核电站汽轮发电机组资料
- 格式:ppt
- 大小:217.00 KB
- 文档页数:23
核电厂基本知识目录一、核电厂概述 (2)1.1 核电厂的定义 (3)1.2 核电厂的类型 (3)1.3 核电厂的安全与防护 (4)二、核电厂的工作原理 (5)2.1 核裂变与核聚变 (6)2.2 反应堆的结构与功能 (7)2.3 核电厂的能量转换过程 (8)三、核电厂的组成部分 (9)3.1 核反应堆 (10)3.2 冷却剂系统 (11)3.3 控制棒驱动系统 (12)3.4 发电与输电系统 (13)3.5 核废物处理与处置系统 (15)四、核电厂的安全运行与管理 (16)4.1 安全文化的重要性 (17)4.2 安全管理体系的建立与实施 (19)4.3 安全监督检查与风险评估 (20)4.4 应急准备与响应 (21)五、核电厂的经济性与环境影响 (23)5.1 核电厂的投资成本与收益分析 (24)5.2 核电厂对环境的影响 (25)5.3 核电厂在能源结构中的地位与作用 (27)六、核电厂的发展趋势与挑战 (28)6.1 核电厂技术的创新与发展 (29)6.2 核电厂面临的挑战与应对策略 (30)6.3 核电厂未来的发展趋势 (31)一、核电厂概述核电厂是一种利用核能进行发电的设施,其核心是通过核裂变或核聚变反应产生大量的能量,从而驱动发电机组发电。
与传统火力发电相比,核电厂具有高效、清洁、低碳等优点,因此在能源结构转型和应对全球气候变化方面具有重要意义。
核电厂的主要组成部分包括核反应堆、汽轮机、发电机、蒸汽发生器、安全系统等。
核反应堆是核电厂的核心部分,负责将核能转化为热能;汽轮机则将热能转化为机械能,进而驱动发电机发电;发电机则是将机械能转化为电能的设备;蒸汽发生器用于将汽轮机产生的蒸汽进一步加热,以提高发电效率;安全系统则负责在紧急情况下对核电厂进行保护,确保人员和设备的安全。
核电厂的安全运行至关重要,因此核电厂在设计、建造和运行过程中都需要严格遵守国际核安全法规和标准,以确保其长期稳定运行。
火电厂主要设备简介火力发电厂是利用化石燃料燃烧释放的热能发电的动力设施,包括燃料燃烧释热和热能电能转换以及电能输出的所有设备、装置、仪表器件,以及为此目的设置在特定场所的建筑物、构筑物和所有有关生产和生活的附属设施。
主要有蒸汽动力发电厂、燃气轮机发电厂、内燃机发电厂几种类型.火电厂主要设备:汽轮机本体汽轮机本体(steam turbine proper)是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。
它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。
汽轮机本体由固定部分(静子)和转动部分(转子)组成。
固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。
转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。
固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。
汽缸是约束高压蒸汽不得外泄的外壳。
汽轮机本体还设有汽封系统。
锅炉本体锅炉设备是火力发电厂中的主要热力设备之一。
它的任务是使燃料通过燃烧将化学能转变为热能,并且以此热能加热水,使其成为一定数量和质量(压力和温度)的蒸汽。
由炉膛、烟道、汽水系统(其中包括受热面、汽包、联箱和连接管道)以及炉墙和构架等部分组成的整体,称为“锅炉本体”。
“热力系统及辅助设备汽轮机部分的辅助设备有凝汽器、水泵、回热加热器、除氧器等。
把锅炉、汽轮机及其辅助设备按汽水循环过程用管道和附件连接起来所构成的系统,叫做发电厂的热力系统。
发电厂的热力系统按照不同的使用目的分为“原则性热力系统”、“全面性热力系统”、汽轮机组热力系统”等。
发电机本体在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。
因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。
在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。
