汽轮发电机工作原理
- 格式:doc
- 大小:19.00 KB
- 文档页数:4
汽轮机工作原理及结构汽轮机是一种热力机械设备,其工作原理是利用高温和高压下的高速蒸汽通过叶轮叶片的作用,驱动轴,从而将热能转化为机械能。
汽轮机具有高效率、大功率、可靠性高等优点,广泛应用于发电、船舶、火车等领域。
本文将介绍汽轮机的工作原理及其结构组成。
### 一、汽轮机的工作原理汽轮机的工作原理基于卡诺循环的热力学理论,并且符合热力学第一、第二定律。
其工作过程可分为四个主要步骤:压缩、加热、膨胀、排放。
下面将对每个步骤进行详细说明:1. 压缩过程:在压缩过程中,汽轮机从外部介质(如空气、燃气等)吸入气体,并将其压缩至较高的压力。
这一步骤一般利用压缩机完成,其主要目的是提高进入汽轮机的工作流体的压力和密度,以便提高膨胀过程的能量转化效率。
2. 加热过程:在加热过程中,压缩后的工作流体进入锅炉或燃烧室,与燃料发生反应并吸收热量。
这使得工作流体的温度和能量进一步增加。
加热过程一般通过燃烧器来完成,通过燃料的燃烧释放的热量将水转化为高温高压的蒸汽。
3. 膨胀过程:在膨胀过程中,高温高压的蒸汽进入汽轮机的叶轮叶片中,使叶轮以高速旋转。
这一过程中,蒸汽的热能被转化为机械能,从而驱动汽轮机的输出轴转动。
4. 排放过程:在排放过程中,膨胀后的工作流体离开汽轮机,并进入冷凝装置或排放系统。
蒸汽在冷凝器中冷却并凝结为水,然后被泵送回锅炉以完成循环。
排放过程的主要目的是回收剩余的热量,并将工作流体恢复为液体状态,以便重新进入压缩过程。
以上四个步骤连续循环进行,从而使汽轮机持续输出机械能,满足各类工业和交通运输领域的需求。
### 二、汽轮机的结构组成汽轮机通常由以下几个主要组成部分构成:压缩机、燃烧器、涡轮机、冷却系统和辅助系统。
下面将对每个部分进行详细介绍。
1. 压缩机:压缩机是汽轮机中的重要组成部分,其主要功能是提高进入汽轮机的工作流体的压力和密度。
压缩机一般采用离心式、轴流式或混流式结构,通过旋转的叶轮将气体压缩并提供给燃烧器。
汽轮机的工作原理讲解
汽轮机是一种利用燃料燃烧释放的热能,通过燃气在高温和高压条件
下对涡轮叶片进行推动,从而驱动发电机产生电能的热能转换设备。
它的
工作原理基于热力学循环原理,主要包括热能转换、能量变化、动力传递
和工作过程四个方面。
1.热能转换过程:
2.能量变化过程:
高温高压的燃气通过喷嘴进入涡轮,燃气对涡轮叶片的推动力会导致
涡轮旋转。
而涡轮旋转则会转化为机械能,进而传递到轴上。
涡轮上的叶
片被高速旋转的燃气推动,能量逐渐从燃气转移到涡轮上。
3.动力传递过程:
燃气转动涡轮的运动被传递到轴上,然后再传输给发电机、泵或机械
设备等。
涡轮旋转的能量会带动连接在轴上的部件进行工作。
通常情况下,轴会与发电机驱动装置连接,涡轮运动的能量最后会被传递到发电机上,
从而产生电能。
4.工作过程:
具体而言,汽轮机的工作过程通常分为四个过程:加热过程、定容过程、膨胀过程和排气过程。
-加热过程:燃料在燃烧室中燃烧,释放出高温高压的燃气。
-定容过程:高温高压的燃气进入涡轮,将热能转化为机械能,完成
能量的转化。
-膨胀过程:涡轮旋转的机械能被传递到轴上,进而传输给发电机等部件以产生有用功。
-排气过程:燃气经过涡轮之后,被排出汽轮机系统。
总的来说,汽轮机的工作原理是通过燃料的燃烧产生高温高压气体,再利用燃气对涡轮的推动作用将热能转化为机械能,然后通过轴将机械能传递给发电机等部件,最终转化为电能或其他形式的能量输出。
汽轮机广泛应用于发电站、船舶、航空、石化等领域,是一种高效可靠的能源转换装置。
汽轮发电机的原理
汽轮发电机是一种利用汽轮机驱动发电机发电的装置。
它的工作原理主要包括以下几个步骤:
1. 进气与压缩:空气通过进气口进入汽轮机,并在压缩过程中增加温度和压力。
通常,进气口会有一个滤网来阻止灰尘进入。
