.分析: 解决此题可用验算法,因为两实数根的和是1+2=3 ,两实数根的积是1 ><2=2 .解题时检验两根之和 —是否a 为3及两根之积一是否为2即可.a解答:解:两个根为 X 1=1 , X 2=2则两根的和是 3,积是2 . A 、 两根之和等于-3,两根之积等于-2,所以此选项不正确; B 、 两根之和等于 3,两根之积等于 2,所以此选项正确; C 、 两根之和等于 2,两根之积等于 3,所以此选项不正确;D 、 两根之和等于-3,两根之积等于 2,所以此选项不正确, 故选:B .点评: 验算时要注意方程中各项系数的正负.2. (2014?昆明)已知x i , X2是一元二次方程 X 2- 4X +仁0的两个实数根,则 X I ?X2等于( )A . - 4B . - 1C . 1D . 4考点: 根与系数的关系. 专题: 计算题.分析: 直接根据根与系数的关系求解.解答: 解:根据韦达定理得 X 1?x 2=1 . 故选:C . 点评:本题考查了 兀二次方程 a^+bx+c=0 ( aMD )的根与系数的关系:右方程两个为X 1 ,X 2,则X1+X2=,X 1?X 2- .a 33. (2014?玉林)x 1, X2是关于X 的一元二次方程 立?则正确的结论是( )A . m=0时成立B . m=2时成立根与系数的关系.先由一兀二次方程根与系数的关系得出, X 1+x 2=m , X 1x 2=m - 2 .假设存在实数 m 使.+ ~ =0成立,则巧七X 2- mx+m - 2=0的两个实数根,是否存在实数m —丄 =0成 X1巾C . m=0或2时成立D .不存在考点:m=0,再用判别式进行检验即可.解:T X1, X2是关于X的一元二次方程x2- mx+m - 2=0的两个实数根, 解答:/• x1+x2=m , x1x2=m - 2 .2假设存在实数m使亠+亠=0成立,则_2=0,/• =0,D_ 2••• m=0.当m=0 时,方程x2- mx+m - 2=0 即为x2- 2=0,此时△ =8 > 0,•m=0符合题意.故选:A.点评:本题主要考查了一元二次方程根与系数的关系:如果x i, x2是方程x2+px+q=0的两根时,那么x i+x2=- p, x i x2=q .4. (2014?南昌)若a, B是方程x2- 2x - 3=0的两个实数根,则a2+『的值为()A . 10B . 9 C. 7 D . 5考点:根与系数的关系.分析:根据根与系数的关系求得a+3=2 , a =- 3,则将所求的代数式变形为(a+ 3)2-2 a 3将其整体代入即可求值.解答:解:•/ a, 3是方程x2- 2x - 3=0的两个实数根,•a+ 3=2 , a = - 3,•a2+ 32= ( a+ 3)2- 2 a =22- 2X(—3)=10.故选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.(2014?贵港)若关于x的一元二次方程x +bx+c=0的两个实数根分别为x仁-2, x2=4,则b+c的值是()A . - 10 B . 10 C. - 6 D . - 1考点:根与系数的关系.分析:根据根与系数的关系得到- 2+4= - b,- 2“=c,然后可分别计算出b、c的值,进一步求得答案即可.解答:解:•关于x的兀二次方程x +bx+c=0的两个头数根分别为x仁-2, x2=4, •根据根与系数的关系,可得- 2+4= - b, - 2 >4=c,解得b= - 2, c= - 8• b+c= - 10.故选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:X1+X2= '■, X1X2「.3 326. (2014?烟台)关于x的方程x2- ax+2a=0的两根的平方和是5,贝V a的值是()A .- 1 或5B . 1C . 5D . - 1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为X1 , x2,根据根与系数的关系得到X1+X2=a, X1?X2=2a,由于X12+X22=5,变形得到(X1+X2)2- 2x1?x2=5,则a2- 4a- 5=0 ,然后解方程,满足△为的a的值为所求.解答:解:设方程的两根为X1, x2,则x1+x2=a, x1?x2=2a, 2 2「•X1 +X2 =5 ,2•(X1+X2) - 2X1?x2=5,•a2- 4a- 5=0,•a1=5 , a2= - 1,2■/ △ =a — 8a^0, --a= — 1. 故选:D .点评: 本题考查了一元二次方程ax 2+bx+c=0 (a 旳)的根与系数的关系:若方程的两根为x i , x 2,则x i +x 2=,aX 1?X 2==也考查了一元二次方程的根的判别式.327. ( 2014?攀枝花)若方程 x +x -仁0的两实根为 a 3,那么下列说法不正确的是( )A . a + 3= - 1B . a3= - 1C . a + 3=3D . 1 1 =莎丁- 1计算题.先根据根与系数的关系得到 a + 3= - 1, a = - 1 ,再利用完全平方公式变形 a 2+ 3?得到(a + 3) 2 - 2 a 3禾U 用通分变形_+_得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判ap] | CL p断.故选:D .本题考查了一元二次方程 ax 2+bx+c=0 ( aMD )的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-- ,x 1?x 2左.& (2014?威海)方程x 2-( m+6) x+m 2=0有两个相等的实数根,且满足 x 1+x 2=x 1x 2,贝U m 的值是()A . - 2 或 3B . 3C . - 2D . - 3 或 2考点:根与系数的关系;根的判别式. 专题:判别式法.分析: 根据根与系数的关系有:x 1+x 2=m+6, x 1x 2=m 2,再根据X 1+x 2=x 1x 2得到m 的方程,解方程即可,进一步由方程x 2-( m+6) +m 2=0有两个相等的实数根得出 b 2- 4ac=0,求得m 的值,由相同的解解决问题.2解答: 解: T X 1+x 2=m+6 , X 1x 2=m , X 1+x 2=x 1x 2,2/• m+6=m ,解得m=3或m= - 2,•••方程x 2-( m+6) x+m 2=0有两个相等的实数根,2 2 2 2△ =b - 4ac= ( m+6) - 4m =- 3m +12m+36=0 解得m=6或m= - 2 /• m= - 2. 故选:C .点评:本题考查了一元二次方程ax 2+bx+c=0 (a M 0, a , b , c 为常数)根的判别式 △ =b 2- 4ac .当厶> 0,方程有两个不相等的实数根;当 △ =0,方程有两个相等的实数根;当△< 0,方程没有实数根.同时考查了一元二次、2b亡方程ax +bx+c=0 (aM ))的根与系数的关系:若方程的两根为x 1, x 2,则x 1+x 2=-—, x 1?x2—.a a 99 (2014?长沙模拟)若关于 x 的一元二次方程x 2+ ( k+3) x+2=0的一个根是-2,则另一个根是()考点: 专根与系数的关系.解答: 解:根据题意得 a + 3= - 1, 所以a 2+ + a ^= ( a + 3) 2- 2aa = - 1 .=(-1) 2-2X(- 1) =3 ;11 ■-— 1 -1= 31 1 d & -1点评:考点: 根与系数的关系.分析: 根据一元二次方程的根与系数的关系 x 1?X 2*来求方程的另一个根.a解答:解:设X 1、x 2是关于x 的一兀二次方程 x + ( k+3) x+2=0的两个根, 由韦达疋理,得 X 1?X2=2,即-2x 2=2, 解得,X 2=- 1 . 即方程的另一个根是-1 . 故选C .点评: 此题主要考查了根与系数的关系.在利用根与系数的关系X 1+X 2=-上、X1?X 2*时,要注意等式中的a 、b 、a |ac 所表示的含义.考点:根与系数的关系;一元二次方程的解. 专题:计算题.2 2 2分析: 先根据一元二次方程的解的定义得到 a +a - 2015=0 ,即a +a=2015,则a +2a+b 变形为a+b+2015,再根据根与系数的关系得到 a+b= - 1,然后利用整体代入的方法计算.解答: 解:T a 是方程x 2+x - 2015=0的根,2 2••• a +a - 2015=0,即 a +a=2015,2• a +2a+b=a+b+2015 ,••• a , b 是方程x 2+x - 2015=0的两个实数根 • a+b= - 1,•- a 2+2a+b=a+b+2015= - 1+2015=2014 . 故选C .评:2小、' 本题考查了根与系数的关系:若X 1, x 2是一元二次方程 ax +bx+c=0 (a M D )的两根时,x 1+x 2= -一 , x 1x 2^ .也a a 考查了一元二次方程的解.x 2- 2x - 3=0与3x 2 - 11x+6=0的所有根的乘积等于( )C . 3D . - 3考点: 根与系数的关系. 分析:由一兀二次方程 X 2- 2x - 3=0和3x 2- 11x+6=0先用判别式判断方程是否有解,再根据根与系数的关系 仃二二,即可直接得出答案.解答:解:由一元二次方程 X 2- 2x - 3=0 , •/ △ =4+16=20 > 0, • X 1X 2= - 3 ,由一元二次方程 3x 2- 11x+6=0 , •/△ =121 - 4X 30-49>0, • X 1x 2=2 • — 3 疋——6 故选A .点评: 本题考查了一兀二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式.12. (2014?峨眉山市二模)已知 x 1、x 2是方程x 2-( k - 2) x+k 2+3k+5=0的两个实数根,则 衍‘ +七?的最大值是 ( )A . 2B . 1C . - 1D . 010. (2014?黄冈样卷)设 2 a , b 是方程x +x - 2015=0的两个实数根,则A . 2012B . 2013C . 2014 2a +2a+b 的值为(11. (2014 ?江西模拟)一元二次方程 A . - 6B . 62A . 19B . 18C . 15D . 13考点:根与系数的关系;二次函数的最值.分析: 根据X I 、x 2是方程x 2-( k - 2) x+ (k 2+3k+5) =0的两个实根,由△为即可求出k 的取值范围,然后根据 根与系数的关系求解即可.解答:解:由方程有实根,得 △为,即(k - 2) 2- 4 ( k 2+3k+5 )为2所以 3k +I6k+16 切, 所以(3k+4) ( k+4)切 解得-4NW-3又由 x i +x 2=k - 2, x i ?x 2=k 2+3k+5,得2 2 2 2 2 2 2x i +x 2 = (x i +x 2) - 2x i x 2= (k - 2) - 2 ( k +3k+5) = - k - 10k - 6=19 -( k+5),当k= - 4时,x i 2+x 22取最大值i8.故选:B .点评:本题考查了根与系数的关系,属于基础题,关键是根据△为先求出k 的取值范围再根据根与系数的关系进行求解.i3. (20i4?陵县模拟)已知:x i 、x 2是一元二次方程 x 2+2ax+b=0的两根,且x i +x 2=3, x i x 2=i ,贝U a 、b 的值分别 是( ) A . a= — 3, b=iB . a=3, b=iC .]D3(a=-±, b=- i• a=-上,b=i6 2考点: 根与系数的关系. 专题: 计算题.分析: 根据根与系数的关系得到得 x i +x 2= - 2a , x i x 2=b ,即-2a=3, b=i ,然后解一次方程即可. 解答: 解:根据题意得 x i +x 2= - 2a , x i x 2=b ,所以-2a=3, b=i , 解得a=-三b=i . 故选D .点评: 本题考查了根与系数的关系: 右x i , x 2是一兀二次方程 ax +bx+c=0 (a 老)的两根时,x i +x 2= — , x i x 2—.a aa, B 是一元二次方程 x 2- 5x - 2=0的两个实数根,则B . 9C . 23根与系数的关系.根据根与系数的关系 a +B =-上,a =二,求出a +B 和a 的值,再把要求的式子进行整理,即可得出答案.a a 解:•/ a, B 是方程x 2- 5x - 2=0的两个实数根, 二 a + B =5 , a = - 2, 又 T /+ a + B = ( a + B) 2 - Ba2 2 2二 a + a + B =5 +2=27 ; 故选D .此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若 、 K c 方程两个为 X i , X 2,则 X i +X 2= , X i x 2—a a2 2i5. (20i3?桂林)已知关于x 的一元二次方程 x +2x+a - i=0有两根为x i 和x 2,且x i -x i x 2=0,则a 的值是() A . a=i B . a=i 或 a= - 2 C . a=2 D . a=i 或 a=2i4. (20i3?湖北)已知 A . - i a 2+ a + B 的值为(D . 27考点: 分析: 解答:考点:根与系数的关系;一元二次方程的解. 专题:压轴题.分析: 根据X 12- X 1x 2=0可以求得X 仁0或者X 1=X 2,所以① 把x 1=0代入原方程可以求得 a=1 ;② 利用根的判别式 等于0来求a 的值.