其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。
压水堆核电站汽轮机的特点压水堆核电站汽轮机采用饱和蒸汽后的结果:(1)循环热效率低压水堆核电站的循环热效率仅有45%左右,约为先进火电机组的70%。
(2)理想焓降小多级湿蒸汽汽轮机的理想焓降比高参数汽轮机的约小30%~40%。
其结果是:①大多数湿蒸汽汽轮机中没有中压缸;②低压缸约产生汽轮机全部功率的50%~60%(而在火电厂高参数机组中低压缸约占30%~40%左右),低压缸相对内效率对机组经济性的影响更大;③蒸汽在进汽机构、外置式分离再热器等中的压力损失,对机组效率具有更大的影响,应尽可能改善这些部件的气动性能。
压水堆核电站汽轮机特点二是容积流量大由于湿蒸汽汽轮机的参数低、理想焓降小以及效率较低,因而蒸汽容积流量比同功率的高参数汽轮机约大60%~100%(如300MW核汽轮机的蒸汽流量约为2000t/h,相当于600MW的火电机组)。
由此导致核汽轮机的下列特点:①进汽机构的尺寸增大;②功率大于600~800MW汽轮机的高压缸已做成双分流结构;③调节级的叶片高度大,故弯曲应力较大,因此采用部分进汽困难,不宜采用喷嘴调节;④低压缸通流量大,因而排汽的余速损失对热效率有更大的影响,这就要求增大排汽面积以降低余速损失,同时须提高排汽管中的速度动能利用系数。
压水堆核电站汽轮机特点三是大多数级处于湿蒸汽区由于新蒸汽是饱和汽,膨胀后即进入湿汽区。
因而核汽轮机大多数级处于湿蒸汽区。
可以近似地认为,平均湿度每增大1%,汽轮机的相对内效率约降低1%。
且湿蒸汽膨胀所形成的水分对汽轮机通流部分元件及其他过流设备会产生冲蚀破坏作用。
因此,湿蒸汽汽轮机高、低压缸中都必须采用有效的去湿结构和防腐措施,而且饱和蒸汽汽轮机毫无例外地设有外部汽水分离器。
外部分离器通常设置在高、低压缸之间,并且同时使用中间再热。
再热器通常分为两段,首先用高压缸抽汽对汽水分离器分离出来的蒸汽进行再热,然后再用高温主蒸汽再行加热。
采用再热的核电站汽轮机的分缸压力通常为新蒸汽压力的12%~15%。
核电站汽轮机数学模型汽轮机是一种将热能转化为机械能的旋转式动力设备,广泛应用于电力、化工等领域。
汽轮机调速系统是汽轮机的重要组成部分,直接影响着汽轮机的稳定性和可靠性。
因此,对汽轮机调速系统特性进行分析,并建立相应的模型,对于提高汽轮机的性能和稳定性具有重要意义。
汽轮机调速系统主要由调速器、控制系统和执行机构组成。
其静态特性表现为调速器的弹簧刚度和摩擦力等静态参数对转速的影响;动态特性表现为调速器的动态响应速度和抗干扰能力;随机特性则表现为调速系统对随机干扰的抵抗能力。
这些特性共同决定了调速系统的性能和稳定性。
基于汽轮机调速系统的实际特性,建立相应的模型是模型辨识的关键。
常用的模型辨识方法有最小二乘法、梯度下降法、遗传算法等。
在模型辨识过程中,需要充分考虑建模误差、参数估计误差等因素,同时分析模型的整体性能,从而确定最优的模型参数。
为验证模型的有效性和可行性,需要进行特性实验。
实验过程中需要考虑到各种因素对实验结果的影响,如系统噪声、传感器误差等,并对其进行合理预测和分析。
通过实验结果与理论分析进行对比,可以进一步优化模型参数,提高模型精度。
本文通过对汽轮机调速系统特性的分析,建立了相应的模型,并进行了实验验证。
结果表明,该模型能够有效表征汽轮机调速系统的特性,对于提高汽轮机的性能和稳定性具有重要意义。
然而,本文的研究仍存在一定的不足之处,如未充分考虑调速系统的非线性特性和时变性,因此未来研究可以考虑进一步完善模型,以适应更复杂多变的工况条件。
随着人工智能和机器学习等技术的不断发展,未来研究也可以探索利用这些技术对汽轮机调速系统进行智能控制和优化。
通过机器学习方法对历史数据进行学习,提高调速系统的自适应性和鲁棒性,以应对各种复杂工况和不确定因素。
汽轮机调速系统特性分析与模型辨识的研究具有重要的理论和实践价值。
通过对汽轮机调速系统的深入了解和优化控制,可以提高汽轮机的运行效率和使用性能,对于降低能源消耗、提高能源利用率具有积极意义。
福清核电工程蒸汽发生器设备监造技术培训教材苏州热工研究院有限公司目录第一章蒸汽发生器设备概述第二章蒸汽发生器材料采购第三章蒸汽发生器材料采购监造第四章蒸汽发生器的制造第五章蒸汽发生器焊接过程的监造第六章蒸汽发生器监造重点第七章蒸汽发生器监造的监督计划第一章蒸汽发生器设备概述1、蒸汽发生器设备简述核电站蒸汽发生器(简称SG)主要功能是作为热交换设备将一回路冷却剂中的热量传给二回路给水,使其产生饱和蒸汽供给二回路的动力装置。
