医学统计学9直线相关与回归
- 格式:ppt
- 大小:2.17 MB
- 文档页数:61
1、标准正态分布(u分布)与t分布有何异同?相同点:集中位置都为0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(自由度是无限大时)不同点:t分布是一簇分布曲线,t 分布的曲线的形状是随自由度的变化而变化,标准正态分布的曲线的形状不变,是固定不变的,因为它的形状参数为1。
3、简述直线回归与直线相关的区别。
1资料要求上不同:直线回归分析适用于应变量是服从正态分布的随机变量,自变量是选定变量;直线相关分析适用于服从双变量正态分布的资料。
2 两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,回归系数越大回归直线越陡峭,表示应变量随自变量变化越快;相关系数是表明两个变量之间相关的方向和紧密程度的,相关系数越大,两个变量的关联程度越大。
第一章医学统计中的基本概念2、抽样中要求每一个样本应该具有哪三性?从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。
(1)代表性: 就是要求样本中的每一个个体必须符合总体的规定。
(2)随机性: 就是要保证总体中的每个个体均有相同的几率被抽作样本。
(3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度。
由于个体之间存在差异, 只有观察一定数量的个体方能体现出其客观规律性。
每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生困难,所以应以“足够”为准。
需要作“样本例数估计”。
3、什么是两个样本之间的可比性?可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
实习一统计研究工作的基本步骤1、什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是运用统计学原理和方法研究生物医学资料的搜索、整理、分析和推断的一门学科统计学:是研究数据的收集、整理、分析与推断的科学。
卫生统计学:是把统计理论、方法应用于居民健康状况研究、医疗卫生实践、卫生事业管理和医学科研的一门应用学科。
第九章医学统计学的基本内容一、单选题1.以下有关小概率事件的描述,正确的是A、在一次抽样中就会发生的事件B、在一次抽样中发生的概率≤0.05C、在一次抽样中不可能发生的事件D、即使多次抽样也不可能发生的事件E、在多次抽样中发生的概率≤0.052.医学统计学的研究内容是A、样本B、个体C、变量之间的相关关系D、总体E、资料或信息的收集、整理和分析3.医学统计工作的基本步骤是A、搜集资料、整理资料、描述资料、设计B、搜集资料、整理资料、推断资料、设计C、设计、搜集资料、整理资料、分析资料D、统计描述、统计推断、统计设计E、搜集资料、描述资料、推断资料4.用某种新药治疗白血病患者50名,治疗的结果如下死亡恶化好转显效治愈治疗结果369284治疗人数该资料的类型是A、计量资料B、计数资料C、等级资料D、分层资料E、定量资料5.随机样本的特点是A、能消除系统误差B、能消除随机测量误差C、能减少抽样误差D、能消除研究者有意无意带来的样本偏性E、能消除过失误差6.统计学中的总体是指A、任意想象的研究对象的全体B、根据研究目的确定的研究对象的全体C、根据地区划分的研究对象的全体D、根据时间划分的研究对象的全体E、根据人群划分的研究对象的全体7.为了由样本推断总体,样本应该是A、总体中任意的一部分B、总体中的典型部分C、总体中有意义的部分D、总体中有价值的一部分E、总体中有代表性的一部分8.抽样误差是指A、不同样本指标之间的差别B、样本指标与总体指标之间由于抽样产生的差别C、样本中每个个体之间的差别D、由于抽样产生的观测值之间的差别E、系统误差与过失误差之间的差别9.可以通过增加例数的方法减少的误差是A、系统误差B、随机测量误差C、抽样误差D、过失误差E、以上均无法减少10.关于统计学中的过失误差、系统误差、随机测量误差和抽样误差,正确的是A、4种误差均不可避免B、系统误差和随机测量误差不可避免C、系统误差和抽样误差不可避免D、随机测量误差和抽样误差不可避免E、过失误差和抽样误差不可避免11. P(A)=0时,表示事件A、很可能发生B、极可能发生C、不可能发生D、在一次抽样中不会发生E、已经发生二、判断题1.概率是描述随机事件发生的可能性大小的一种度量,用P表示,其值介于0.01~100之间。