解答:解:解X 12 - X 1x 2=0 ,得X 仁0 ,或 X 1=X 2,① 把X1=0代入已知方程,得 a - 1=0, 解得:a=1;② 当 X1=X2 时,△ =4 — 4 (a - 1) =0, 即卩 8 - 4a=0, 解得:a=2.综上所述,a=1或a=2. 故选:D .点评:本题考查了根与系数的关系、一元二次方程的解的定义•解答该题的技巧性在于巧妙地利用了根的判别式 等于0来求a 的另一值.216. (2013?天河区二模)已知一元二次方程 x - 4x+3=0两根为X 1、x 2,则x 1+x 2=() A . 4B . 3C . - 4D . - 3考点:根与系数的关系.分析:根据一元二次方程 X 2- 4x+3=0两根为X 1、X 2,直接利用X 1+X 2=-丄求出即可.3解答: 解:T 一元二次方程X 2 - 4x+3=0两根为X 1、X 2,/• X 1+X 2= - —=4 .a故选A .点评:此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键.17 . (2013?青神县一模)已知 m 和n 是方程2x 2- 5x - 3=0的两根,则二—二的值等于()m na”+bx+c=0( a MD)的根与系数的关系:若方程两个为x 1 ,x 2,则x 1+x 2=, x 1?x2^ . a aA . JB . 5 3 考点: 根与系数的关系. 专题: 计算题. 分析: 根据根与系数的关系得到 m+n= 解答: 解:根据题意得 m+n= 一, mn=-5 一,mn=- 2 37,再变形IT得到 nr+n mn ,然后利用整体思想计算.1丄血n _ 52 n| n ran■g所以故选D .本题考查了一元二次方程+4 .18. (2012?莱芜)已知 m 、n 是方程X 2+2X : ;.x+1=0的两根,则代数式| ' | ' |的值为()考点: 专题: 分析: 根与系数的关系;二次根式的化简求值. 整体思想._2根据一兀二次方程 ax +bx+c=0 ( a 和)的根与系数的关系得到m+n= - 2 二,mn=1 ,再变形'ri '得,然后把m+n= - 2 ■:, mn=1整体代入计算即可.解答: 解:•/ m 、n 是方程x 2+2€b +1=0的两根, /• m+n= — 2 J :, mn=1 ,''.I : ' ■ : I.1.= .「・, 上「 - '=3 .点评:故选C .本题考查了一兀二次方程 ax 2+bx+c=0 (a 和)的根与系数的关系: 若方程两根分别为 X 1 , X 2,则X 1+X 2=—,a X 1?X 2==.也考查了二次根式的化简求值. 2 19. (2012?天门)如果关于 x 的一元二次方程 x +4x+a=0的两个不相等实数根 x 1, x 2满足x 1x 2 - 2x 1 - 2x 2- 5=0, 那么a 的值为( ) A . 3 C . 13 D . - 13 考点:分析: 解答:点评:根与系数的关系;根的判别式. 利用根与系数的关系求得 X 1x 2=a , x 1+x 2= - 4,然后将其代入 x 1x 2 - 2x 1 - 2x 2 - 5=x 1x 2 - 2 (x 1+x 2)- 5=0列 出关于a 的方程,通过解方程即可求得 a 的值. 2 解:■/ X 1, x 2是关于x 的一元二次方程 x +4x+a=0的两个不相等实数根, /• x 1X 2=a , X 1 +x 2= - 4,X 1X 2 - 2x 1 - 2x 2 - 5=x 1x 2 - 2 (X 1+X 2)- 5=a - 2 X (- 4)- 5=0 ,即卩 a+3=0 , 解得,a=- 3;故选B . 本题考查了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 20 . (2011?锦江区模拟)若方程 A . x - 3x - 2=0的两实根为X 1、乂2,则(x 1+2) (x 2+2)的值为( 6 C . 8D . 12 考点: 分析: 解答:根与系数的关系. 根据(X 1+2) ( X 2+2 ) =X 1 X 2+2X 1+2X2+4=X 1X 2+2 ( X 1+X 2) 和与积,代入数值计算即可. 解:••• X 1、X 2是方程x 2- 3X - 2=0的两个实数根. 二 X 1+x 2=3 , X 1?x 2= - 2.又 T (X 1+2) (X 2+2) =x 1x 2+2x 1+2x 2+4=x 1x 2+2 (X 1+X 2) 将 X 1+x 2=3、X 1?X 2= - 2 代入,得(X 1+2) ( X 2+2) =X 1x 2+2x 1+2x 2+4=x 1x 2+2 (X 1+X 2) +4= 故选C+4,根据一元二次方程根与系数的关系,即两根的 (-2) +2 X 3+4=8 .点评: 将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2 221. (2011?鄂州模拟)已知 p - p - 1=0 , 1 - q - q =0,且 pq 为,则A . 1B . 2C.D. .■:-22(丄)-1=0是解题的关键,然后利用 q根与系数的关系就可以求出所求代数式的值.22. (2010?滨湖区一模)若 △ ABC 的一边a 为4,另两边b 、c 分别满足b 2 - 5b+6=0, c 2 - 5c+6=0,则△ ABC 的周 长为( )A . 9B . 10C . 9 或 10D . 8 或 9 或 10考点:根与系数的关系;三角形三边关系. 专题:压轴题.分析: 由于两边b 、c 分别满足b 2 - 5b+6=0, c 2- 5c+6=0 ,那么b 、c 可以看作方程 x 2- 5x+6=0的两根,根据根与系数的关系可以得到 b+c=5 , bc=6,而厶ABC 的一边a 为4,由此即可求出 △ ABC 的一边a 为4周长.解答: 解:•.•两边 b 、c 分别满足 b 2- 5b+6=0 , c 2- 5c+6=0,• b 、c 可以看作方程x 2- 5x+6=0的两根, • b+c=5, bc=6, 而厶ABC 的一边a 为4,① 若b=c ,则b=c=3或b=c=2,但2+2=4,所以三角形不成立,故 b=c=3 .• △ ABC 的周长为 4+3+3=10 或 4+2+22i 2 首先把1 - q -q 2=0变形为i考点: 专题: 分析: 根与系数的关系. 计算题.首先把1 - q -q 2=0变形为 「q-1-0,然后结合p 2- p - 1=0,根据一元二次方程根与系数解答: 的关系可以得到 p 与丄是方程x 2- x -仁0的两个不相等的实数根,Q那么利用根与系数的关系即可求出所求代数式的值.2 2解:由p - p -仁0和1 - q - q =0,可知p^0, q 旳, 又T pq 为,•••由方程1 - q - q 2=0的两边都除以q 2得:q• p 与丄是方程x 2- x -仁0的两个不相等的实数根, q 则由韦达定理,得 11 p+_=1,□1 “= P+ —= 1 .q • 口:1+丄Q故选A .E +1 Q的值为()点评: 本题考查了根与系数的关系.②若b丸,•△ ABC的周长为4+5=9 . 故选C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,题要注意分类讨论.二•填空题(共4小题)23. (2014?莱芜)若关于x 的方程x 2+ (k -2) x+k 2=0的两根互为倒数,则 k= — 1 考点: 根与系数的关系. 专题: 判别式法. 分析:根据已知和根与系数的关系 X 1x 2*得出k 2=1,求出k 的值,再根据原方程有两个实数根,求出符合题意的3 k 的值.解答: 解:T X 1x 2=k 2,两根互为倒数,••• k 2=1, 解得k=1或-1;•••方程有两个实数根, △> 0, •当k=1时,△< 0,舍去, 故k 的值为-1. 故答案为:-1.点评: 本题考查了根与系数的关系,根据X 1, X 2是关于x 的一兀二次方程ax +bx+c=0 (a 老,a , b , c 为常数)的两个实数根,则 X 1+x 2= — —, X 1X 2=±进行求解.a a2 224. (2014?呼和浩特)已知 m , n 是方程x 2+2x - 5=0的两个实数根,则 m 2 - mn+3m+n= 8 考点: 根与系数的关系;一兀二 一次方程的解.专题: 常规题型.分析: 根据m+n=- —-2, am?n= - 5,直接求出 m 、n 即可解题.解答: 解: T m 、n 是方程x 2 +2x — 5=0的两个实数根,/• mn= — 5, m+n= — 2,■/ m 2+2m — 5=0• 2 ,…m =5 — 2m2m — mn+3m+n= (5 — 2m ) — (— 5) +3m+n=10+m+n =10 — 2 =8故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m 和n 的值是解决问题的关键.25. (2014?广州)若关于x 的方程x 2+2mx+m 2+3m — 2=0有两个实数根考点: 根与系数的关系;二次函数的最值. 专题: 判别式法.分析: 由题意可得△ =b 2— 4ac%,然后根据不等式的最小值计算即可得到结论. 解答: 解:由题意知,方程 x 2+2mx+m 2+3m — 2=0有两个实数根, 贝廿△=b 2— 4ac=4m 2 — 4 ( m 2+3m — 2) =8 — 12m 为, …m利用根与系数的关系来三角形的周长. 此X 1、x 2,贝U x 1 ( x 2+x 1)+x 22 的最小值为/ 、 2■/ X i (X 2+X 1) +X 22=(X 2+X 1) — X 1X 22 2=(-2m ) -( m +3m - 2)=3m - 3m+2=3 (mV 2•••当m==时,有最小值故答案为:上.4点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题. 总结一元二次方程根的情况与判别式 △的关系:(1) △>0?方程有两个不相等的实数根; (2) △ =0?方程有两个相等的实数根; 3) △ < 0?方程没有实数根.26. (2014?桂林)已知关于 X 的一元二次方程 X + (2k+1 ) X+k - 2=0的两根为X i 和乂2,且(X i - 2) (X i - X 2) =0, 则k 的值是 -2或-二.--------------- 4-考点: 根与系数的关系;根的判别式.分析: 先由(X 1 - 2) (X 1 - X 2) =0,得出X i - 2=0或X 1 - X 2=0,再分两种情况进行讨论: ①如果X 1 - 2=0 ,将X =2 代入X 2+( 2k+1 ) x+k2- 2=0,得 4+2 (2k+1) +k 2- 2=0 ,解方程求出 k= - 2;② 如果 x i - X2=0 ,那么将 X1+X2= -(2k+1 ),x i x 2=k 2- 2代入可求出k 的值,再根据判别式进行检验.解答:解:T ( X 1 - 2) ( X i - X 2) =0, • X i - 2=0 或 X i - X 2=0 . ① 如果X 1 - 2=0,那么x 仁2, 将 X =2 代入 X 2+ (2k+1) x+k 2 - 2=0, 得 4+2 (2k+1) +k 2-2=0 , 整理,得 k 2+4k+4=0 , 解得k= - 2; ② 如果x i - X 2=0 ,2222那么(X 1 - X 2) = (X 1+X 2) - 4X I X2=[ -( 2k+1 ) ] - 4 (k - 2) =4k+9=0 , 解得k=-丄4 又•/ △ = (2k+1) 2 -4 ( k 2- 2)为. 解得:kA 上.4 所以k 的值为-2或-=.42=3 (m 2- m+ )+24'故答案为:-2或-_!.4点评:本题考查了一兀二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三•解答题(共4小题)27. (2014?泸州)已知x i, x2是关于x的一元二次方程x2-2 ( m+1) x+m2+5=0的两实数根.(1)若(x i - 1) (x2 - 1) =28,求m 的值;(2)已知等腰△ ABC的一边长为7,若X1, X2恰好是△ ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:2(1)利用(X1- 1) (x2 - 1) =x1?x2-( X1+X2) +仁m +5 - 2 ( m+1) +仁28,求得m 的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1) T X1,x2是关于x的一兀二次方程x2 2 ( m+1) x+m2+5=0的两实数根,2x1+x2=2 ( m+1 ),x1?x2=m +5,2/• (x1 - 1) (x2 - 1) =x1?x2-( x1+x2) +1=m +5 - 2 ( m+1) +1=28,解得:m= - 4或m=6 ;当m= 4时原方程无解,••• m=6 ;(2)①当7为底边时,此时方程x2- 2 ( m+1) x+m2+5=0有两个相等的实数根,2 2• △ =4 ( m+1) - 4 ( m +5) =0,解得:m=2,•••方程变为x2- 6x+9=0,解得:X1=X2=3,•/ 3+3 v 乙•不能构成三角形;②当7为腰时,设X1=7,代入方程得:49 - 14 (m+1) +m2+5=0,解得:m=10或4,当m=10时方程变为x2- 22x+105=0,解得:x=7或15••• 7+7 V 15,不能组成三角形;当m=4时方程变为x2- 10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17 .