2. 燃烧与燃料供给:在高压、高温状态下,进气中注入燃料,形成混合气体。
通常情况下,燃料可以是天然气、煤油或其他可燃气体。
3. 膨胀与驱动:混合气体在高温高压下进入轴喷嘴(轮叶)中,通过喷嘴的喷射作用,使得汽轮叶片受到推力,从而驱动轴转动。
4. 转动并通过动能转换为机械能:驱动发电机输出电流的轴转动,将高速旋转的机械能转换为电能,通过发电机转子上的导线圈,产生电磁感应电动势。
5. 火花消除:生成的电能的发电频率、电压和电流需要通过控制器来进行稳定控制和调节,并消除可能产生的火花放电。
6. 冷却与排放:汽轮机和发电机的部分能量会以热量的形式散失,需要通过冷却系统进行散热。
同时,废气也需要通过排气系统进行排放。
综上所述,汽轮发电机通过燃料与空气的混合燃烧产生高温高
压气体,通过驱动轴驱动发电机转动,将机械能转换为电能。
其主要原理是通过驱动轴的转动获得机械能,再通过电磁感应原理转换为电能。
汽轮发电机工作原理
汽轮发电机工作原理是通过热能转化为机械能,然后再转化为电能来实现的。
汽轮发电机采用汽轮机作为主要驱动装置。
首先,将燃料燃烧产生的高温高压燃气通过燃气轮中的喷嘴进入涡轮,并顺着涡轮叶片推动涡轮高速旋转。
涡轮的高速旋转使得与其相连的发电机的转子也跟随旋转。
接着,旋转的发电机转子在磁场的作用下产生感应电动势。
这个感应电动势驱动电流在发电机的绕组中流动,从而产生电能。
最后,通过电缆将发电的电能传输到电网中,供给用户使用。
整个汽轮发电机的过程可以分为三个关键环节:燃烧,动力转换和发电。
燃烧使得燃料中的化学能转化为燃烧产生的高压高温燃气,动力转换指的是将燃气中的能量转化为旋转机械能,最后通过发电机将机械能转化为电能。
需要注意的是,为了保证汽轮发电机的高效工作,还需要采用冷却系统对涡轮和发电机进行冷却,以防止过热损坏。
总而言之,汽轮发电机工作原理是将燃烧产生的燃气动力转化为机械能,再进一步转化为电能的过程。
通过这种方式,汽轮发电机能够高效地将化学能转化为电能,满足各种用电需求。
一、汽轮机设备结构与工作原理1.汽轮机工作的基本原理是怎样的?汽轮机发电机组是如何发出电来的?具有一定压力、温度的蒸汽,进入汽轮机,流过喷嘴并在喷嘴内膨胀获得很高的速度。
高速流动的蒸汽流经汽轮机转子上的动叶片做功,当动叶片为反动式时,蒸汽在动叶中发生膨胀产生的反动力亦使动叶片做功,动叶带动汽轮机转子,按一定的速度均匀转动。
这就是汽轮机最基本的工作原理。
从能量转换的角度讲,蒸汽的热能在喷嘴内转换为汽流动能,动叶片又将动能转换为机械能,反动式叶片,蒸汽在动叶膨胀部分,直接由热能转换成机械能。
汽轮机的转子与发电机转子是用联轴器连接起来的,汽轮机转子以一定速度转动时,发电机转子也跟着转动,由于电磁感应的作用,发电机静子线圈中产生电流,通过变电配电设备向用户供电。
2.汽轮机如何分类?汽轮机按热力过程可分为:⑴凝汽式汽轮机(代号为N)。
⑵一次调整抽汽式汽轮机(代号为C)。
⑶二次调整抽汽式汽轮机(代号为C、C)。
⑷背压式汽轮机(代号为B)。
按工作原理可分为:⑴冲动式汽轮机。
⑵反动式汽轮机。
⑶冲动反动联合式汽轮机。
按新蒸汽压力可分为:⑴低压汽轮机新汽压力为1.18~1.47MPa。
⑵中压汽轮机新汽压力为1.96~3.92MPa。
⑶高压汽轮机新汽压力为5.88~9.81MPa。
⑷超高压汽轮机新汽压力为11.77~13.75MPa。
⑸亚临界压力汽轮机新汽压力为15.69~17.65MPa。
⑹超临界压力汽轮机新汽压力为22.16MPa。
按蒸汽流动方向可分为:⑴轴流式汽轮机。
⑵辐流式汽轮机。
3.汽轮机的型号如何表示?汽轮机型号表示汽轮机基本特性,我国目前采用汉语拼音和数字来表示汽轮机型号,其型号由三段组成:× ××-×××/×××/×××-×(第一段)(第二段)(第三段)第一段表示型式及额定功率(MW),第二段表示蒸汽参数,第三段表示设计变型序号。