简答题1、统计资料可以分成几类?答: 根据变量值的性质,可将统计资料分为数值变量资料(计量资料),无序分类变量资料(计数资料),有序分类变量资料(等级资料或半定量资料)。
用定量方法测定某项指标量的大小,所得资料,即为计量资料;将观察对象按属性或类别分组,然后清点各组人数所得的资料,即为计数资料;按观察对象某种属性或特征不同程度分组,清点各组人数所得资料称为等级资料。
2、不同类型统计资料之间的关系如何?答: 根据分析需要,各类统计资料可以互相转化。
如男孩的出生体重,属于计量资料,如按体重正常与否分两类,则资料转化为计数资料;如按体重分为: 低体重,正常体重,超体重,则资料转化为等级资料。
计数资料或等级资料也可经数量化后,转化为计量资料。
如性别,结果为男或女,属于计数资料,如男性用0(或1),女性用1(或0)表示,则将计数资料转化为计量资料。
3、频数分布有哪两个重要特征?答:频数分布有两个重要特征:集中趋势和离散趋势,是频数分布两个重要方面。
将集中趋势和离散趋势结合起来分析,才能全面地反映事物的特征。
一组同质观察值,其数值有大有小,但大多数观察值集中在某个数值范围,此种倾向称为集中趋势。
另一方面有些观察值较大或较小,偏离观察值集中的位置较远,此种倾向称为离散趋势。
4、标准差有什么用途?答: 标准差是描述变量值离散程度常用的指标,主要用途如下: ①描述变量值的离散程度。
两组同类资料(总体或样本)均数相近,标准差大,说明变量值的变异度较大,即各变量值较分散,因而均数代表性较差;反之,标准差较小,说明变量异度较小,各变量值较集中在均数周围,因而均数的代表性较好。
②结合均数描述正态分布特征;③结合均数计算变异系数CV;④结合样本含量计算标准误。
5、变异系数(CV)常用于哪几方面?答: 变异系数是变异指标之一,它常用于以下两个方面: ①比较均数相差悬殊的几组资料的变异度。
如比较儿童的体重与成年人体重的变异度,应使用CV;②比较度量衡单位不同的几组资料的变异度。
统计学中的线性回归与相关系数统计学是一门研究数据收集、分析和解释的学科,而线性回归和相关系数则是统计学中两个重要的概念与方法。
线性回归和相关系数可以帮助我们理解和解释数据之间的关系,从而作出准确的预测和结论。
本文将详细介绍统计学中的线性回归和相关系数,并讨论它们的应用和限制。
一、线性回归分析线性回归是一种用来建立两个变量之间关系的统计模型。
其中一个变量被称为“自变量”,另一个变量被称为“因变量”。
线性回归假设自变量和因变量之间存在着线性关系,通过拟合一条直线来描述这种关系。
线性回归模型可以用公式表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差。
利用线性回归模型,我们可以估计回归系数的值,并通过回归系数来解释自变量对因变量的影响程度。
回归系数β1表示自变量对因变量的平均改变量,β0表示当自变量为0时,因变量的平均值。
线性回归模型的拟合程度可以通过R方值来衡量,R方值越接近1,表明模型拟合程度越好。
线性回归的应用广泛,例如经济学中的GDP与人口增长率之间的关系,医学研究中的药物剂量与治疗效果之间的关系等等。
通过线性回归,我们可以从大量的数据中提取有用的信息,并利用这些信息做出合理的预测和决策。
二、相关系数分析相关系数是衡量两个变量之间相关关系强度的指标。
相关系数的取值范围为-1到1,-1表示完全负相关,1表示完全正相关,0表示无相关关系。
相关系数可以用来描述变量之间的线性关系,并判断这种关系的强度和方向。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于连续变量且呈线性分布的情况,而斯皮尔曼相关系数适用于顺序变量或非线性关系的情况。
相关系数的计算方法涉及到协方差和标准差的概念,具体计算方法可以参考统计学教材或统计学软件。
相关系数的应用广泛,可以用来进行变量筛选、研究变量之间的关系、评估模型拟合程度等。