点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28. (2014?日照二模)已知x1, x2是关于x的一元二次方程x2+ (3a- 1) x+2a2-仁0的两个实数根,其满足(3x1 -X2) (X1- 3x2) = - 80.求实数a的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据△的意义由一兀二次方程x2+ (3a- 1) x+2a2- 1=0的两个实数根得到△为,即(3a- 1) 2-4 (2a2- 1)=a2- 6a+5^0,根据根与系数的关系得到X1+x2= -( 3a - 1),x1?x2=2a2- 1,由(3x1 - x2) (x1 - 3x2) = - 80 变形得到3(X1+X2) 2- 16X1X2= - 80,于是有3(3a- 1) 2- 16 (2a2- 1) =- 80,解方程得到a=3 或a=-5然后代入△验算即可得到实数 a 的值.解答:解:T x i , x 2是关于x 的一元二次方程x 2+ (3a - 1) x+2a 2-仁0的两个实数根, ••• △为,即(3a - 1) 2 - 4 ( 2a 2 - 1)=a 2 - 6a+5%所以a^5或a<l .…(3分)• x i +x 2= -( 3a - 1), x i ?x 2=2a - 1,2 2■/ (3x 1 - x 2) (x 1 - 3x 2) = - 80,即 3 (x 1 +x 2 ) - 10x 1x 2= - 80,2• 3 (x 1+x 2) - 16x 1x 2=- 80,• 3 (3a - 1) 2- 16 (2a 2- 1) =- 80, 整理得,5a 2+18a - 99=0,• (5a+33) (a - 3) =0,解得 a=3或 a=-2ax +bx+c=0 (a 和)的根与系数的关系: 如果方程的两根为 x 1, x 2,则x 1+x 2=X 1?X 2==.也考查了一元二次方程根的判别式以及代数式的变形能力.29. (2013?孝感)已知关于 x 的一元二次方程 x 2-( 2k+1) x+k 2+2k=0有两个实数根X 1, X 2. (1) 求实数k 的取值范围;(2) 是否存在实数k 使得X 1?x 2-x 12- X 22£成立?若存在,请求出 k 的值;若不存在,请说明理由. 考点:根与系数的关系;根的判别式. 专题:压轴题.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△为,据此列出关于k 的不等式[-(2k+1) ]2-4 (k 2+2k )为,通过解该不等式即可求得 k 的取值范围;(2)假设存在实数k 使得「・工 匸广 -^0成立.利用根与系数的关系可以求得丁「,然后利用完全平方公式可以把已知不等式转化为含有两根之和、 两根之积的形式-:.■ . -+g'为,通过解不等式可以求得解答:解:(1) T 原方程有两个实数根,2 2• [ -( 2k+1 ) ]2 - 4 (k 2+2k )为,2 2• 4k +4k+1 - 4k - 8k%• 1 - 4k 为,(2)假设存在实数k 使得「-为成立. •/ X 1, X 2是原方程的两根, •衍+匕二龙[・耳?二k +2耳.当 a=3 时,△ =9 - 6X 3+5= - 4V 0,故舍去, △=(-虽)25 当a=-―时,5 -6X(-® +6=(533+6 > 0,•实数a 的值为-33 5占评:点评:本题考查了一元二次方程k 的值.原方程有两个实数根.由Zj •-工1,_ X22^0,得3Xj -X2-( K[ +耳2)2曲••• 3 (k2+2k)-( 2k+1) 2为,整理得:-(k- 1) 2为,•'•只有当k=1时,上式才能成立.又•••由(1)知k显,4•不存在实数k使得卫]・七- 一gc'为成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.(1) 求证:不论k取何值,方程总有两个不相等的实数根;(2) 设X1、x2是方程的两个根,且x12- 2kx1+2x1x2=5,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:(1)要保证方程总有两个不相等的实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:(1 )已知关于X的一元二次方程- 2kx4丄k'—2=Q,2 1 2 2•△= (- 2k) - 4X(^k - 2) =2k +8,2•/ 2k +8 > 0恒成立,•不论k取何值,方程总有两个不相等的实数根.(2) •/ X1、X2是方程的两个根,2•x1+x2=2k, x1?x2^—k - 2,22 2 ] 2•x1 - 2kx1+2x1x2=x1 -(X1+X2) x1+2x1x2=x1x2—k - 2=5,2 解得k=曲诃.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.30. (2001?苏州)已知关于x的一元二次方程。
韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是( ) (A )0322=-+x x (B ) 0322=+-x x (C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( ) (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( ) (A )-21 (B) -6 (C ) 21 (D) -25 7、分别以方程122--x x =0两根的平方为根的方程是( ) (A )0162=++y y (B ) 0162=+-y y (C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
一元二次方程的根与系数的关系一、基础练习。
1.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.-5 D.62.设方程x2-4x-1=0的两个根为x1与x2,则x1x2的值是()A.-4 B.-1 C.1 D.03.两个实数根的和为2的一元二次方程可能是()A.x2+2x-3=0 B.2x2-2x+3=0C.x2+2x+3=0 D.x2-2x-3=04.小强同学在解一元二次方程x2-3x+c=0时,正确解得x1=1,x2=2,则c的值为______.5.已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是________.6.求下列方程两根的和与两根的积:(1)4x2-x=4; (2)3x2-2x=x+2.7.已知一元二次方程x2-2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.二、提高训练。
8.点(α,β)在反比例函数y=kx的图象上,其中α,β是方程x2-2x-8=0的两根,则k=__________9.已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.10.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2-1,求k的值.一元二次方程的根与系数的关系(答案)1.B 2.B 3.D 4.25.-656.解:(1)原方程化为一般形式为3x 2-x -3=0.所以x 1+x 2=--13=13,x 1x 2=-33=-1. (2)原方程化为一般形式为3x 2-3x -3=0,即x 2-x -1=0.所以x 1+x 2=--11=1,x 1x 2=-11=-1. 7.解:(1)∵方程x 2-2x +m =0有两个实数根, ∴Δ=(-2)2-4m ≥0.解得m ≤1.(2)由两根关系可知,x 1+x 2=2,x 1·x 2=m .解方程组121223 3.x x x x ⎧⎨⎩+=,+=解得123,21.2x x ⎧⎪⎪⎨⎪⎪⎩== ∴m =x 1·x 2=34. 8.-89.1010.解:(1)由方程有两个实数根,可得Δ=b 2-4ac =4(k -1)2-4k 2=4k 2-8k +4-4k 2=-8k +4≥0.解得k ≤12. (2)依据题意,可得x 1+x 2=2(k -1).由(1)可知k ≤12, ∴2(k -1)<0,x 1+x 2<0.∴|x 1+x 2|=-x 1-x 2=x 1·x 2-1.∴-2(k -1)=k 2-1.解得k 1=1(舍去),k 2=-3.∴k 的值是-3.。
关于) 方程两实数为1x 2x = 21()4x x x x ∴+-212316x x --,1m =.)0=的两实数根,121)(x x --0=,解得m269x x -+为腰时,设4914(m -+7x =或15. 或7,此时三角形的周长为元和间接设元;⑶ 列:根据题目中给出的等量关系,列出符合题意的一元二次方程 ; ⑷ 解:求出所列方程的解;⑸ 检验:检验未知数的值是否符合题意; ⑹ 答:写出答案。
一、面积问题1. 用一元二次方程解决实际问题要经历审题、找出 、设 、列 、解方程、 、写出 答案的过程.2. 用一元二次方程解决问题的关键是 .3. 从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是482m ,则原来这块木板的面积是( )A. 1002mB. 642mC. 1212mD. 1442m 4. 如图,在长为100m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644 2m ,则道路的宽应为多少米?设道的宽为x 米,则可列方程为 ( ) A. 10080100807644x x ⨯--= B. (100)(80)27644x x x --+=C. (100)(80)7644x x --=D. 10080356x x +=5. 如图,对一块长60 m 、宽30 m 的长方形荒地进行改造,要在其四周留一条宽度相等的人行道,中间部分建成一块面积为1 000 m“的长方形绿地,求人行道的宽度.6. 如图,某养殖场要用防护网围成长方形养鸡场地,其中一面利用现有的一段墙,且在与墙平行的一边开一个2m宽的门.现有防护网的长度为91 m,场地的面积需要1080 2m,若墙长50 2m,求场地的长和宽.(1)一变:若墙长46 m,求场地的长和宽;(2)二变:若墙长40 m,求场地的长和宽;(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?7. 从正方形的铁片上截去8 cm宽的一条长方形,余下部分的面积是48 2cm时,则原来的正方工作量增加为原来的1. 5倍,结果提前4天完成了该项绿化工程.(1) 该项绿化工程原计划每天完成多少平方米?(2) 该项绿化工程中有一块长为20 m,宽为8m的矩形空地,计划在其中修肉块相同的矩形绿地,它们的面积之和为562m,两块绿地之间及周边留有宽度相等的人行通道(如图),人行通道的宽度是多少米?A. 100(1)121x +=B. 100(1)121x -=C. 2100(1)121x +=D. 2100(1)121x -=9. 某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是 ( )A. 1.08a 元B. 0. 88a 元C. 0. 968a 元D. a 元10. 某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可 变成本逐年增长.已知该养殖户第1年的可变成本为2. 6万元,设可变成本平均每年增长的百分率为x .(1) 用含x 的代数式表示第3年的可变成本为 万元;(2) 如果该养殖户第3年的养殖成本为7. 146万元,求可变成本平均每年增长的百分率11. 如图,要建造一个直角梯形的花圃.要求AD 边靠墙,CD AD ⊥, AB:CD=5:4,另外三边的和为20米。
