趣味数学-消去法
- 格式:doc
- 大小:657.50 KB
- 文档页数:8
奥数消去问题公式奥数中的消去问题可是很有趣的呢!咱们先来说说啥是消去问题。
比如说,小明去买苹果和香蕉,3 个苹果和 2 根香蕉一共花了 18 元,5 个苹果和 2 根香蕉一共花了 26 元。
那一个苹果多少钱?这就是一个典型的消去问题。
解决消去问题,咱们得靠一些公式和方法。
最常用的就是“加减消元法”。
就拿前面买水果的例子来说,咱们来看看怎么用加减消元法。
5 个苹果和 2 根香蕉花了 26 元,3 个苹果和 2 根香蕉花了 18 元。
那用 26元减去 18 元,得到的就是 2 个苹果的价钱,也就是 8 元,所以一个苹果就是 4 元。
再比如说,有这样一道题:甲买了 2 支铅笔和 3 个笔记本花了 15 元,乙买了 4 支铅笔和 5 个笔记本花了 27 元。
那一支铅笔和一个笔记本分别多少钱?这时候,咱们可以先把甲的情况乘以 2,得到 4 支铅笔和 6 个笔记本花了 30 元。
然后用这个和乙的情况相减,30 元减去 27 元,就是 1个笔记本的价钱,也就是 3 元。
知道了笔记本的价钱,再代入甲的情况,就能算出铅笔的价钱啦。
我之前教过一个小朋友做这类题,他一开始总是晕头转向的。
我就跟他说:“你就把这些数字当成你的小伙伴,它们在跟你玩捉迷藏,你得把它们找出来排好队。
”这孩子听了之后,好像突然来了劲,瞪着大眼睛认真思考起来。
后来经过几次练习,他终于掌握了诀窍,每次做题都特别积极,还跟我说:“老师,我觉得做奥数题就像破案一样,太有意思啦!”咱们再来说说“代入消元法”。
比如这道题:3x + 2y = 11 ,x + y = 5 。
咱们可以从第二个式子得出 x = 5 - y ,然后把这个式子代入第一个式子,就能求出 y 的值,再求出 x 的值。
还有“等式变形消元法”,比如 2x + 3y = 18 ,4x - 3y = 6 。
这时候可以把两个式子相加,消去 y 。
总之,消去问题的公式和方法就是帮助我们找到那些隐藏在数字背后的小秘密。
第一讲:消去法解题【例题精讲】例1、3个水瓶和20个茶杯共134元;同样的3个水瓶和16个茶杯,共用去118元。
水瓶和茶杯的单价各是多少元?思路分析:通过两组条件的对比,可以发现水瓶的个数相同,之所以两次钱数相差134-118=16元,是因为两次买的茶杯个数相差20-16=4个,这样可求出一个水杯的价钱。
例2、小军第一次买3个篮球和5个足球共用去480元,第二次买同样的6个篮球和3个足球共用去519元。
篮球和足球的单价各是多少元?思路分析:通过两组条件的对比,可以根据第二次买的篮球是第一次的2倍,设法使两次的篮球个数相同,通过两式相减,消去篮球的个数,然后再求出足球的单价。
例3、某食堂第一次运进大米5袋,面粉7袋,共重1350千克,第二次运进大米3袋,面粉5袋共重850千克,一袋大米和一袋面粉各重多少千克?思路分析:与上题不同,这两组对应数值中,既没有相同的数量关系,也无简单的倍数关系,因此解题的关键就是设法使两次运进的大米或面粉的袋数相同,然后求解。
可以将第一次的大米和面粉的袋数及重量都扩大3倍,第二次的都扩大5倍,再进行解答。
例4、5头牛、6匹马每天吃草139千克,6头牛、5匹马每天吃草125千克,1头牛、1匹马每天各吃草多少千克?思路分析:可以参照上题的方法解答,但由于条件特殊,我们可以解答的更为简便些。
若将两组条件分别相加,可得到11头牛和11匹马共吃草139+125千克,进而知道1头牛1匹马共吃草24千克,那么5头牛、5匹马一天共吃草就是120千克,最后利用条件可以求出1匹马、1头牛每天的吃草量。
【模仿练习】1、买3支钢笔和2瓶墨水要付29元,买同样的5支钢笔和2瓶墨水要付钱43元。