在金融领域,相关系数可以用来衡量股票之间的关联性,帮助投资者进行风险控制和资产配置。
医学统计学简答题1.简述标准差、标准误得区别与联系?区别:(1)含义不同:标准差S表示观察值得变异程度,描述个体变量值(x)之间得变异度大小,S越大,变量值(x)越分散;反之变量值越集中,均数得代表性越强、标准误。
.估计均数得抽样误差得大小,就是描述样本均数之间得变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。
(2)与n得关系不同: n增大时,S趋于σ(恒定),标准误减少并趋于0(不存在抽样误差)。
(3)用途不同:标准差表示x得变异度大小、计算变异系数、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间与假设检验。
联系:二者均为变异度指标,样本均数得标准差即为标准误,标准差与标准误成正比。
2.简述假设检验得基本步骤。
1.建立假设,确定检验水准。
2.选择适当得假设检验方法,计算相应得检验统计量、3、确定P值,下结论3.正态分布得特点与应用:特点: 1、集中性:正态曲线得高峰位于正中央,即均数所在得位置;2、对称性:正态分布曲线位于直角坐标系上方,以x=u为中心,左右对称,曲线两端永远不与横轴相交;3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降;4、正态分布有两个参数,即均数μ与标准差σ,可记作N(μ,σ):均数μ决定正态曲线得中心位置;标准差σ决定正态曲线得陡峭或扁平程度、σ越小,曲线越陡峭;σ越大,曲线越扁平;5、u变换:为了便于描述与应用,常将正态变量作数据转换;应用: 1。
估计医学参考值范围2、质量控制3。
正态分布就是许多统计方法得理论基础4.简述参考值范围与均数得可信区间得区别与联系可信区间与参考值范围得意义、计算公式与用途均不同、1。
从意义来瞧95%参考值范围就是指同质总体内包括95%个体值得估计范围,而总体均数95%可信区间就是指95%可信度估计得总体均数得所在范围2、从计算公式瞧若指标服从正态分布,95%参考值范围得公式就是:±1.96s。
标准正态分布与正态分布的关系:对正态分布的(X-μ)/σ进行u 的变换,u=(X-μ)/σ,则正态分布变换为μ=0,σ=1的标准正态分布,亦称u 分布。
正态分布的特征:(1)正态曲线在横轴上方均数处最高。
(2)正态分布以均数为中心,左右对称。
(3)正态分布有2个参数,即均数μ和标准差σ。
μ是位置参数,当σ固定不变时,μ越大,曲线沿横轴越向右移动;反之,μ越小,则曲线沿横轴越向左移动。
σ是形状参数(亦称变异度参数),当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭。
通常用N(μ,σ2)表示均数为μ,方差为σ的正态分布。
(4)正态分布在μ±σ处各有一个拐点。
(5)正态曲线下面积的分布有一定规律。
t 分布:将x 看成变量值,那么可将正态变量进行u 变换(u=x -μ/σ)后,也可将N (μ,σ2x)变换成标准正态分布N (0,1)。
常用s 作为σ的估计值,统计量为t ,此分布为t 分布。
统计量: t=xs x μ-t 分布特征为:1.以0为中心,左右对称的单峰分布。
2.t 分布曲线形态变化与自由度的大小有关。
自由度越小, t 值越分散,曲线越低平;自由度逐渐增大时,则 t 分布逐渐逼近 标准正态分布。
t 分布即为u 分布。
二项分布:对于二项分类变量,若某结果发生的概率为π,其对立结果发生的概率为(1-π),且各次试验相互独立时,这种试验在统计学上称为贝努里试验,二项分布概率函数的公式:P (x )=C n xπx(1-π)n-x性质:μ=n πσ=π)π(-1n若用相对数表示,即样本率的均数和标准差分别为,则 μp=πσp=n /1π)π(-π未知时,用样本率P 作为π的估计值,则 Sp=n p p /)1(-二项分布的特点1、当 π=0.5时,无论n 大小,其图形均呈对称分布;2、当π≠0.5,且n 小时呈偏态分布;随n 不断增大,逐渐趋于对称分布;当n →∞时,逼近正态分布。
数据的相关性与回归线分析数据在现代社会中扮演着至关重要的角色。
