高中数学圆锥曲线轨迹问题题型分析
- 格式:doc
- 大小:591.00 KB
- 文档页数:8
圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。
高考数学圆锥曲线中的轨迹问题专题一、整理方法提升能力曲线轨迹方程的探求有两种题型,第一种题型是曲线类型已知,该题型常用的方法是找条件或用待定系数法,难度不大;第二种题型是曲线类型未知,该题型常用的方法有以下3种:1.定义法:如果所给的几何条件能够符合一些常见定义(如圆、椭圆、双曲线、抛物线等曲线的定义),则可从定义出发直接写出轨迹方程,这种方法叫做定义法.2.直接法:如果动点运动的条件有明显的等量关系,或者是一些几何量的等量关系,这些条件简单明确,易于表达成含未知数x、y的等式,从而得到轨迹方程,这种方法叫做直接法.3.参数法:求解轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x、y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程,这种方法叫做N-个方程.常参数法.一般来说,引进了N个未知数与参数,要得到未知数x与y之间的关系,需要找1见的消参手法是:加、减、乘、除、平方、平方相加、平方相减以及整体消参等.相关点代入法、交轨法是参数法的一种特殊情况.例1例2例3二、练习巩固 整合提升练习1:已知圆M :()2211x y ++=,圆N :()2219x y -+=,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求AB . 练习2:已知椭圆C :22142x y +=,()00,P x y 为椭圆C 外一点,过点P 作椭圆C 的两条切线PA 、PB ,其中A 、B 为切点.(1)当点()00,P x y 为定点时,求直线AB 的方程;(2)若PA 、PB 相互垂直,求点P 的轨迹方程.练习3:如图,抛物线1C :24x y =和2C :22x py =-(0p >).点()00,M x y 在抛物线2C 上,过M作1C 的切线,切点分别为A 、B (M 为原点O 时,A 、B 重合于O ).当01x =MA 的斜率为12-. (1)求p 的值;(2)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(A 、B 重合于O 时,中点为O ).。
圆锥曲线技巧——轨迹方程一、直接翻译法题型:动点M 满足。
条件,可由M 坐标直接翻译为等式关系。
即设M (x ,y ),f(x,y)=01、已知点A(-2,0),B(2,0),动点M 满足直接AM 与 直线BM 的斜率之积为-21,记M 的轨迹为曲线C ,求C 的轨迹方程。
(*:斜率要注意存在问题;本题答案:x 2/4+y 2/2=1(x ≠±2))2、已知点A (0,-1),点B 在直线y=-3上,动点M 满足MB ∥OA 且AB MA •=BA MB •,求动点M 轨迹方程。
(本题答案:0842=--y x )3、已知圆O :0222=-+y x ,圆O ':010822=+-+x y x ,由点P 向两圆引切线长相等,求点P 的轨迹方程。
二、四大定义法如果吻合曲线四大定义,则直接写出曲线方程即可。
例题1:已知点)0,2(),0,2(21F F -,动点P 满足421=+PF PF ,则P 点的轨迹为() 答案:线段例题2:已知点)0,2(),0,2(21F F -,动点P 满足221=-PF PF ,则P 点的轨迹为() 答案:双曲线的一支例题3:已知动点M 到点)1,2(F 的距离和到直线01043:=-+y x l 的距离相等,则M 点的轨迹为()答案:直线1、已知动圆P 过定点A (-3,0),且与圆64)3(:22=+-y x B 相切,求动圆圆心P 的轨迹方程。
2、已知圆25)1(:22=++y x C ,Q 为圆C 上任意一点,点A (1,0),线段AQ 的垂直平分线与CQ 的连接线相交于点M ,求点M 的轨迹方程。
(提示:垂直平分线的性质定理,即垂直平分线上的点到线段两边的距离相等)3、已知动圆P 与圆1)3(:221=++y x O 外切,与圆1)3(:222=+-y x O 内切,求动圆圆心P 的轨迹方程。
4、已知动圆P 与定圆1)2(:22=++y x C 外切,又与定直线1:=x l 相切,求动圆圆心P 的轨迹方程。
圆锥曲线轨迹方程题型一、引言圆锥曲线是高中数学中的一个重要部分,涉及到的内容包括圆、椭圆、双曲线和抛物线等。
其中,求解圆锥曲线轨迹方程是一个常见的题型。
本文将从以下几个方面详细介绍圆锥曲线轨迹方程题型。
二、基本概念1. 圆锥曲线圆锥曲线是由一个平面截过一个双曲面或抛物面得到的图形。
根据截面与轴的位置不同,可以分为四种类型:圆、椭圆、双曲线和抛物线。
2. 坐标系在解决圆锥曲线问题时,通常会使用笛卡尔坐标系或极坐标系。
笛卡尔坐标系是平面直角坐标系,在二维平面上用两个垂直于彼此的轴来确定点的位置。
极坐标系则是以原点为中心,以极径和极角来表示点在平面上的位置。
3. 曲线方程在笛卡尔坐标系下,通常使用一般式或标准式来表示圆锥曲线的方程。
一般式为Ax²+Bxy+Cy²+Dx+Ey+F=0,标准式则是将一般式进行化简后得到的形式。
在极坐标系下,通常使用参数方程或极坐标方程来表示圆锥曲线的方程。
三、圆锥曲线轨迹方程题型1. 求解椭圆轨迹方程椭圆是指平面上到两个定点F1和F2距离之和为常数2a的所有点P的集合。
求解椭圆轨迹方程的方法是先确定坐标系,然后根据定义列出方程,并进行化简。
例如,已知椭圆的焦点为F1(-3,0)和F2(3,0),离心率为1/2,求解该椭圆的轨迹方程。
解法如下:(1)确定坐标系:以焦点连线所在直线为x轴正半轴,以中心点O(0,0)为原点建立坐标系。
(2)列出方程:由于离心率为e=1/2,则有a=3/2。
根据椭圆定义可得:PF1+PF2=2a即√[(x+3)²+y²]+√[(x-3)²+y²]=3将上式平方并移项可得:(x+3)²+y²+(x-3)²+y²+2√[(x+3)²+y²]√[(x-3)²+y²]=9化简得到:x²/9+y²/4=1这就是所求的椭圆轨迹方程。
圆锥曲线中轨迹问题曲线轨迹方程的探求一直是高考中的重点和热点,涉及面广,综合性强。