汽轮机的工作原理汽轮机是一种重要的能源转换设备,广泛应用于发电、航空、船舶等领域。
它通过将燃料的热能转换为机械能,再进一步转换为电能或动力。
下面将详细介绍汽轮机的工作原理。
1. 蒸汽产生:汽轮机是以水蒸气作为工作介质的,首先需要产生高温高压的蒸汽。
通常使用锅炉将水加热至高温并产生蒸汽。
锅炉内设有水冷壁,当燃料燃烧时释放热能,通过水冷壁传递给水,使水迅速升温并转化为蒸汽。
2. 压力增加:蒸汽经过锅炉后的压力通常较低,需要通过汽轮机的压缩与扩张过程来增加压力。
压缩过程中,燃气通过多级压缩器,逐级提高压力。
扩张过程中,蒸汽通过汽轮机的转子产生动能,将转子带动旋转,从而提取出热能。
3. 能量转换:汽轮机的核心部件是转子。
转子上装有多个叶片,当蒸汽通过叶片时,会改变叶片上蒸汽的动能和压力。
蒸汽逐渐扩张,动能转化为机械能,驱动转子旋转。
转子将机械能传递给发电机或其他设备,实现能量的转换。
4. 排放与循环:汽轮机在工作过程中会产生废气,其中包含大量的烟尘、二氧化碳等物质。
为了减少环境污染,需要经过处理以达到排放标准。
同时,为了提高能源利用率,汽轮机通常采用循环系统,将一部分废气重新引入锅炉再利用。
5. 效率与性能:汽轮机的工作效率通常由热效率和机械效率两部分组成。
热效率是指输入燃料能量中被转化为有用能量的比例,机械效率是指能量转换过程中传递到负载的比例。
提高汽轮机的效率是研发和设计的重要目标,可以通过改进叶片形状、降低内部损失等手段来实现。
6. 应用领域:汽轮机广泛用于发电厂,特别是火电厂,它们使用燃煤、燃油或其他能源来产生高温高压的蒸汽,驱动汽轮机发电。
此外,汽轮机也被用于航空领域,作为飞机的动力源。
船舶也使用汽轮机作为主要动力设备,提供推进力。
7. 发展趋势:随着科技的进步和对环境保护的要求,汽轮机在结构和材料上都在不断改进。
新型材料而例如高温合金的应用可以提高汽轮机的工作温度和效率。
另外,燃料技术的创新也为汽轮机的发展创造了更多可能,如采用天然气、生物质等作为燃料,减少对传统化石燃料的依赖。
汽轮机工作原理及流程
汽轮机是一种利用蒸汽动力的热力机械,其工作原理和流程是由蒸汽的能量转
换为机械能,从而驱动发电机或其他机械设备。
汽轮机工作原理及流程主要包括蒸汽进汽轮机、蒸汽膨胀、蒸汽冷凝和蒸汽排出等过程。
首先,蒸汽进汽轮机。
在汽轮机中,蒸汽从锅炉中产生,经过调节阀进入汽轮
机的高压缸,然后通过叶片的作用使汽轮机转动。
蒸汽的进入使得汽轮机内部产生高速旋转,从而转动发电机或其他机械设备。
其次,蒸汽膨胀。
在汽轮机内部,蒸汽受到叶片的作用,从而产生膨胀,使得
汽轮机转动更加迅速。
蒸汽的膨胀过程是汽轮机工作中非常重要的一环,它直接影响着汽轮机的工作效率和输出功率。
接着是蒸汽冷凝。
在汽轮机工作过程中,蒸汽膨胀后的温度降低,需要通过冷
凝器进行冷凝。
蒸汽在冷凝器内部散发热量,经过冷凝后变成凝结水,然后排出系统。
这一过程是为了保证汽轮机内部循环的蒸汽能够继续被利用,提高能源利用率。
最后是蒸汽排出。
冷凝后的凝结水排出系统,蒸汽的循环过程完成,汽轮机重
新进入下一个循环。
蒸汽排出过程是汽轮机工作流程的最后一环,也是为了保证系统内部蒸汽循环的顺利进行。
总的来说,汽轮机工作原理及流程是一个连续循环的过程,通过蒸汽的进入、
膨胀、冷凝和排出,实现了能量的转换和机械设备的驱动。
汽轮机作为一种重要的能源转换设备,在发电、工业生产等领域有着广泛的应用,其工作原理和流程的理解对于提高能源利用效率和保障设备安全稳定运行具有重要意义。
蒸汽轮机发电原理详解蒸汽轮机发电原理是指利用蒸汽轮机将水中的热能转化为机械能,再将机械能转化为电能的过程。
蒸汽轮机是一种常见的热力发电机械,广泛应用于发电厂和工业生产中。
一、蒸汽轮机的基本原理1. 蒸汽轮机的主要构成蒸汽轮机主要由轮盘、叶轮和固定导叶等部件组成。