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系-, B重难点解读—————————根据方程中两根的关系确定方程中字母的值☆重难点的取值范围;1)求实数k○随堂例题(2222的kx=16+x满足、2)若xxx+x?,求实数(-1=0)(xx1例已知关于的方程+2k-1x+k有211212.、x两个实数根x值. 21.)则m的值为(自主解答:(1)∵关于x的方程x+(2k-1)x+k-1=0的两个根,且x+x=1-xx,22D21121.-2 D.1或-2 C.A.有两个实数根x,x, -1或2 B21222,+(m+2)x+m=02.已知关于x的一元二次方程x 0,-1∴△=(2k-1)-4(k)=-4k+5≥取何值,原方程总有两个不相m(1)求证:无论55等的实数根;11?,是原方程的两根,x且(=-22)若x,21xx22有两(2)∵关于x的方程x+(2k-1)x+k-1=021.求m的值2.?,∴x+x=1-2k,xx=k-1个实数根x,x22111222取0,∴无论m解:(1)△=(m+2)-4m=m+4>222,+x)-2x?x=16+x?x=∵x+x(x22211112何值,原方程总有两个不相等的实数根;2222 -4k-12=0,即,k(∴1-2k-1)-2×(k)=16+(k-1),x是原方程的两根,(2)∵x 或解得k=-2k=6(不符合题意,舍去).21 =m.+x∴x=-(m+2),xx .∴实数k的值为-22211xxm?112?题目中提到两个实数根,即隐【一中名师点拨】21? =-2,=∵=-xxxxm当根据方程中两根的;含着根的判别式大于等于02211是分式方程的解,且符合,经检验,m=2解得m=2关系确定方程中字母的值,关键是把这种关系式的值为2.题意,∴m +x转化为含x及x.x的形式2211○随堂训练22-m-1=0x-2mx+m是方程,20171.(烟台)若xx21课后达标基础训练22的值x+a-1=0的两个实数根互为相反数,则a呼和浩特)2017关于x的一元二次方程x+(a-2a)1.( B )为(0.2或.2 B.0 C.1 DA2) A 已知关于x的方程x+x-a=0的一个根为2,则另一个根是(2.(2017新疆)6.3 DA.-3 B.-2 C.2 D )x-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( 3.已知m,n是一元二次方程2D.-6 B.-2 C.0 A.)x,x为根的一元二次方程是( A =30,4.已知实数xx满足x+x=11,xx,则以2121112222+11x+30=0.Ax-11x+30=0 B.x22-11x-30=0.x+11x-30=0 D.xC3311222x=+ 2 ;+=;x=+ 是方程、5.已知xx2x+3x-4=0的两根,那么xx=;x·x??2212111242xx12237. ;=??xx?21442 -1 .的值为,则a+b+ax+b+1=0的解为x=x=26.已知关于x的方程x21323232x+1=0 .x-7.以-2+和为两根的一元二次方程是2. 的值-5,求方程的另一根及m8.已知方程5x+mx-10=0的一根是,解:设方程的另一个根为km2?k?,得,解得则-5k=-2m=23. ,又k-5=55已知关于x的一元二次方程kx+x-2=0有两个不相等的实数根.29.的取值范围;k)求实数1(.,求k的值.x,x,且满足x+x+3x?x(2)设方程两个实数根分别为212121112-,解得k>且△22 =30=1-4k?(-2)>0解:(1且k≠0;(2)根据题意得x+x=-,)根据题意得k≠21k8221122222,k=-)-=3,整理得3k+2k-1=0,解得?+xxx=-,∵x+3x?x=3,∴(x+x)+xx=3,∴,k=-,2m-x+=有两个实数10已知关的一元二次方x21的取值范围;1)求实数m(2-5+3xx的值.=6-xx,求(x-x)(2)若x+x2112112232222≤;,∴m2m-3)-4m=4m-12m+9-4m=-12m+9,∵△≥0,∴-12m+9≥0解:(1)△=(4222,∴-2m-3=03-2m=6-m,∴mx+x=6-xx,∴+x=-(2m-3)=3-2m,xx=m,又∵(2)由题意可得x22111122322+x)-4xxx+3xx-5==1,∴(x-x)+3xx-5=m=3,m=-1,又∵m≤(,,∴m=-1,∴x+x=5xx2111112122221122422(x+x)-xx-5=5-1-5=19.2211能力提升(2017仙桃)若α、β为方程2x-5x-1=0的两个实数根,则2α+3αβ+5β的值为( B )2211.A.-13 B.12 C.14 D.1511221. ,则= ≠0)满足a-a-2018=0,b-b-2018=0(12.若非零实数a,ba??ba2018 1522,的两根是一个矩形两邻边的长,且矩形的对角线长为k+1)x+k+1=013.已知关于x的方程x-(4求k= 2 .已知关于x的一元二次方程x+(2k+1)x+k-2=0的两根为x和x,且(x-2)(x-x)=0,则k的值2214.是 -2211219 .或-422=0. -4x-m已知关于x的一元二次方程x15.(2017黄石))求证:该方程有两个不等的实根;(1 ,求m的值.满足x、xx+2x=9(2)若该方程的两实根211222222,)-m=16+4m >0(=0中,△=-4)-4×1×(-4x-m解:(1)∵在方程x ∴该方程有两个不等的实根;,x、x(2)∵该方程的两个实数根分别为212=-m②.=4+x①,x?xx∴2211=5,,③,∴联立①③解得+2x ∵x=9x=-1x211252.±?x∴xm=,解得=-5=-m21.。
2023年中考数学----《一元二次方程之根与系数的关系》知识点总结与专项练习题(含答案解析)知识点总结1. 根与系数的基本关系:若21x x ,是一元二次方程02=++c bx ax 的两个根,则这两个根与系数的关系为:ac x x a b x x =⋅−=+2121,。
同时存在:00222121=++=++c bx ax c bx ax ,。
2. 常考推广公式:①()2122122212x x x x x x −+=+。
②()1221221221x x x x x x x x +=+。
③21212112122111x x x x x x x x x x x x +=+=+。
④()21212212122212121212221122x x x x x x x x x x x x x x x x x x x x −+=+=+=+。
⑤()()()2212121p x x p x x p x p x +++=++。
⑥()()212212214x x x x x x −+=−。
专项练习题1、(2022•益阳)若x =﹣1是方程x 2+x +m =0的一个根,则此方程的另一个根是( )A .﹣1B .0C .1D .2【分析】根据根与系数的关系即可求出答案.【解答】解:设x 2+x +m =0另一个根是α,∴﹣1+α=﹣1,∴α=0,故选:B.2、(2022•青海)已知关于x的方程x2+m x+3=0的一个根为x=1,则实数m的值为()A.4 B.﹣4 C.3 D.﹣3【分析】根据方程根的定义,将x=1代入方程,解出m的值即可.【解答】解:关于x的方程x2+mx+3=0的一个根为x=1,所以1+m+3=0解得m=﹣4.故选:B.3、(2022•贵港)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m 的值分别是()A.0,﹣2 B.0,0 C.﹣2,﹣2 D.﹣2,0【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得m的值,即可求得方程的另一根.【解答】解:设方程的另一根为a,∵x=﹣2是一元二次方程x2+2x+m=0的一个根,∴4﹣4+m=0,解得m=0,则﹣2a=0,解得a=0.故选:B.4、(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045 B.4044 C.2022 D.1【分析】把x=x1代入方程表示出x12﹣2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.5、(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a﹣x12﹣x22的值为()A.7 B.﹣7 C.6 D.﹣6【分析】根据根与系数的关系求出x2,a的值,代入代数式求值即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,∴x1+x2=2,x1•x2=﹣a,∵x1=﹣1,∴x2=3,x1•x2=﹣3=﹣a,∴a=3,∴原式=3﹣(﹣1)2﹣32=3﹣1﹣9=﹣7.故选:B .6、(2022•宜宾)已知m 、n 是一元二次方程x 2+2x ﹣5=0的两个根,则m 2+m n +2m 的值为( )A .0B .﹣10C .3D .10【分析】由于m 、n 是一元二次方程x 2+2x ﹣5=0的两个根,根据根与系数的关系可得m +n =﹣2,mn =﹣5,而m 是方程的一个根,可得m 2+2m ﹣5=0,即m 2+2m =5,那么m 2+mn +2m =m 2+2m +mn ,再把m 2+2m 、mn 的值整体代入计算即可.【解答】解:∵m 、n 是一元二次方程x 2+2x ﹣5=0的两个根,∴mn =﹣5,∵m 是x 2+2x ﹣5=0的一个根,∴m 2+2m ﹣5=0,∴m 2+2m =5,∴m 2+mn +2m =m 2+2m +mn =5﹣5=0.故选:A .7、(2022•乐山)关于x 的一元二次方程3x 2﹣2x +m =0有两根,其中一根为x =1,则这两根之积为( )A .31B .32C .1D .﹣31 【分析】直接把x =1代入一元二次方程即可求出m 的值,根据根与系数的关系即可求得.【解答】解:∵方程的其中一个根是1,∴3﹣2+m =0,解得m =﹣1,∵两根的积为,∴两根的积为﹣,故选:D .8、(2022•巴中)α、β是关于x 的方程x 2﹣x +k ﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k 的值为 .【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k 的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x 2﹣x +k ﹣1=0的根,∴α2﹣α+k ﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k +1﹣1=﹣k =4,∴k =﹣4,故答案是:﹣4.9、(2022•日照)关于x 的一元二次方程2x 2+4mx +m =0有两个不同的实数根x 1,x 2,且x 12+x 22=163,则m = . 【分析】根据根与系数的关系得到x 1+x 2=﹣2m ,x 1x 2=,再由x 12+x 22=变形得到(x 1+x 2)2﹣2x 1x 2=,即可得到4m 2﹣m =,然后解此方程即可.【解答】解:根据题意得x 1+x 2=﹣2m ,x 1x 2=,∵x 12+x 22=,∴(x 1+x 2)2﹣2x 1x 2=,∴4m 2﹣m =,∴m 1=﹣,m 2=,∵Δ=16m 2﹣8m >0,∴m >或m <0,∴m =不合题意,故答案为:﹣.10、(2022•内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 .【分析】根据x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,可得x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,把+=x 12+2x 2﹣1变形再整体代入可得=4﹣k ,解出k 的值,并检验即可得k =2.【解答】解:∵x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,∴x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,∴x 12=2x 1﹣k +1,∵+=x 12+2x 2﹣1,∴=2(x 1+x 2)﹣k ,∴=4﹣k ,解得k =2或k =5,当k =2时,关于x 的方程为x 2﹣2x +1=0,Δ≥0,符合题意;当k =5时,关于x 的方程为x 2﹣2x +4=0,Δ<0,方程无实数解,不符合题意; ∴k =2,故答案为:2.10、(2022•绥化)设x 1与x 2为一元二次方程21x 2+3x +2=0的两根,则(x 1﹣x 2)2的值为 .【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x 1+x 2=﹣6,x 1x 2=4,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=(﹣6)2﹣4×4=36﹣16=20,故答案为:20.11、(2022•鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则a 1+b1的值为 .【分析】由实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,知a 、b 可看作方程x 2﹣4x +3=0的两个不相等的实数根,据此可得a +b =4,ab =3,将其代入到原式=即可得出答案.【解答】解:∵实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,∴a 、b 可看作方程x 2﹣4x +3=0的两个不相等的实数根,则a +b =4,ab =3,则原式==,故答案为:.12、(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是.【分析】根据根与系数的关系直接可得答案.【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两个根,∴x1•x2=3,故答案为:3.。
一元二次方程根与系数的关系习题一、单项选择题:1.关于x 的方程0122=+-x ax 中,如果0<a ,那么根的情况是( )(A )有两个相等的实数根 (B)有两个不相等的实数根(C )没有实数根 (D )不能确定2.设21,x x 是方程03622=+-x x 的两根,则2221x x +的值是( ) (A)15 (B )12 (C )6 (D)33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2错误!x (C)错误!x 2-错误!x+2=0(D )3x 2-2错误!x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=05.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x •等于( )(A )2 (B )-2 (C ) 1 (D )-1二、填空题:1、如果一元二次方程0422=++k x x 有两个相等的实数根,那么k = 。