1支钢笔和1瓶墨水各多少元?2、2捆科技书,5捆故事书共重26千克,3捆故事书和2捆科技书共重18千克。
1捆科技书和1捆故事书各重多少千克?3、小明买了8盒糖和5盒蛋糕共用去171元;乙买了5盒糖和2盒蛋糕共用去90元。
三年级奥数--第四讲-消去法解题第四讲消去法解题2007-07-31 14:02:22| 分类:五年级奥数|字号订阅有这样一个问题,小朋友你能不能很快回答出来?张老师给李明5元钱,让他去买10支铅笔,5本练习本。
李明听错了,买回来4支铅笔,5本练习本,并找给老师2.4元。
求铅笔和练习本的单价。
在这一类的问题中,常常会同时出现两个或两个以上的未知的数量,并给出不同情形下数量间的关系。
解决这一类问题,通常采用“消去法”——即通过分析比较,去同求异,设法消去一个未知数量,从而将问题简化。
【例题解析】例1 小华买了3把小刀和4块擦皮,共用去1元。
小芳买了同样的6把小刀和4块擦皮,共用去1.6元。
小刀和擦皮单价分别是多少元?分析题目给出了两种不同的买法,列举如下:3把小刀+4块擦皮=1元6把小刀+4块擦皮=1.6元对比发现:两种买法中,擦皮的块数是一样的,而小刀的个数不一样。
多买3把小刀,就要多用去1.6-1=0.6元,所以1把小刀的价钱是:0.6÷3=0.2元,从而可计算出1块擦皮的价钱应是:(1-0.2×3)÷4=0.1元。
解:(1.6-1)÷(6-3)=0.2(元)……小刀单价(1-0.2×3)÷4=0.4÷4=0.1(元)……擦皮单价答:每把小刀0.2元,每把擦皮0.1元。
【边学边练】已知:3A+7B=101,9A+7B=149。
那么10A-5B=()。
例2 食堂第一次运进大米5袋,面粉9袋,共重850千克。
第二次运进大米7袋,面粉3袋,共重710千克。
大米和面粉每袋各重多少千克?分析对比两种情况,大米和面粉的袋数都不相同,该怎样消去其中一个数量呢?可以先转化条件:既然7袋大米+3袋面粉=710千克,那么再继续运进7袋大米和3袋面粉,又运进710千克。
即:14袋大米+6袋面粉=1420千克;同理:21袋大米+9袋面粉=2130千克;对比:5袋大米+9袋面粉=850千克;可得:1袋大米=(2130-850)÷(21-5)=1280÷16=80千克。
趣味数学之消去法解题(消去问题一)1、李阿姨买了3盒巧克力和5千克果冻,一共花了195元;沈叔叔买了同样多的3盒巧克力和3千克果冻,一共花了159元。
问每盒巧克力和每千克果冻各多少钱?2、买3千克茶叶和5千克糖,一共用去420元,买同样多的3千克茶叶和3千克糖,一共用去384元。
问每千克茶叶和糖各多少元?3、食堂第一次运来6袋大米和4袋面粉,一共重400千克;第二次又运来9袋大米和4袋面粉,一共重550千克。
问每袋大米和每袋面粉各重多少千克?4、小明和小红去文具店买回了一些铅笔盒橡皮,同学们问两样文具的单价,小明说:具体价钱我忘记了,反正我买了3支铅笔和1块橡皮,共花了2.30元,小红买了4支铅笔和1块橡皮,共花了2.80元。
你能算出铅笔和橡皮的单价各是多少吗?(消去问题二)5、育才小学体育组第一次买了4个篮球和3个排球,共用去141元;第二次买了5个篮球和4个排球,共用去180元。
问每个篮球和每个排球各多少元?6、2千克水果糖和5千克饼干共64元,用同样的3千克水果糖和4千克饼干共68元。
问每千克水果糖和每千克饼干各多少元?7、大家去文风公园游玩,3个大人和8个小孩共需门票93元,5个大人和15个小孩共需门票165元。
问一个大人和一个小孩的门票各需多少元?8、春节快到了,妈妈到菜场买了些鱼和肉,准备过年。
如果买了6千克鱼和8千克肉需要320元,买了4千克鱼和12千克肉需要400元。
那么买1千克鱼和1千克肉分别各需要多少元?(奥赛题)9、妈妈在商店买了2条床单和3条毛巾共用了195元;王阿姨买了同样的1条床单和4条毛巾共用了135元。