曲线轨迹方程的探求有两种类型,第一种类型是几何关系已知,轨迹未知;第二种类型是曲线形状已知,求方程。
类型一常用的方法有直接法、相关点法和参数法。
类型二常用的方法有定义法和待定系数法。
(1)直接法:如果题目中的条件有明显的等量关系,或者可以利用平面几何的基本知识推出等量关系,求方程时便可利用直接法。
(2)定义法:如果所给几何条件能够确定符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用曲线定义写出方程,这种方法称为定义法。
(3)相关点法:如果动点P(x,y)依赖于另一动点Q(a,b),而Q(a,b)又在某一已知曲线上运动,则可先列出关于x,y,a,b的方程组,利用x,y表示出a,b,把a,b代入已知曲线方程便可得出动点P的轨迹方程,又称为代入法。
(4)参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程。
(5)交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,如求两动直线的交点时常用这种方法,也可以引入参数来建立这些动曲线的联系,然后消去参数得到轨迹方程。
(6)几何法:利用平面几何或解析几何的有关基础知识去分析图形性质,发现动点运动规律和动点满足的条件,然后求出动点的轨迹方程。
热点透析题型1:直接法【例1】已知定点A、B,且AB=2a。
如果动点P到点A的距离和到点B的距离之比为2:1,求点P的轨迹方程,并说明它表示什么曲线?【解】本题首先要建立坐标系,建立坐标系的要求是保持对称性,以使所求方程简单,容易看出方程表示什么曲线。
如图,取AB所在的直线为x轴,从A到B为正方向,以AB的中点O为原点,以AB的中垂线为y轴,建立直角坐标系,则A(-a,0)、B(a,0)。
设P(x,y)。
∵即化简整理,得,即。
这就是动点P的轨迹方程。
圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。
这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。
3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。
二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。
故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上 ∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。
第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。
求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。
二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
轨迹问题【动点轨迹方程】(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围; (2)求轨迹方程的常用方法:①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数.③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; ④参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)1.(2014年广东高考理科)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程。
解:(1)可知c =又c a =3a ∴=,2224b a c =-=,椭圆C 的标准方程为22194x y +=;(2)设两切线为12,l l ,①当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(3,2)P ±±②当1l 与x 轴不垂直且不平行时,03x ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22194x y +=,得2220000(94)18()9()360k x y kx kx y kx ++-+--=,因为直线与椭圆相切,所以0∆=,得222200009()(94)[()4]0y kx k k y kx --+--=,2200364[()4]0k y kx ∴-+--=,2220000(9)240x k x y k y ∴--+-=所以k 是方程2220000(9)240x x x y x y --+-=的一个根, 同理1k-是方程2220000(9)240x x x y x y --+-=的另一个根,1()k ∴⋅-=202049y x --,得,其中, 所以点P 的轨迹方程为(),因为满足上式,综上知:点P 的轨迹方程为2213x y +=.2.设点00(,)P x y 在直线(,01)x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A 、B ,定点1(,0)M m.(1)求证:三点A M B 、、共线. (2)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN ∆的重心G 的轨迹方程.