2、如果关于x 的方程012)14(222=-++-k x k x 有两个不相等的实数根,那么k 的取值范围是 。
3、已知21x x ,是方程04722=+-x x 的两根,则21x x += ,21x x = ,221)(x x -=4、若关于x 的方程01)2()2(22=+---x m x m 的两个根互为倒数,则m = 。
5、当m = 时,方程042=++mx x 有两个相等的实数根;6、已知关于x 的方程07)3(102=-++-m x m x ,若有一个根为0,则m = ,这时方程的另一个根是 ;若两根之和为-错误!,则m = ,这时方程的 两个根为 .7、如果5)1(222+++-m x m x 是一个完全平方式,则m = ;8、方程6)4(22-=-x mx x 没有实数根,则最小的整数m = ;9、已知方程)4()3)(1(2-=--m x m x x 两根的和与两根的积相等,则m = ;10、设关于x 的方程062=+-k x x 的两根是m 和n ,且2023=+n m ,则k 值为 ;11、若方程01)12(22=++--m x m x 有实数根,则m 的取值范围是12、一元二次方程02=++q px x 两个根分别是32+和32-,则p= ,q= 13、已知方程01932=+-m x x 的一个根是1,那么它的另一个根是 ,m= ;14、若方程012=-+mx x 的两个实数根互为相反数,那么m 的值是 ;15、n m 、是关于x 的方程01)12(22=++--m x m x 的两个实数根,则代数式n m = . 16、已知方程0132=+-x x 的两个根为α,β,则α+β= , αβ= ;17、如果关于x 的方程042=+-m x x 与022=--m x x 有一个根相同,则m 的值为 ;18、已知方程0322=+-k x x 的两根之差为2错误!,则k=19、若方程03)2(22=--+x a x 的两根是1和-3,则a=20、①、若关于x 的方程04)1(222=+-+m x m x 有两个实数根,且这两个根互为倒数,那么m 的值为 ; ②、已知关于x 的一元二次方程01)1()1(22=++--x a x a 两根互为倒数,则a= 。
第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
专题03一元二次方程根系关系及应用考点1:根与系数关系;考点2:利用根与系数关系求值;考点3:根的判别式。
1.设方程x 2﹣3x +2=0的两根分别是x 1,x 2,则x 1+x 2的值为()A .3B .−32C .32D .﹣2解:由x 2﹣3x +2=0可知,其二次项系数a =1,一次项系数b =﹣3,由根与系数的关系:x 1+x 2=−=−−31=3.答案:A .2.(易错题)已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,则m 的值是()A .34B .30C .30或34D .30或36解:当a =4时,b <8,∵a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴4+b =12,∴b =8不符合;当b =4时,a <8,∵a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴4+a =12,∴a =8不符合;当a =b 时,∵a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴12=2a =2b ,∴a =b =6,∴m +2=36,∴m =34;答案:A .题型01根与系数关系3.在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是()A.x2+2x﹣3=0B.x2+2x﹣20=0C.x2﹣2x﹣20=0D.x2﹣2x﹣3=0解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,则以α、β为根的一元二次方程是x2+2x﹣20=0.答案:B.4.关于x的方程x2﹣x﹣1=0的两根分别为x1、x2,则x1+x2﹣x1•x2的值为2.解:∵关于x的方程x2﹣x﹣1=0的两根分别为x1、x2,∴x1•x2=﹣1,x1+x2=1,∴x1+x2﹣x1•x2=1﹣(﹣1)=2,答案:2.5.平行四边形的两条邻边的长分别是方程x2﹣7x+1=0的两根,则该平行四边形的周长是14.解:∵平行四边形的两条邻边的长分别是方程x2﹣7x+1=0的两根,∴平行四边形的两条邻边的长的和是7,故该平行四边形的周长是7×2=14.答案:14.6.在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程x2﹣6x+6=0.解:根据题意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正确的一元二次方程为x2﹣6x+6=0.答案:x2﹣6x+6=0.7.已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是()A.﹣2B.2C.﹣1D.1解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,题型02利用根与系数关系求值∴x1+x2=k,x1x2=k﹣3,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴k2﹣2(k﹣3)=5,整理得出:k2﹣2k+1=0,解得:k1=k2=1,答案:D.8.(易错题)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式x13﹣2023x1+x22的值是()A.4047B.4046C.2023D.1解:把x=x1代入方程得:x12﹣x1﹣2023=0,即x12﹣2023=x1,∵x1,x2是方程x2﹣x﹣2023=0的两个实数根,∴x1+x2=1,x1x2=﹣2023,则原式=x1(x12﹣2023)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4046=4047.答案:A.9.已知a,b是方程x2﹣3x﹣5=0的两根,则代数式2a3﹣6a2+b2+7b+1的值是()A.﹣25B.﹣24C.35D.36解:∵a,b是方程x2﹣3x﹣5=0的两根,∴a2﹣3a﹣5=0,b2﹣3b﹣5=0,a+b=3,∴a2﹣3a=5,b2=3b+5,∴2a3﹣6a2+b2+7b+1=2a(a2﹣3a)+3b+5+7b+1=10a+10b+6=10(a+b)+6=10×3+6=36.答案:D.10.(易错题)关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,若x2=2x1,则4b﹣9ac的最大值是()A.1B.2C.3D.2解:∵关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,∴x1+x2=−,x1x2=,∵x2=2x1,∴3x1=−,即x1=−3,∴x2=−23,∴=2292,∴9ac=2b2,∴4b﹣9ac=4b﹣9a•229=4b﹣2b2=﹣2(b﹣1)2+2,∵﹣2<0,∴4b﹣9ac的最大值是2,答案:D.11.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为﹣4.解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,答案:﹣4.12.(易错题)设x1,x2是方程x2﹣x﹣2023=0的两实数根,则13+20242−2023=2024.解:∵x2﹣x﹣2023=0,∴x2=x+2023,x=x2﹣2023,又∵x1,x2是方程x2﹣x﹣2023=0的两实数根,∴x1+x2=1,∴13+20242−2023=x1•12+2023x2+x2﹣2023,=x1•(x1+2023)+2023x2+x2﹣2023,=(x1+2023)+2023x1+2023x2+x2﹣2023,=x1+x2+2023(x1+x2)+2023﹣2023,=1+2023,=2024,答案:2024.13.若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则3+23K1的值为3.解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∴m+n=﹣3,∴3+23K1=2(rp3K1=−32−2=3,答案:3.14.对于实数a,b,定义运算“a*b=2−B(>pB−2(≤p”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=0.解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,答案:0.15.(易错题)已知关于x,y的方程组B+23=−103,+=4与−=2,+B=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.解:(1)由题意得,关于x,y的方程组的相同解,就是方程组+=4−=2的解,解得,=3=1,代入原方程组得,a=﹣43,b=12;(2)该三角形是等腰直角三角形,理由如下:当a=﹣43,b=12时,关于x的方程x2+ax+b=0就变为x2﹣43x+12=0,解得,x1=x2=23,又∵(23)2+(23)2=(26)2,∴以23、23、26为边的三角形是等腰直角三角形.16.关于x的一元二次方程x2+2ax+a2﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关解:∵Δ=(2a)2﹣4×1×(a2﹣1)=4a2﹣4a2+4=4>0.∴关于x的一元二次方程x2+2ax+a2﹣1=0有两个不相等的实数根.答案:C.17.对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围()A.k>−14B.k<−14C.k>−14且k≠0D.k≥−14且k≠0解:根据定义新运算,得x2﹣x=k,即x2﹣x﹣k=0,∵关于x的方程1※x=k有两个不相等的实数根,∴Δ=(﹣1)2﹣4×(﹣k)>0,题型03根的判别式解得:>−14,答案:A.18.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c =0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴Δ=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.答案:A.19.若一元二次方程x2+2x+k=0有两个相等的实数根,则k的值为1.解:根据题意得Δ=22﹣4×1×k=0,即4﹣4k=0解得k=1.答案:1.20.关于x的一元二次方程ax2+bx+14=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b =2.解:关于x的一元二次方程ax2+bx+14=0有两个相等的实数根,∴Δ=b2﹣4×14a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.答案:4,2.21.(易错题)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为8或9.解:当4为腰长时,将x=4代入x2﹣6x+n=0,得:42﹣6×4+n=0,解得:n=8,当n=8时,原方程为x2﹣6x+8=0,解得:x1=2,x2=4,∵2+4>4,∴n=8符合题意;当4为底边长时,关于x的方程x2﹣6x+n=0有两个相等的实数根,∴Δ=(﹣6)2﹣4×1×n=0,解得:n=9,当n=9时,原方程为x2﹣6x+9=0,解得:x1=x2=3,∵3+3=6>4,∴n=9符合题意.∴n的值为8或9.答案:8或9.22.我们规定:对于任意实数a、b、c、d有[a,b]*[c,d]=ac﹣bd,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x的方程[x,2x﹣1]*[mx+1,m]=0有两个实数根,求m的取值范围.解:(1)[﹣4,3]*[2,﹣6]=﹣4×2﹣3×(﹣6)=10;(2)根据题意得x(mx+1)﹣m(2x﹣1)=0,整理得mx2+(1﹣2m)x+m=0,∵关于x的方程[x,2x﹣1]*[mx+1,m]=0有两个实数根,∴Δ=(1﹣2m)2﹣4m•m≥0且m≠0,解得m≤14且m≠0.。