它们可以帮助我们理解事物之间的关系,揭示隐藏的模式和趋势。
而数据的相关性和回归线分析是统计学中两个重要的概念,它们可以帮助我们更好地理解数据之间的关系。
一、相关性分析相关性是指两个或多个变量之间的关联程度。
在统计学中,我们使用相关系数来衡量变量之间的相关性。
常见的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数是用来衡量两个连续变量之间线性相关程度的统计量。
它的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示没有线性相关性。
通过计算皮尔逊相关系数,我们可以判断两个变量之间的关系是正相关还是负相关,并且可以根据相关系数的大小来衡量相关性的强弱。
斯皮尔曼相关系数则是用来衡量两个变量之间的单调关系的统计量。
它不仅可以捕捉到线性关系,还可以捕捉到非线性关系。
与皮尔逊相关系数不同,斯皮尔曼相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示没有单调关系。
二、回归线分析回归线分析是一种用来建立变量之间关系的模型。
它可以帮助我们预测一个变量如何随着另一个变量的变化而变化。
回归线可以是线性的,也可以是非线性的。
线性回归是最常见的回归分析方法之一。
它假设变量之间存在线性关系,通过拟合一条直线来描述这种关系。
线性回归可以帮助我们预测一个变量的值,给定其他变量的值。
通过回归线的斜率和截距,我们可以了解到变量之间的变化趋势和关系的强弱。
非线性回归则假设变量之间存在非线性关系。
它可以通过拟合曲线来描述变量之间的关系。
非线性回归可以更好地适应复杂的数据模式,但也更加复杂和困难。
三、数据的相关性与回归线分析的应用数据的相关性和回归线分析在各个领域都有广泛的应用。
在经济学中,相关性和回归线分析可以帮助我们理解不同经济指标之间的关系,预测未来的经济走势。
在医学研究中,相关性和回归线分析可以帮助我们找到疾病与风险因素之间的关系,指导疾病的预防和治疗。
1、标准正态分布(u分布)与t分布有何异同?相同点:集中位置都为0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(自由度是无限大时)不同点:t分布是一簇分布曲线,t 分布的曲线的形状是随自由度的变化而变化,标准正态分布的曲线的形状不变,是固定不变的,因为它的形状参数为1。
3、简述直线回归与直线相关的区别。
1资料要求上不同:直线回归分析适用于应变量是服从正态分布的随机变量,自变量是选定变量;直线相关分析适用于服从双变量正态分布的资料。
2 两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,回归系数越大回归直线越陡峭,表示应变量随自变量变化越快;相关系数是表明两个变量之间相关的方向和紧密程度的,相关系数越大,两个变量的关联程度越大。
第一章医学统计中的基本概念2、抽样中要求每一个样本应该具有哪三性?从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。
(1)代表性: 就是要求样本中的每一个个体必须符合总体的规定。
(2)随机性: 就是要保证总体中的每个个体均有相同的几率被抽作样本。
(3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度。
由于个体之间存在差异, 只有观察一定数量的个体方能体现出其客观规律性。
每个样本的含量越多,可靠性会越大,但是例数增加,人力、物力都会发生困难,所以应以“足够”为准。
需要作“样本例数估计”。
3、什么是两个样本之间的可比性?可比性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
实习一统计研究工作的基本步骤1、什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是运用统计学原理和方法研究生物医学资料的搜索、整理、分析和推断的一门学科统计学:是研究数据的收集、整理、分析与推断的科学。
卫生统计学:是把统计理论、方法应用于居民健康状况研究、医疗卫生实践、卫生事业管理和医学科研的一门应用学科。