问每条床单和每条毛巾各多少元?。
对应法(消去法)【知识要点】“对应”是解决数学问题时常用的一种方法,有很多应用题,给定的量所对应的数量关系是在变化的,为了使变化的数量看得更清楚些,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到解题方法,这种解题的思维方法叫对应法。
五(1)班举行了一次毕业班座谈会.同学们买来一些水果,其中苹果和梨共155个,梨和香蕉共有108个,苹果和香蕉共有123个。
小朋友,你能算出苹果、梨各有多少个吗?像这样的应用题,有两个或两个以上的未知量,解题时通过一定的方法,消去一个未知量,只保留一个未知量,叫做消去问题。
分析消去问题时,可以先整理条件,比较出两个未知量的联系和区别,再解答。
1.把两个未知量中其中一个未知量转化成相等的量。
2.用消元的方法消去一个量。
3.先求出保留的未知量,再求出消去的未知量。
【一星级题】1.王老师到体育用品商店为学校买球,计算一下,要买5个足球和3个篮球需要付244元;而买2个足球和3个篮球只需付139元,请你算算,足球和篮球每个各多少元?2.如果购8个台灯,4盏日光灯共付392元;购买4个台灯,4盏日光灯需要252元,那么台灯的单价是多少元?日光灯的单价呢?3.○+○=△,△+△+△=□,则□=()个○。
4.食堂第一次买回10大米和6袋面粉共重430千克,第二天买回10袋大米和8袋面粉共重490千克,求每袋大米和每袋面粉各重多少千克?5.20辆小车和1辆卡车一次可运货45吨,25辆小车和1辆卡车一次可运货55吨,每辆小车和每辆卡车每次分别运货多少吨?6.小华第一次买5支铅笔,第二次买9支同样的铅笔,第二次比第一次多花6角钱,每支铅笔多少钱?7.买5个排球和3个篮球需付100元,而买2个排球和3个篮球只需付67元,则排球和篮球的单价分别是多少元?8.学校上学期买了4个足球和2个排球,共付人民币420元。
本学期又买回1个足球和2个篮球共付人民币240元。
一个篮球和一个足球的售价各是多少元?9.已知买一块橡皮和一支铅笔要2角9分,买三块橡皮和一支铅笔要3角9分,求橡皮和铅笔的单价各是多少?10.买5千克苹果和6千克桔子共用21元,买9千克苹果和6千克桔子共用33元,买1千克苹果,1千克桔子分别用多少元?11.买5千克苹果和6千克桔子共用21元,买5千克苹果和4千克桔子共用19元,买1千苹果,1千克桔子分别用多少元?12.学校课外小组第一次买了3瓶墨水和4支圆珠笔,共付10元。
第十五讲消去法解题专题简析:在有些应用题中,给出了两个或两个以上的未知量间的关系,要求出这些未知的数量。
解题时可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
例1、林超在商店里买了4个修正带和3支墨水笔,共付钱18元。
王斌买了同样的2个修正带和3支墨水笔,共付了12元。
1个修正带和1支墨水笔各是多少钱?分析与解答:我们先来把两个人买的修正带和墨水笔的情况用两个等式表示,并列在一起进行比较:4个修正带+3支墨水笔=18元2个修正带+3支黑水笔=12元为什么王斌比林超少付18-12=6(元)钱呢?从题中我们不难发现两人买的墨水笔的数量是相同的,但是他们买的修正带却是不同的,那么我们可以知道少付6元的原因就是少买了2个修正带,即2个修正带的钱正好是6元。
可以用下面的竖式来表示:4个修正带+3支墨水笔=18元—2个修正带+3支黑水笔=12元2个修正带=6元从而我们找到解题法如下:(18-12)÷(4-2)=3(元)…….1个修正带的钱(12-3×2)÷3=2(元)……1支墨水笔的钱答:一个修正带3元。
一支墨水笔2元。
课堂练习:1、学校第一次买了2只热水瓶和6只玻璃杯,共花去96元;第二次又买了同样的2只热水瓶和10只玻璃杯,共用去128元。