一元二次方程根与系数的关系(附答案)评卷人得分一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣13.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.65.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3评卷人得分二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.评卷人得分三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.参考答案与试题解析一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有实数根,∴△=22﹣4×1×(﹣m)=4+4m≥0,解得:m≥﹣1.故选:A.3.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.【解答】解:∵α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,∴α+β=5.故选:B.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0,解得:c=3.故选:D.二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为﹣5.【解答】解:∵关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p、q,∴p+q=3,pq=a,∵p2﹣pq+q2=(p+q)2﹣3pq=18,即9﹣3a=18,∴a=﹣3,∴pq=﹣3,∴+====﹣5.故答案为:﹣5.三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1)∵方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)=4k﹣3>0,∴k>.(2)当k=2时,原方程为x2﹣5x+5=0,设方程的两个为m、n,∴m+n=5,mn=5,∴==.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=.(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.【解答】(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.【解答】解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;(2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;(3)∵是方程的两个实数根,,∴.∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得a=﹣4,a=2(舍去),所以a的值为﹣412.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.【解答】解:(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=,∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,若2﹣=﹣成立,解上述方程得,k=,∵△=16k2﹣4×4k(k+1)=﹣16k>0,∴k<0,∵k=,∴矛盾,∴不存在这样k的值;(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5;(3)∵k=﹣2,λ=,x1+x2=1,∴λx2+x2=1,x2=,x1=,∵x1x2==,∴=,∴λ=3±3.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.【解答】解:(1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.。
一元二次方程根与系数的关系应用例析及训练对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。
下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。
解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。
解得:所以,使方程(1)有整数根的的整数值是。
说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。
解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。
设方程的两个根为,∵<0∴原方程有两个异号的实数根。
一元二次方程根与系数的关系〔附答案〕评卷人得分一 .选择题〔共6小题〕1.关丁x的一元二次方程3x2+4x-5=0,下歹0说法正确的选项是〔〕A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关丁x的一元二次方程x2+2x - m=0有实数根,贝U m的取值范围是〔A. m> - 1B. m>- 1C. m< - 1D. m< - 13.关丁x的一元二次方程x2+3x - 1=0的根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x〔、x2是一元二次方程2x2- 4x- 1=0的两实数根,那么x12+x22的值是〔A. 2B. 4C. 5D. 65.假设a、6是一元二次方程x2 - 5x- 2=0的两个实数根,贝U a+6的值为〔A. - 5B. 5C. - 2D.56.关丁x的方程x2- 4x+c+1=.有两个相等的实数根,贝U常数c的值为〔A. - 1B. 0C. 1D. 3评卷人得分二.填空题〔共1小题〕7.假设关丁x的一元二次方程x2-3x+a=0 〔a^0〕的两个不等实数根分别为p, q, 且p2-pq+q2=18,那么丑产的值为.P Q评卷人得分三.解做题(共8小题)8 .关丁x 的方程x2- (2k+1) x+k2+1=0.(1)假设方程有两个不相等的实数根,求k的取值范围;(2)假设方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9 .关丁x的方程x2+ax+a - 2=0.(1)假设该方程的一个根为1,求a的值;(2)求证:不管a取何实数,该方程都有两个不相等的实数根.10.关丁x的一元二次方程(x- m) 2 - 2 (x-m) =0 (m为常数).(1)求证:不管m为何值,该方程总有两个不相等的实数根;(2)假设该方程一个根为3,求m的值.11.关丁x的一元二次方程x2-x+a- 1=0.(1)当a=- 11时,解这个方程;(2)假设这个方程有两个实数根x〔,x2,求a的取值范围;(3)假设方程两个实数根x〔,x2满足[2+x1 (1 - x〔)][ 2+x2 (1 - x2)] =9,求a的值. 12.x〔,x2是关丁x的一元二次方程4kx2 - 4kx+k+1= 0的两个实数根.(1)是否存在实数k,使(2x1 - x2) (x1 - 2x2)=-音成立?假设存在,求出k的值;假设不存在,说明理由;(2)求使打+挡-2的值为整数的实数k的整数值;七(3)假设k=- 2,入机,试求入的值.s213.关丁x的方程(k+1) x2 - 2 (k- 1) x+k=0有两个实数根x〔,x2.(1)求k的取值范围;(2)假设x〔+x2=x1x2+2,求k 的值.14.关丁x 的方程x2 - 2 (m+1) x+m2-3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.关丁x的一元二次方程x2-2x+m- 1=0有两个实数根x i、X2.(1)求m的取值范围;(2)假设x/+x22=6x i x2,求m 的值.参考答案与试题解析一 .选择题〔共6小题〕1.关丁x的一元二次方程3x2+4x-5=0,以下说法正确的选项是〔〕A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解::A =42 - 4X 3X 〔 - 5〕 =76>0,方程有两个不相等的实数根.应选:B.2.关丁x的一元二次方程x2+2x - m=0有实数根,贝U m的取值范围是〔A. m> - 1B. m> - 1C. m< - 1D. m< - 1【解答】解:•.•关丁x的一元二次方程x2+2x- m=0有实数根,. =22- 4X 1X〔 - m〕 =4+4m>0,解得:m>-1.应选:A.3.关丁x的一元二次方程x2+3x - 1=0的根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:a=1, b=3, c=T,. =b2- 4ac=32- 4X 1X 〔 - 1〕 =13>0,方程有两个不相等的实数根.应选:A.4.设x〔、x2是一元二次方程2x2-4x- 1=0的两实数根,那么x12+x22的值是〔A. 2B. 4C. 5D. 6【解答】解:x〔、x2是一元二次方程2x2- 4x- 1=0的两实数根,X I+X2=2, XlX2=-—, 2•• X i2+X22=〔X1+X2〕2—2X I X2=22— 2X 〔—=5.2应选:C.5 .假设a、6是一元二次方程X2 - 5X- 2=0的两个实数根,贝U a+6的值为〔〕A. - 5B. 5C. - 2D.5【解答】解::a、6是一元二次方程X2- 5X- 2=0的两个实数根,•■-计 6 =5应选:B.6.关丁X的方程X2-4X+C+1= 0有两个相等的实数根,贝U常数c的值为〔〕A. - 1B. 0C. 1D. 3【解答】解:•.•关丁X的方程X2-4X+C+1= 0有两个相等的实数根, = 〔- 4〕2 -4X 1X 〔C+1〕 =12-4C=0,解得:C=3.应选:D.二.填空题〔共1小题〕7.假设关丁X的一元二次方程X2-3x+a=0 〔a^0〕的两个不等实数根分别为p, q, 且p2-pq+q2=18,那么■的伯为-5 .p q【解答】解:..•关丁X的一元二次方程X2 - 3x+a=0〔a冬0〕的两个不等实数根分别为p、q,••• p+q=3, pq=a,. p2-pq+q2= 〔p+q〕2-3pq=18,即 9 -3a=18,••a=- 3,•,- pq=- 3,2 2 j -..早4^=些1祟=—5.p Q PQ pq -3故答案为:-5.三.解做题(共8小题)8.关丁x 的方程x2- (2k+1) x+k2+1=0.(1)假设方程有两个不相等的实数根,求k的取值范围;(2)假设方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1):方程x2- (2k+1) x+k2+1= 0有两个不相等的实数根,. =[ - (2k+1) ]2-4X 1X (k2+1) =4k-3>0,. . k> 里. 4(2)当k=2时,原方程为x2-5x+5=0,设方程的两个为m、n,m+n=5, mn=5,-父2板皿=^^9.关丁x的方程x2+ax+a - 2=0.(1)假设该方程的一个根为1,求a的值;(2)求证:不管a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a-2=0,解得:a:. 2(2)证实:△ =a2 — 4 (a— 2) = (a— 2) 2+4..• (a-2) 2>0,(a-2) 2+4>0,即/\> 0,•••不管a取何实数,该方程都有两个不相等的实数根.10.关丁x的一元二次方程(x- m) 2 - 2 (x-m) =0 (m为常数).(1)求证:不管m为何值,该方程总有两个不相等的实数根;(2)假设该方程一个根为3,求m的值.【解答】(1)证实:原方程可化为x2- (2m+2) x+m2+2m=0,a=1, b=- ( 2m+2), c=m2+2m,. =b2 - 4ac=[ - (2m+2) ] 2- 4 (m2+2m) =4> 0,•••不管m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3-m) 2-2 (3 - m) =0,解得:m i=3, m2=1.m的值为3或1.11 .关丁x的一元二次方程x2-x+a- 1=0.(1)当a=- 11时,解这个方程;(2)假设这个方程有两个实数根x〔,x2,求a的取值范围;(3)假设方程两个实数根x〔,支满足[2+x1 (1 - x〔)][ 2+x2 (1 - x2)] =9,求a的值.【解答】解:(1)把a=- 11代入方程,得x2-x- 12=0,(x+3) (x- 4) =0,x+3=0 或x- 4=0,x〔 = — 3, x?=4;(2)方程有两个实数根X], 3 •••△ »0,即(一1)2-4X 1X (a— 1) >0,解得a<|-;(3) L X], X?是方程的两个实数根,x乂] +己一 1二0,入:-耳2+日一1二.,.• [ 2+x1 (1 — x〔)][ 2+x2 (1 — x2)] =9,•• [2+工]-工1勺[2+区2“2勺=9,把:, I :. [- •-代入,得:[2+a- 1][ 2+a- 1]=9,即(1+a) 2=9,解得a=- 4, a=2 (舍去),所以a的值为-412 .x1, x2是关丁x的一元二次方程4kx2 - 4kx+k+1= 0的两个实数根.(1)是否存在实数k,使(2xi - x?) (xi - 2x2)=-—成立?假设存在,求出k的值;2假设不存在,说明理由;(2)求使旦+竺-2的值为整数的实数k的整数值;翌们(3)假设k=- 2,入兰!,试求入的值.x2【解答】解:(1) x1> x2是一元二次方程4kx2- 4kx+k+1= 0的两个实数根,x1 +x2=1 , x1 x2=*' 1 ,(2x1 - x2)( x1 - 2x2)=2x12- 4x1x2 - x1x2+2x22=2(x1+x2)2 - 9x1x2 =2X 12 - 9X J E±!=24k4k假设2一丝虫_ =-兰成立4k 2解上述方程得,k=',5. △ =16k2-4X4k (k+1) =- 16k>0,. kv 0, • k=,' 5'矛盾,...不存在这样k的值;幻2& 之) ~2x 1 Xn (Xi + Xn) 2+Xi Xni(2)原式= ------------------- 2= ----------------------------- 2= -------------------------- 4=-X I X 2 S J X 2寿,•.