其中轮盘是与主轴相连接的旋转部件,叶轮由多个叶片组成,能够接受蒸汽的冲击力,并转化为机械能。
固定导叶可以引导蒸汽进入叶轮并控制蒸汽的流速和方向。
2. 蒸汽轮机的工作原理当水被加热成蒸汽后,蒸汽经过管道进入轮盘内。
在轮盘内部,蒸汽受到叶轮的冲击力会导致轮盘开始旋转。
同时,固定导叶的调节使得蒸汽的流速和方向得以控制,从而确保叶轮受到连续的冲击力。
3. 蒸汽轮机的能量转化蒸汽轮机通过能量转化将热能转化为机械能。
热能主要由燃烧燃料得到,例如煤或天然气燃烧所释放的热量。
在发电厂中,通常会使用锅炉来加热水,产生高温高压的蒸汽。
蒸汽轮机利用这些蒸汽来推动叶轮旋转,并将机械能传递到发电机上,最终转化为电能输出。
4. 物理原理和热力循环蒸汽轮机发电过程中遵循柯朗循环,即将水转化为蒸汽、蒸汽推动叶轮旋转、蒸汽冷凝回水的循环过程。
在这个过程中,蒸汽从高压区域进入低压区域,产生动能。
二、蒸汽轮机发电系统的组成1. 锅炉系统锅炉系统主要用于将燃料燃烧产生的热能转移到水中,将水加热为高温高压的蒸汽。
锅炉内部通常包含加热面、燃烧室、烟道和烟气处理装置等组成部分。
加热面是传递热能的主要部位,而烟道和烟气处理装置则用于排放烟气中的有害物质。
2. 发电机系统发电机系统主要由发电机和调速器组成。
发电机将机械能转化为电能,是整个发电系统的核心部件。
调速器用于控制发电机的转速和输出电压,使得发电机能够稳定运行,并满足电网的需求。
3. 辅助系统辅助系统包括给水系统、冷却水系统、润滑油系统和燃料供应系统等。
给水系统用于将水转化为蒸汽,并经过净化处理,保证锅炉内部的水质符合要求。
冷却水系统则用于冷却发电机和锅炉等设备,防止过热导致设备损坏。
汽轮机工作原理及流程汽轮机是一种利用蒸汽能量来驱动转子旋转的热力机械设备,它在现代工业中扮演着至关重要的角色。
汽轮机的工作原理及流程对于了解其运行机制和性能特点具有重要意义。
本文将从汽轮机的工作原理、基本结构和工作流程等方面进行详细介绍。
汽轮机的工作原理主要是利用蒸汽的压力能将动能转化为机械能。
当高温高压的蒸汽通过汽轮机的喷嘴进入叶片区域时,蒸汽的动能将叶片推动并使其产生旋转。
汽轮机的转子通过叶片的推动而旋转,从而驱动汽轮机的发电机或其他负载设备。
这一过程中,蒸汽的压力和温度逐渐下降,最终排出汽轮机,完成了一个工作循环。
汽轮机的基本结构包括汽轮机转子、定子、叶片、喷嘴等部件。
转子是汽轮机的主要工作部件,它由多级叶轮组成,每个叶轮上安装有叶片。
定子是支撑转子的固定部件,它包括了汽轮机的外壳、轴承等部件。
叶片是汽轮机中最关键的部件之一,它的设计和排列方式直接影响着汽轮机的性能和效率。
喷嘴是用来喷射高压蒸汽的装置,它的设计和工作状态对汽轮机的工作效果有着重要影响。
汽轮机的工作流程主要包括汽轮机的启动、加速、稳定运行和停机等阶段。
在汽轮机启动阶段,首先需要将汽轮机加热至一定温度,然后通过喷射高压蒸汽来推动转子旋转。
随着蒸汽的不断喷射,汽轮机的转速逐渐加快,从而完成了汽轮机的启动。
在汽轮机稳定运行阶段,蒸汽的压力和温度保持在一定范围内,并通过控制喷嘴和叶片的工作状态来控制汽轮机的输出功率。
最后,在汽轮机停机阶段,需要逐渐减少喷嘴的喷射量,使汽轮机的转速逐渐降低,最终停止转动。
总的来说,汽轮机是一种利用蒸汽能量来驱动转子旋转的热力机械设备,其工作原理和流程对于了解其运行机制和性能特点具有重要意义。
通过对汽轮机的工作原理、基本结构和工作流程进行详细介绍,可以更好地理解汽轮机的工作原理和运行特点,为汽轮机的设计、运行和维护提供重要参考。
汽轮发电机工作的基本原理汽轮发电机是一种利用汽轮机和发电机相结合的装置,通过将燃料燃烧产生的热能转化为机械能,再将机械能转化为电能。
它的基本原理是利用汽轮机的工作原理,将热能转化为机械能,然后通过发电机将机械能转化为电能。