一只热水瓶和一只玻璃杯各是多少元?2、买5本练习本和4本征文本需要19元,买同样的8本练习本和4本征文本需要28元。
买1本练习本和1本征文本各需要多少钱?例2、买4个篮球和5个足球共用去549元,买同样的8个篮球和7个足球共用去903元。
篮球和足球的单价各是多少元?分析与解答:这个题目和例1有些不同,但同样我们也是把题目中的数量关系先列出来:4个篮球+5个足球=549元(1)8个篮球+7个足球=903元(2)从2个算式中我们可以知道,篮球和足球两次买的都没有相同的,但我们可以发现第二次买的篮球刚好是第一次的2倍,因此利用这个条件我们可以把第一个算式中的篮球也变成8个,把第一次用去的钱扩大2倍,即549×2=1098元,因此篮球和足球的个数也扩大2倍,即篮球变成8个,而足球变成10个,也就是说8个篮球和10足球花去1098元,这时我们再和算式(2)去比较:8个篮球+10个足球=1098元—8个篮球+7 个足球= 903元3个足球=195元可见1098元与903元的差就是3个足球的价钱,因此可得:(549×2-903)÷(2×5-7)=65(元)……每个足球的价钱。
趣味数学之消去法
温故知新,转换思维
对于一些并列条件的应用题,根据已知条件,可以把题中的数量关系对应的排列起来,再根据题中数据特点,通过分析比较,去同存异,设法抵消掉其中的一个或两个未知数,求出其它的未知数,这种解决问题的策略方法就叫做消去法。
在小学,对于这类问题的解决方式通常是把已知条件写成数量关系式并对这些关系式进行分析、对比,再利用运算把关系式进行变形,消去其中的一个未知量,达到解题效果。
在初中,对于这类问题,我们往往根据题目中的等量关系,列出含有两个或者两个以上的方程组,然后根据方程组的特征,采用代入法或加减法,转变为只含有一个未知数的方程,达到解题效果。
消去法是一种很重要的数学思想方法,是分析问题、解决问题的基本思想方法之一,也是初中解答一次方程组的主要方法之一,适当渗透,有利于后期学习。
1、6筐花生和6筐大豆共重96千克,1筐花生和1筐大豆共重()千克。
2、5件上衣和5条裤子共值400元,15件上衣和15条裤子共值()元。
学法点击,举一反三
例1 .2条毛巾和3条枕巾共48元,5条毛巾和4条枕巾共78元,,一条毛巾和一条枕巾各多少元?
解析:根据题意,可得出下列等量关系:
2条毛巾的价钱+3条枕巾的价钱=48(元)(1)
5条毛巾的价钱+4条枕巾的价钱=78(元)(2)
精选文库
用等式
2) 减去等式1) 得
3条毛巾的价格+1条枕巾的价格=30(元)3)
把等式3) 的每一个量都乘以3得,
9条毛巾的价格+3条枕巾的价格=90(元)(4)
用等式(4) 减去等式1) 得7条毛巾的价格= 42(元)解:由题意可知,3条毛巾和1条枕巾的价格:78-48=30(元)9条毛巾和3条枕巾的价格:30⨯3=90(元)
7条毛巾的价格:90-48=42 (元)
1条毛巾的价格:42÷7=6(元)
1条枕巾的价格:(48-6⨯2)÷3=12(元)
答:1条毛巾的价格是6元,1条枕巾的价格是12元。
例2.下面是老牛和小马的一段对话:
解析:根据对话,可得出下列等量关系:
老牛驮的包裹数 + 小马驮的包裹数=11(个)(1) 老牛驮的包裹数 - 小马驮的包裹数=3(个) (2)
等式 (1) +等式 (2) 得,2倍的老牛驮的包裹数=11+3 (个) (3) 等式(3)除以2,可以求得老牛驮的包裹,进而求出小马驮的包裹数。
除了上述分析思路,本题还可以列方程组求解。
解:设老牛驮的包裹数为x ,小马驮的包裹数为y.
(1) + (2)得,2x =11+3
所以x =7
把x =7带入(1)得,7+y =11 所以 y =4
⎩⎨⎧==4
7y x
答:老牛驮的包裹数为7,小马驮的包裹数为4.