•k+1=1 或—1,或2,或—2,或4,或-4解得k=0或-2, 1, - 3, 3, - 5.kv 0.. .k=— 2, —3 或—5;Y(3) k=— 2,入二,x i+X2=1,x2入2+X2 = 1, X2 —, X i --------------- ,人+1 A+l 5, , X1X2」' I-X1X2一一、4k 8. * J(X+1)2 8'入=3 3血.13.关丁X的方程(k+1) X2 - 2 (k- 1) X+k=0有两个实数根Xi, X2.(1)求k的取值范围;(2)假设X1+X2=X1X2+2,求k 的值.【解答】解:(1) 关丁X的方程(k+1) X2- 2 (k-1) X+k=0有两个实数根,[A=[-2(k-l)]2-4k(k+l)>0 解得:k<-且k^- 1.3(2) 关丁X 的方程(k+1) X2- 2 (k- 1) X+k=0 有两个实数根X1? X2.中1), X1X2 =<^-.•,- X1 +X2=Zk+1 ' k+1X1 +X2=X1 X2+2,即2d)=上+2,I 1:+解得:k=- 4,经检验,k= - 4是原分式方程的解, • • k=— 4.14.关丁X的方程X2 - 2 (m+1) X+m2- 3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设X1、X2是方程的两根,且X12+X22=22+X1X2,求实数m的值.【解答】解:(1) △=[ - 2 (m+1) ]2-4 (m2-3) =8m+16,当方程有两个不相等的实数根时,那么有△>0,即8m+16>0,解得m>-2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2 (m+1), x i x2=m2 - 3,x12+x22=22+x i x2= (x1 +x2) 2 - 2x1x2,. .[2 (m+1) ] - 2 (m2-3) =6+ (m2-3),化简,得m2+8m - 9=0,解得m=1或m=- 9 (不合题意,舍去),实数m的值为1 .15.关丁x的一元二次方程x2-2x+m- 1=0有两个实数根x〔、x2.(1)求m的取值范围;(2)假设x『+x22=6x1x2,求m 的值.【解答】解:(1)..•方程有两个实数根,. » 0,即(-2) 2-4 (m- 1) >0,解得m< 2;(2)由根与系数的关系可得x〔+x2=2, xg=m- 1,.. 2 2 -x1 +x2 =6x1x2,•,- (x〔+x2)2- 2x〔x2=6x1x2,即(x〔+x2)2=8x1x2,•,- 4=8 (m- 1),解得m=1.5.。
一元二次方程根与系数的关系1. 已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A. 6B. 3C. ﹣3D. 02. 已知α,β是方程x2+2014x+1=0的两个根,则(1+2016α+α2)(1+2016β+β2)的值为()A. 1B. 2C. 3D. 43. 已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是()A. B. 3 C. 6 D. 94. 已知方程x2+5x+1=0的两个实数根分别为x1、x2,则x12+x22=________.5. ( 1分) 若关于的方程有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则的取值范围是________.6. ( 1分) 如果、是两个不相等的实数,且满足,,那么代数式=________7. 已知关于x的一元二次方程x2﹣(3k+1)x+2k2+2k=0(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰△ABC的一边长a=6,另两边长b、c恰好是这个方程的两个根,求此三角形的三边长?8.已知关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰△ABC的一边a=3,另两边长b、c恰好是这个方程的两个根,求△ABC的周长9. 如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+ 的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.10. 关于x的方程有两个不相等的实数根,(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.11. 已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.(1)求m的取值范围;(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.12. 已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.13. 已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:x1+x2=﹣,x1•x2=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2﹣3x=15两根的和与积.解:原方程变为:x2﹣3x﹣15=0∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2=∴原方程两根之和=﹣=3,两根之积= =﹣15.(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.14. 如图,抛物线y=ax2+bx﹣2经过点A(1,0)和点B(4,0),与y轴交于点C.附:阅读材料法国弗朗索瓦•韦达最早发现一元二次方程中根与系数的关系为:两根之和等于一次项系数与二次项系数之比的相反数,两根之积等于常数项羽二次项系数之比,人们称之为韦达定理.即:设一元二次方程ax2+bx+c=0的两根为x1、x2,则:x1+x2=﹣,x1•x2= 能灵活运用韦达定理,有时可以使解题更为简单.(1)求抛物线的解析式;(2)以点A为圆心,作于直线BC相切的⊙A,求⊙A的面积;(3)将直线BC向下平移n个单位后与抛物线交于点M、N,且线段MN=2CB,求直线MN的解析式及平移距离.15. 对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y= x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为________;(2)若方程y′=m﹣有两个正数根,则m的取值范围为________.16. 如图,抛物线y= x2+ x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C (1)如图1,若∠ACB=90°①求k的值________;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为________(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+ 的值.17. 已知x1、x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两个实数根.(1)若(x1-1)(x2-1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1、x2恰好是△ABC另外两边的边长,求这个三角形的周长.答案解析部分一、单选题1.【答案】A【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.2.【答案】D【解析】【解答】解:∵α,β是方程x2+2014x+1=0的两个根,∴α+β=﹣=﹣2014,α•β==1,(1+2016α+α2)(1+2016β+β2)=(αβ+2016α+α2)(αβ+2016β+β2)=α(β+2016+α)•β(α+2016+β)=αβ•(2016﹣2014)(2016﹣2014)=4.故选D.【分析】由根与系数的关系找出“α+β=﹣=﹣2014,α•β==1”,利用整体替换的方法将代数式(1+2016α+α2)(1+2016β+β2)中的1换成αβ,提取公因数代入数据即可得出结论.3.【答案】B【解析】【分析】设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2﹣2ab=16﹣7=9,∴c=3.故选B.二、填空题4.【答案】23【解析】【解答】解:∵方程x2+5x+1=0的两个实数根分别为x1、x2,∴x1+x2=﹣5,x1•x2=1,∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣5)2﹣2×1=23.故答案为:23.【分析】由根与系数的关系可得x1+x2=﹣5、x1•x2=1,将其代入x12+x22=(x1+x2)2﹣2x1•x2中,即可求出结论.5.【答案】3<m≤4【解析】【解答】解:∵关于x的方程(x-2)(x2-4x+m)=0有三个根,∴①x-2=0,解得x1=2;②x2-4x+m=0,∴△=16-4m≥0,即m≤4,∴x2=2+x3=2-又∵这三个根恰好可以作为一个三角形的三条边的长,且最长边为x2,∴x1+x3>x2;解得3<m≤4,∴m的取值范围是3<m≤4.故答案为:3<m≤4【分析】利用积为0的因数特点,可得出x-2=0或x2-4x+m=0,进而求出三个根,利用三角形构成条件,利用两根之和关系式,求出m的范围.6.【答案】2026【解析】【解答】解:如果m 、n 是两个不相等的实数,且满足m 2− m = 3 ,n 2 − n = 3 ,则、是关于的一元二次方程的两根,∴,,===2×1-(-3)+2021=2026【分析】根据题意可得出m 、n 是关于x 的一元二次方程x 2− x = 3 的两根,再利用根与系数的关系求出m+n和mn的值及n 2 =n+ 3,分别代入可解答。
1初二春季·第11讲·尖子班·教师版方程11级 解特殊复杂方程方程12级 特殊根问题 方程6级方程13级 根系关系及应用题春季班 第十一讲春季班 第九讲考古发现满分晋级阶梯漫画释义11根系关系及应用题2初二春季·第11讲·尖子班·教师版题型切片(两个)对应题目题型目标根与系数关系 例1;例2;例3;例7;演练1;演练2;演练3; 一元二次方程的应用题例4;例5;例6;演练4;演练5.本讲主要分为两个版块,模块一主要讲解了一元二次方程的补充知识点,韦达定理,在这一板块重点进行了由定理直接进行的代数式的变形,对于这个补充版块,有的班级理解能力强些,老师们可能会有一些富余时间,故给老师们预备了对韦达定理的进一步探索。
模块二练习了各个类型的应用题,希望同学们能从不同的方面深入理解一元二次方程,并再次练习了解方程应用题的一般步骤:审、设、列、解、答,希望老师注意强调应用题的答千万不要忘记。
编写思路题型切片知识互联网3初二春季·第11讲·尖子班·教师版一元二次方程的根与系数的关系(韦达定理)若21,x x 是关于x 的一元二次方程)0(02≠=++a c bx ax 的两个根,则方程的两个根21,x x 和系数c b a ,,有如下关系:acx x a b x x =⋅-=+2121,.【引例】 先阅读,再填空解题:⑴方程x 2-x -12=0 的根是:x 1=3-,x 2=4,则x 1+x 2=1,x 1·x 2=12-;⑵方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32;⑶方程x 2-3x +1=0的根是:x 1= , x 2= . 则x 1+x 2= ,x 1·x 2= ; ⑷根据以上⑴⑵⑶你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1·x 2与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.⑸在⑶的条件下,求下列各式的值:①221221x x x x +;②221211x x + (十一学校期末) 【解析】 ⑶352+,352-;3,1;⑷1212n px x x x m m+=-=,; ⑸①()2212211212==31=3x x x x x x x x ++⨯②()()2221212122222212*********====71x x x x x x x x x x x x +-+-+【例1】 不解方程,求下列方程两根的积与和.⑴25100x x --= ⑵22710x x ++= ⑶23125x x -=+ ⑷()137x x x -=+思路导航例题精讲典题精练题型一:根与系数关系4初二春季·第11讲·尖子班·教师版【解析】 ⑴1212510x x x x +==-, ⑵12127122x x x x +=-=,⑶1212223x x x x +==-, ⑷121247x x x x +==-,【例2】 已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .⑴求实数m 的取值范围;⑵当22120x x -=时,求m 的值. (毕节中考) 【解析】 ⑴由题意有22(21)40m m ∆=--≥,解得14m ≤.即实数m 的取值范围是14m ≤.⑵由22120x x -=得1212()()0x x x x +-=. 若120x x +=,即(21)0m --=,解得12m =.∵12>14,12m ∴=不合题意,舍去. 