汽轮发电机的工作过程可以分为三个主要部分:燃烧系统、汽轮机系统和发电机系统。
燃烧系统是汽轮发电机的能源来源,它通过燃烧燃料产生高温高压的热能。
燃料可以是化石燃料如煤炭、石油或天然气,也可以是可再生能源如生物质等。
燃烧系统包括燃料供应系统、燃烧室和排烟系统。
燃料供应系统负责将燃料输送到燃烧室中,燃烧室则是燃料燃烧的地方,排烟系统则将燃烧产生的废气排放出去。
汽轮机系统是汽轮发电机的核心部分,它将燃烧产生的高温高压气体转化为机械能。
汽轮机系统由多级汽轮机组成,每级汽轮机都包括一个高压和一个低压汽轮机。
高温高压气体经过高压汽轮机的叶轮,通过冲击和膨胀的作用使叶轮旋转,产生机械能。
然后,低压气体进入低压汽轮机,继续通过叶轮的冲击和膨胀作用产生更多的机械能。
最后,经过汽轮机系统的工作,高温高压气体变为低温低压气体,准备进入排烟系统。
发电机系统是将汽轮机输出的机械能转化为电能的部分。
机械能通过轴传递给发电机,使发电机内的导线在磁场作用下产生电流。
发电机系统由转子和定子组成,转子是旋转的部分,定子是固定的部分。
机械能通过转子的旋转产生旋转磁场,而定子中的导线则在旋转磁场的作用下产生电流。
这样,机械能就转化为了电能。
发电机系统还包括调压器和电气控制系统,用于调节输出电压和控制发电机的运行。
总结起来,汽轮发电机的基本原理是利用燃烧系统将燃料燃烧产生的热能转化为高温高压气体,然后通过汽轮机系统将气体转化为机械能,最后通过发电机系统将机械能转化为电能。
这是一种高效可靠的发电方式,广泛应用于电力工业领域。
汽轮发电机结构及工作原理
发电机通常由定子、转子、端盖及轴承等部件构成。
定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组
成。
转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及
转轴等部件组成。
由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引
出,接在回路中,便产生了电流。
汽轮发电机与汽轮机配套的发电机。
为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。
核电站中汽轮机转速较低,但也在1500转/分以上。
高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。
特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过 1.2米。
而转子本体的长度又受到临界速度的限制。
当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。
所以大型高速汽轮发电机转子的尺寸受到严格的限制。
10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。
为此必须加强电机的冷却。
所以 5~10万千瓦以上的汽轮发电机都采用了冷却效果较好
的氢冷或水冷技术。
70年代以来,汽轮发电机的最大容量已达到130~150万千瓦。
从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。
超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机发展史上产生一个新的飞电磁感应定律
励磁机就是一个小功率的直流发电机,一般都为几十伏,励磁电压一般不变,即使变动也很小,而励磁电流的大小由磁场变阻器或自动励磁调节器调节,它的作用是将发出来的直流电供发电机转子磁极饶组励磁电流以产生磁场.励磁电流在发电机空载时改变其大小可以改变发电机的端电压,在发电机并网带负荷时改变其大小可以改变发电机
的无功功率.