证明:(1)设1122(,),(,)Ax y Bx y ,由已知得到120y y ≠,且22111x y -=,22221x y -=,设切线PA 的方程为:11()y y k x x -=-由1122()1y y k x x x y -=-⎧⎨-=⎩得 2221111(1)2()()10k x k y kx x y kx ------=220013x y +=03x ≠±2213x y +=3x ≠±(3,2)P ±±从而2222211114()4(1)()4(1)0k y kx k y kx k ∆=-+--+-=,解得11x k y =,因此PA 的方程为:111y y x x =-, 同理PB 的方程为:221y y x x =-又0(,)P m y 在PA PB 、上,所以1011y y mx =-,2021y y mx =-即点1122(,),(,)A x y B x y 都在直线01y y mx =-上又1(,0)M m也在直线01y y mx =-上,所以三点A M B 、、共线 (2)垂线AN 的方程为:11y y x x -=-+,由110y y x x x y -=-+⎧⎨-=⎩得垂足1111(,)22x y x y N ++,设重心(,)G x y 所以11111111()321(0)32x y x x m x y y y +⎧=++⎪⎪⎨+⎪=++⎪⎩ 解得1139341934x y m x y x m y ⎧--⎪=⎪⎪⎨⎪-+⎪=⎪⎩由22111x y -= 可得11(33)(33)2x y x y m m --+-=即2212()39x y m --=为重心G 的轨迹方程.3.已知点()()1,0,1,0,B C P -是平面上一动点,且满足||||PC BC PB CB ⋅=⋅.(1)求点P 的轨迹C 对应的方程;(2)已知点(,2)A m 在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD AE ⊥,判断:直线DE 是否过定点?试证明你的结论.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入 (5分)).2,1(,14)2,()2(2的坐标为点得代入将A m x y m A ∴== (6分),044,422=--=+=t mt y x y t my x DE 得代入的方程为设直线)((,则设*016)44,4),(),,(221212211>+-=∆-=⋅=+t m t y y m y y y x E y x D (9分) 4)(21)()2)(2()1)(1(212121212121++-⋅+++-=--+--=⋅∴y y y y x x x x y y x x5)(2)44(44212122212221++-⋅++-⋅=y y y y y y y y5)(242)(16)(212121221221++-⋅+⋅-+-⋅=y y y y y y y y y ym m t t m t t m t 845605)4(2)4(4)4(2)4(16)4(2222+=+-=+--+----=化简得(11分))1(23)1(43484962222+±=-∴+=-++=+-m t m t m m t t )即(即 0*,1252>∆+-=+=∴)式检验均满足代入(或m t m t (13分) 1)2(5)2(+-=++=∴y m x y m x DE 或的方程为直线 )不满足题意,定点((过定点直线21).2,5(-∴DE ) (15分)4.设)0,1(F ,点M 在x 轴上,点P 在 y 轴上,且⊥=,2 (1)当点P 在y 轴上运动时,求点N 的轨迹C 的方程;(2)设),(),,(),,(332211y x D y x B y x A 是曲线C 上的点,且|||,||,|DF BF AF 成等差数列,当AD 的垂直平分线与x 轴交于点)0,3(E 时,求B 点坐标.解:(1)设(,)N x y ,则由2MN MP =得P 为MN 中点,所以)2,0(),0,(yP x M -又⊥得0PM PF ⋅=,)2,1(),2,(y y x PM -=--=,所以x y 42=(0≠x )(2)由(1)知)0,1(F 为曲线C 的焦点,由抛物线定义知,抛物线上任一点),(000y x P 到F 的距离等于其到准线的距离,即2||00p x F P +=,所以2||,2||,2||321p x DF p x BF p x AF +=+=+=, 根据|||,||,|成等差数列,得2312x x x =+, 直线AD 的斜率为312123131313444y y yy y y x x y y +=--=--,所以AD 中垂线方程为)3(431-+-=x y y y , 又AD 中点)2,2(3131y y x x ++在直线上,代入上式得1312x x+=,即12=x ,所以点)2,1(±B .5.已知椭圆22122:1(0)x y C a b a b+=>>的离心率为3,直线l :2y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆相切.(1)求椭圆1C 的方程;(2)设椭圆1C 的左焦点为1F ,右焦点2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直1l 于点P ,线段2PF 垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点S R ,在2C 上,且满足0,QR RS ⋅=求QS 的取值范围.解:(1)∵ ∵直线相切,∴ ∴ ∵椭圆C 1的方程是 (2)∵MP=MF 2,∴动点M 到定直线的距离等于它到定点F 1(1,0)的距离,∴动点M 的轨迹是C 为l 1准线,F 2为焦点的抛物线 ∴点M 的轨迹C 2的方程为(3)Q (0,0),设∴ ∵ ∴∵,化简得 ∴ ∴当且仅当 时等号成立222222221,233c a b e e a b a c -=∴===∴=22202:b y x y x l =+=--与圆2,2,222==∴=b b b 32=a 12322=+y x 1:1-=x l x y 42=),4(),,4(222121y y S y y R ),4(),,4(122122121y y y y RS y y QR --==0=⋅0)(16)(121212221=-+-y y y y y y 0,121≠≠y y y )16(112y y y +-=6432256232256212122=+≥++=y y y 4,16,2561212121±===y y y y∵∴当的取值范围是6464)8(41)4(||2222222222≥-+=+=y y y y ,又||58||8,64min 222y y ,故时,=±==),58[+∞。
有关圆锥曲线轨迹问题根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。
该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。
轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。
求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数)0(>λλ,求动点M 的轨迹。
【解析】设MN 切圆C 于N ,则222ON MO MN -=。
设),(y x M ,则2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x(1) 当1=λ时,方程为45=x ,表示一条直线。
(2) 当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。
◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-,即22(6)33x y -+=.(或221230x y x +-+=)评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程;【解析】如图,设M 为动圆圆心,,02p ⎛⎫⎪⎝⎭为记为F ,过点M 作直线2px =-的垂线,垂足为N ,由题意知:MF MN =即动点M 到定点F 与定直线2px =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。
【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、O 为焦点的椭圆,中心为(-3,0),故P 点的方程为1251625)3(22=++y x ◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.【解析】设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点, 两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知, 点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,,02p ⎛⎫ ⎪⎝⎭2p x =-可求得动点P 的轨迹方程为:2218172x y += 评析:定义法的关键是条件的转化——转化成某一基本轨迹的定义条件。
三、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
例3、如图,从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N 。
求线段QN 的中点P 的轨迹方程。
【解析】设动点P 的坐标为(x,y ),点Q 的坐标为(x 1,y 1) 则N ( 2x-x 1,2y-y 1)代入x+y=2,得2x-x 1+2y-y 1=2①又PQ 垂直于直线x+y=2,故111=--x x y y ,即x-y+y 1-x 1=0② 由①②解方程组得12321,1212311-+=-+=y x y y x x , 代入双曲线方程即可得P 点的轨迹方程是2x 2-2y 2-2x+2y-1=0◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT求点T 的轨迹C 的方程;【解析】解法一:(相关点法) 设点T 的坐标为).,(y x 当0||=PT 时, 点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y cx x 因此⎩⎨⎧='-='.2,2y y c x x ①lO' P E DC BA由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+ 解法二:(几何法)设点T 的坐标为).,(y x当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+评析:一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
例4、在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示).求△AOB 的重心G (即三角形三条中线的交点)的轨迹方程; 【解析】解法一:以OA 的斜率k 为参数由{2y kx y x==解得A (k ,k 2) ∵OA ⊥OB ,∴OB :1y x k =-由21y x k y x⎧⎪=-⎨⎪=⎩解得B 211,k k ⎛⎫- ⎪⎝⎭ 设△AOB 的重心G (x ,y ),则22113113x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 消去参数k 得重心G 的轨迹方程为2233y x =+解法二:设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x (1)∵OA ⊥OB ∴1-=⋅OB OA k k ,即12121-=+y y x x , (2)又点A ,B 在抛物线上,有222211,x y x y ==,代入(2)化简得121-=x x∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y 所以重心为G 的轨迹方程为3232+=x y 。
◎◎如图,设抛物线2:x y C =的焦点为F ,动点 P 在直线02:=--y x l 上运动,过P 作抛物线C 的 两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求△APB 的重心G 的轨迹方程.【解析】设切点A 、B 坐标分别为)((,(),(0121120x x x x x x ≠和∴切线AP 的方程为:;0220=--x y x x 切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P =+= 所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即评析:1.用参数法求轨迹是高考中常考的重要题型,由于选参灵活,技巧性强,也是学生较难掌握的一类问题。
2.选用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。