若120x x -=,即12x x =∴ 0∆=,由⑴知14m =.故当22120x x -=时,14m =.【例3】 已知一元二次方程2(1)230m x mx m +++-=有两个不相等的实数根,并且这两个根又不互为相反数. ⑴ 求m 的取值范围;⑵ 当m 在取值范围内取最小偶数时,方程的两根为12,x x ,求2123(14)x x -的值.(北京八中期中试题)【解析】 ⑴根据题意,可得 ()()210441300m m m m m +≠⎧⎪∆=-+->⎨⎪≠⎩∴32m >-且0m ≠且1m ≠-.⑵依题意有2m =,原方程可化为23410x x +-=.方法一:∴121221143133410x x x x x x ⎧+=-⎪⎪⎪=-⎨⎪⎪+-=⎪⎩∴()2121212123(14)(14)(14)11641x x x x x x x x -=--=+-+=方法二:12222133410x x x x ⎧=-⎪⎨⎪+-=⎩,()22221212123(14)3391x x x x x x -=⋅==5初二春季·第11讲·尖子班·教师版【探究对象】根系关系的进一步应用【探究方式】在做含参一元二次方程根系关系的问题时,先考虑二次项系数不为0→再判断∆→然后根据题意看是否有两根的特殊关系(如例3,已知中强调两根不互为相反数,则根据根系关系能够得出0m ≠).在这里主要探讨一下根的正负性问题:利用根与系数的关系,我们可以不直接求方程2++=0ax bx c 的根,而知其根的正、负性. 在2=40b ac ∆-≥的条件下,我们有如下结论:①当<0c a时,方程的两根必一正一负.若0ba -≥,则此方程的正根不小于负根的绝对值;若<0ba-,则此方程的正根小于负根的绝对值.②当>0c a时,方程的两根同正或同负.若>0b a -,则此方程的两根均为正根;若<0ba -,则此方程的两根均为负根.【探究1】已知关于x 的一元二次方程x 2-2ax +a 2-9=0 (1)a 为何值时,方程有两个正根? (2)a 为何值时,方程有一正根、一负根?分析:此题根据上面的总结很容易得出:(1)a >3;(2)-3< a <3【探究2】已知关于x 的一元二次方程(m +2)x 2+2mx +232m -=0. (1)若方程有两个不相等的实数根,求m 的取值范围;(2)若 362m <<,试判断方程两个实数根的符号,并证明你的结论.6初二春季·第11讲·尖子班·教师版【探究3】已知方程22430x x k -+-=,k 为实数且k ≠0,证明:此方程有两个实数根,其中一根大于1,另一根小于1.分析:先判断∆=4+4k 2>0,所以方程有两不等实根,设为α、β,且αβ≠ 由根系关系得 4αβ+=,23k αβ=-,拓展逆用上述结论: ()()111αβαβαβ--=--+ 223410k k =--+=-<∴1α-与1β-中必有一个大于0,另一个小于0 即方程有两个实数根,其中一根大于1,另一根小于1.列一元二次方程解应用题的时候,要注意检验得到的根是否符合题意.【引例】 ⑴某汽车销售公司2009年盈利1500万元, 2011年盈利2160万元,且从2009年到2011年,每年盈利的年增长率相同.设每年盈利的年增长率为x ,根据题意,下面所列方程正确的是( ). (西城期末) A .()2150012160x += B .2150015002160x x +=C .215002160x =D .()()215001150012160x x +++=⑵某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 . (台州中考)【解析】⑴A ;⑵100)1(1202=-x .【例4】 某商品进价为40元的衬衫按50元售出时.每月能卖500件.这种衬衫每涨价1元,其销典题精练例题精讲思路导航题型二:一元二次方程的应用题7初二春季·第11讲·尖子班·教师版售量减少10件.如果商场计划每月赚8000元利润.售价应定为多少?【解析】 设涨价x 元,则售价为()50x +元,每月卖出()50010x -件.根据题意列出方程()()5001050408000x x -+-= 解得:121030x x ==,答:当售价定在60元或者80元时,每月赚8000元.【例5】 如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?图①图②分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD . 结合以上分析完成填空:⑴ 如图②,用含x 的代数式表示:AB =____________________________cm ;AD =____________________________cm ;矩形ABCD 的面积为_____________cm 2; ⑵ 列出方程并完成本题解答.(三帆中学期末试题)【解析】 ⑴ 220630424260600.x x x x ---+,,⑵ 根据题意,得2124260600132030x x ⎛⎫-+=- ⎪⎝⎭⨯⨯.整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去).则552332x x ==,.答:每个横、竖彩条的宽度分别为53cm ,52cm.【例6】 如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:⑴ 在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖;(均用含n 的代数式表示)⑵ 设铺设地面所用瓷砖的总块数为y ,请写出y 与⑴中的行列的函数关系式;(不要求写自变量n 的取值范围)⑶ 按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; ⑷ 若黑瓷砖每块4元,白瓷砖每块3元,在问题⑶中,共需花多少元钱购买瓷砖?⑸ 是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算说明理由.8初二春季·第11讲·尖子班·教师版...n=3n=2n=1【解析】⑴ 3n +;2n +. ⑵ (3)(2)y n n =++,即256y n n =++.⑶ 当y =506时,256506n n ++=,即255000n n +-=解得122025n n ==-,(舍去). ⑷ 白瓷砖块数是(1)20(201)420n n +=⨯+=(块).黑瓷砖块数是50642086-=(块). 共需86442031604⨯+⨯=(元). ⑸ 2(1)(56)(1)n n n n n n +=++-+化简为2360n n --= 解得12333333022n n +-==<,(舍去). ∵n 的值不为正整数,∴不存在黑、白瓷砖块数相等的情形.【例7】 关于x 的方程20x px q ++=的两根和为1s ,两根的平方和为2s ,两根的立方和为3s ,试求321s ps qs ++的值. 【解析】 设方程的两根为1x 、2x ,则12x x p +=-,12x x q =.∴1s p =-,()2222212121222s x x x x x x p q =+=+-=-.()()()233231212121233s x x x x x x x x p p q ⎡⎤=+=++-=--⎣⎦33pq p =-.∴()()32321320s ps qs pq p p p q q p ++=-+-+-=.真题赏析9初二春季·第11讲·尖子班·教师版训练1. 关于x 的一元二次方程()()23x x m --=有两个实数根1x 、2x ,⑴ 求m 的取值范围;⑵若1x 、2x 满足等式121210x x x x --+=求m 的值. (崇文区初三期末)【解析】 由()()23x x m --=,整理,得 2560x x m -+-=. ⑴ ∵方程有两个实数根,∴24b ac =-=Δ254(6)0m --≥.解之,得14m -≥ .⑵ ∵方程2560x x m -+-=的两个实根是1x 、2x ,∴12121456m x x x x m -+==⎧⎪⎨⎪-⎪⎪⎩≥ ∵121210x x x x --+=∴114650m m --+=⎧-⎪⎨⎪⎩≥ ∴2m =.训练2. ⑴已知t 是实数,若a b ,是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是____________.⑵如果a b ,是质数,且22130130a a m b b m -+=-+=,那么b aa b+的值为 ( ) A.12322 B. 12522或2 C. 12522 D. 12322或2 【解析】 ⑴3-.提示:依题意有()224410210210210t a a t b b t a b ab t =--⎧⎪-+-=⎪⎪-+-=⎨⎪+=⎪=-⎪⎩Δ≥≥,化简得22121212t a a t b b t ⎧⎪-=-⎨⎪-=-⎩≤≤ ∴()()222(1)(1)224a b a t b t t --=--=-,∴22(1)(1)a b --的最小值为3-. ⑵B .提示:方法一:有两种情况:① 若a b =,则2b aa b+=;②若a b ≠,根据题意,a 、b 是方程2130x x m -+=的根,思维拓展训练(选讲)10初二春季·第11讲·尖子班·教师版则13a b +=,因为a b ,是质数且和为奇数,所以两数分别为2和11.此时21112511222b a a b +=+=. 方法二:两式相减,消m ,2213130a b a b --+=,()()130a b a b -+-=,所以有a b =或13.a b +=训练3. 为了鼓励居民节约用电,某地区规定:如果每户居民一个月的用电量不超过a 度时,每度电按0.40元交费;如果每户居民一个月的用电量超出a 度时,则该户居民的电费将使用二级电费计费方式,即其中有a 度仍按每度电0.40元交费,超出a 度部分则按每度电150a元交费.下表是该地区一户居民10月份、11月份的用电情况.根据表中的数据,求在该地区规定的电费计费方式中,a 度用电量为多少? (西城期末)【解析】 因为800.432⨯=,1000.44042⨯=<,所以 80100a <≤.由题意得 0.4(100)42150aa a +-=. 去分母,得 60(100)42150a a a +-=⨯.整理,得 216063000a a -+=. 解得 190a =,270a =. 因为 80a ≥,所以 270a =不合题意,舍去. 所以 90a =.答:在该地区规定的电费计费方式中,a 度用电量为90度.训练4. ⑴两个相邻的自然数的平方和比这两个数中较小的数的2倍大51,试求这两个自然数.⑵某两位数的十位数字与个位数字之和为5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.【解析】 ⑴设这两个自然数分别为1n n +,.根据题意得()221251n n n ++=+解得:1255n n ==-,(舍) 所以这两个自然数为5和6⑵设这个数为()10595x x x +-=+,新的数为()105509x x x -+=- 根据题意得:()()95509736x x +-= 解得1223x x ==,所以这个两位数为23或3211初二春季·第11讲·尖子班·教师版知识模块一 根与系数的关系 巩固练习【练习1】 ⑴方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( )A .7-B .3-C .7D .3⑵设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.【解析】 ⑴D ;⑵7.【练习2】 已知α,β是一元二次方程210x x +-=的两个根,求5325αβ+的值.【解析】 因为α是方程210x x +-=的根,所以210αα+-=,即21αα=-.()24211223ααααα=-=-+=-, ()542232353αααααααα=⋅=-=-=-.同理()322121ββββββββ=⋅=-=-=-.所以()()()5325253521101121αβαβαβ+=-+-=+-=-.【练习3】 已知关于x 的方程()2120x k x k -+++=的两个实数根的平方和等于6,求k 的值.【解析】 设方程的两个根为1x ,2x ,则121x x k +=+,122x x k =+.∵22126x x +=,∴()2121226x x x x +-=.∴()()21226k k +-+=.解得13k =,23k =-.又()()2142k k ∆=+-+. 当3k =时,0∆<,所以,3k =不符合题意.舍去.当3k =-时,0∆>,所以,3k =-即为所求.复习巩固12初二春季·第11讲·尖子班·教师版题型二 一元二次方程的应用问题 巩固练习【练习4】 某市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少.【解析】 设平均每次降价的百分率为x ,则2200(1)128x -=,即10.8x -=±,解得1 1.8x =(舍去),20.220%x ==答:这种药品平均每次降价20%.【练习5】 一条长64m 的铁丝被剪成两段,每段均折成一个正方形,若两个正方形的面积和等于2160cm ,求这两个正方形的边长,【解析】 设一个正方形的边长为x cm ,则另一个正方形的边长是644(16)cm 4x x -=-. ∴22(16)160x x +-=,整理,得216480x x -+=,解得12412x x ==,,则1612x -=或164x -=.答:这两个正方形的边长分别为4cm ,12cm .第十六种品格:诚信感恩对手读完《感恩对手》这本书后,它让我明白了对手的存在是一种必然。