电磁感应定律:
只要穿过回路的磁通量发生变化电路中将产生感应电动势。
感应电动势的大小,跟穿过这一电路的磁通量变化成正比。
导体回路中感应电动势e 的大小,与穿过回路的磁通量的变化率成正比,
若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,Δ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.
ε为产生的感应电动势,单位为V.
1.[感应电动势的大小计算公式]
(1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动
势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
(2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
(3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰
值}
(4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度
(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:
正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方
向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L 有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:
自感电流变化率(变化的快慢)}
励磁机一般只存在于无刷励磁系统,从机端取电压经过变励磁变压器到励磁系统之后,变成直流电送到励磁机的励磁线圈,产生一个固定的磁场,由于转子转动,安装在转子上的交流线圈在这个磁场中切割磁力线,产生交流电,再经过转子上面的二极管组整流变成直流电为发电机的转子提供励磁电流,建立发
电机电压.
励磁机和永磁机:你所谓的硅整流应该是无刷励磁系统吧,这种系统硬件连接是这样的:
发电机尾部拖着永磁机和励磁机,励磁机尾部装有旋转二极管整流盘,随机组一起同步旋转。
以南汽机组为例:
当机组转子3000转/分钟时,永磁机定子线圈产生约400HZ的交流感应电势,送入励磁装置交流输入端,励磁微机系统再根据励磁PT反馈的发
电机机端电压大小与内部设定值比较,由微机装置自动调节输出直流励磁电流,经励磁输出端子送入励磁机定子绕组,由电磁感应原理在励磁机转子产生交流电动势,此交流电最后被送入励磁机尾部的旋转整流盘,该整流盘共六个二极
管,分别为3个一组分布于盘的两侧,整流盘输出一对直流电正负极到发电机
转子内,于是在发电机硕大的转子线圈中就流入了直流电,由于转子是旋转的,所以该直流电产生的磁场也为旋转磁场,它切割发电机定子线圈,于是在定子中产生交流感应电动势,就是我们常说的发电机机端电压,也就是通俗说的发电机向外发出了电,该电压大小在未并网时可调节,幅值大小由励磁装置给于的励磁电流大小决定,但并网后电压大小受电网网压所影像,无法通过励磁调节,而此时励磁电流输出的大小只控制发电机输出的无功功率了,原动机的机械功率大小才直接影像发电机的输出有功,这就是无刷励磁系统带硅整流盘发电的大致工作原理,不知道我说的这些是不是您要知道的硅整流的原理。
还有一种有刷励磁系统,跟无刷的相比硬件上多了一组励磁变压器,而且励磁柜除了励磁控制柜外,还有一块整流灭磁柜;少了永磁机、励磁机和旋转硅整流盘,它是直接通过碳刷励磁给转子,励磁电流直接达到一百多安培甚至更高。
而这种励磁系统的整流部分是通过集成在整流灭磁柜内的整流桥完成的,相当于取代了无刷励磁系统的旋转硅整流盘,二者在功能上其实是一回事。
我是负责发电站电调的,励磁这块搞的较多。