3头牛和15只羊一天共吃草67.5kg ,1头牛一天吃的草是1只羊一天吃的草 的2.5倍,1头牛和1只羊每天各吃青草多少千克?
例3.小明和甜甜的压岁钱共计320元,小瑞和甜甜的压岁钱共计290元,小明和小瑞的压岁钱共计330元,求他们三个每个人的压岁钱数目。
解析:本题中有三个等量关系:
小明的压岁钱+甜甜的压岁钱=320 (1) 甜甜的压岁钱+小瑞的压岁钱=290 (2) 小明的压岁钱+小瑞的压岁钱=330 (3)
解:设小明的压岁钱为x ,甜甜的压岁钱为y ,小瑞的压岁钱为z.
(1)+(2)+(3)得, 2x +2y +2z =940 (4) (4)÷2,得x +y +z = 470 (5) (5) - (1) 得 z=150 (5) - (2) 得 x=180 (5) - (3) 得 y=140
⎪⎩
⎪
⎨⎧===150140180z y x
答:小明的压岁钱为180元,甜甜的压岁钱为140元,小瑞的压岁钱为150元.
妈妈去商店买水果,第一次买回苹果、橘子各1kg ,共10元;第二次买回 橘子、梨各2千克,共用18元;第三次买回苹果、梨2千克,共用22元, 求三种水果的单价各是多少?
总结新知,提升自我
应用消去法解答较复杂的的应用题,需要运用到等式的基本性质:在等式的两边同时乘以或除以同一个数(0除外),等式仍然成立。
根据这个性质可以将题目中所给的条件适当转化,设法使题中某一项在前后不同的等量关系中,具有相等的数量,从而可以抵消掉这一项。
解题策略:先梳理好题目给出的条件,列出相应的等量关系式,在每个等量关系式中按相同的顺序排列不同的未知项,便于分析、比较、转化条件、抵消未知项、求解。
学以致用,回归生活
1.填空
(1)小明在商店里买了4本练习本和3块橡皮,共付11元,其中一本练习本2元,一块橡皮()元。
(2)一袋面粉和一袋大米共重72千克,4袋面粉和4袋大米共重()千克。
(3)3行柳树和3行杨树一共有120棵,7行柳树和7行杨树共有()棵。
2. 兰兰和爸爸一起去超市买糖果,原打算买2千克奶糖和3千克酒心糖,共计
63元,结果他们买了2千克奶糖和5千克酒心糖,一共付出93元,求每千克奶糖多少元?
3. 2头大象和3条蓝鲸共重280吨,6头大象和9条蓝鲸共重多少吨?
4.丁红买了8盒糖和5盒蛋糕用去155元,王倩买同样的8盒糖和4盒蛋糕用
去140元,一盒糖和一盒蛋糕各多少元?
5.2篮鸡蛋和3篮鸭蛋共有135个,4篮鸡蛋和5篮鸭蛋共有245个,一篮鸡蛋和一篮鸭蛋各多少个?
6. 买20千克面粉和35千克大米共花145元,买10千克面粉和25千克大米共花95元。
面粉和大米各多少元?
7. 一所中学食堂本周运来大米7袋面粉4袋共重1640千克,上周运来大米3袋面粉6袋共重1560千克,每袋大米、每袋面粉各重多少千克?
8. 育才小学体育组两次购买篮球和足球情况如下图,求篮球和足球的单价多少元?
9. 6本文艺书和3本科技书共84元,3本文艺书和1本科技书36元,一本文艺
书和一本科技书各多少元?
10. 甲乙两数的和是36,乙丙两数的和是27,甲丙两数的和是23,甲、乙、丙三数
各是多少?
学以致用,能力提升
1. 妈妈去商店买水果,第一次买回苹果、橘子、梨各2千克,共14元;第二次买回苹果4千克、橘子3千克、梨2千克,共用21.5元;第三次买回苹果5千克、橘子4千克、梨2千克,共用26元。
求三种水果的单价各是多少?
2.有甲、乙、丙、丁四袋小球,甲、乙两袋共有83个小球,乙、丙两袋共有86个,丙、丁两袋共有88个。
那么甲、丁两袋共有多少个?。