1000MW核电机组有三个环路,每个环路装有一台蒸汽发生器,每台容量是按照满功率的三分之一的反应堆热功率设计。
蒸汽发生器是连接一回路与二回路的设备,在一、二回路之间构成防止放射性外泄的第二道屏障。
由于水受辐照后活化以及少量燃料包壳可能破损泄漏,流经堆芯的一回路冷却剂具有放射性,而压水堆核电站二回路设备不受到放射性污染,因此蒸汽发生器管板和倒置的U型管是反应堆冷却剂压力边界的组成部分,属于第二道放射性防护屏障之一。
蒸发器中的冷却剂压力边界的组成部分的部件安全等级1级,二次侧部件的安全等级是2级、抗震等级1I、质保等级1级、设计等级1级;每台核电机组有三台蒸汽发生器。
下图是1000MW核电站核岛主设备布置示意图。
核岛主设备连接示意图2 蒸汽发生器工作原理在大亚湾核电站、岭澳核电站均采用立式、自然循环、U型管式蒸汽发生器,其结构如上图。
从反应堆流出的冷却剂经一回路热管段由蒸汽发生器的下封头的进口接近进入水室,然后在倒U型管束内流动,倒U型管的外表面与二回路给水接触,传热给二回路水,并使其汽化,完成一、二回路间的热交换。
一回路冷却剂携带的热量传给二回路后,温度降低,再经过过下封头的出口水室和出口接管,流向一回路的过度管道然后进入主泵的吸入口。
二回路的给水由蒸汽发生器的给水接管进入给水环管,通过环管上的一组倒J形管进入下筒体与管束套筒之间的环状空间(即下降通道),与汽水分离器分离出的水混合后向下流动,直至底部管板,然后转向,沿着倒U型管束的管外(即上升通道)向上流动,被传热管内流动的一回路冷却剂加热,一部分水蒸发成蒸汽。
因为使用环境、性能要求等各方面的不同。
舰船用的蒸汽轮机与电站蒸汽轮机有很大的不同。
舰船蒸汽轮机安装在易变形的船体基座上,还经常受到船体摇摆、冲击的影响,因而对其整体刚度和结构设计带来了很不利的限制。
它的正常运转直接关系到全船的安全,因而对可靠性要求更高。
它的体积、重量也受到船体的严格限制。
船舶在进出港口或执行任务时需要经常变速或倒航,因此对汽轮机的机动性也有特殊的要求。
船用汽轮机除功率小于1万马力的有时用单轴(通常称为单缸)外,一般都是双轴或三轴分轴布置。
这是由于涡轮前后段蒸汽比容变化很大,高低压涡轮叶片高度相差很大。
单轴布置时要避免低压级叶片轮周速度过大、离心应力过大,转速不能太高,这就使得高压级叶片轮周速度比较低,轮轴功小,必须增多级数,这将使蒸汽涡轮的体积和重量增加。
如果加大高压部分轴心直径,虽然能稍为增大单级轮轴功,在一定程度上减少级数,但是由于此时叶片高度过小,相对内损失增加,难以得到高的内效率。
分缸设计时可将高压轴和低压轴设计成不同的转速,高压轴采用较高转速(5000~10000转/分),以缩小转子直径;增加前几级的叶片高度,以提高效率;低压轴采用较低转速(3000~5000转/分),以降低末几级叶片和轮盘的应力。
采用分缸方式还有一个好处就是当汽轮机发生局部损坏时可用单缸运行,提高了船的可靠性。
为了得到尽量高的热效率,在地面电站蒸汽轮机中要让蒸汽尽量充分膨胀,降低排汽背压。
但在舰用蒸汽轮机中则采用较高的排汽背压,以便减少涡轮级数,从而降低装置重量。
电站汽轮机还采用再热、抽汽回热两种方式组成复杂热力循环,以提高热效率。
简单的说,再热就是让蒸汽在高压涡轮中膨胀做功(温度降低)后,回到锅炉再被加热到新蒸汽温度或者更高一点的温度,然后进入中、低压涡轮继续膨胀做功。
再热实际上是提高了工质——水的平均吸热温度,从而可以提高卡诺效率。
抽汽回热则是在涡轮某些级处分别抽出一部分蒸汽,注入到对应压力等级处的给水管路中去加热给水。
核电站设计机械知识点总结核电站是一种重要的能源供应设施,其设计和运行需要涉及多个机械工程知识点。
本文将对核电站设计中的关键机械知识进行总结,以帮助读者更好地了解核电站的构成和运行原理。
一、核反应堆系统核反应堆是核电站的核心部分,它产生核裂变反应并释放能量。
核反应堆的设计机械知识点主要包括燃料元件的选型、燃料棒的布局、控制棒的设计和冷却剂循环系统。
1. 燃料元件选型:核电站常用的燃料元件是乌兰浩特石墨化燃料球,其内部充满燃料小球。
燃料元件的选型需要考虑其材料性能、热工性能和辐照损伤等因素。
2. 燃料棒布局:燃料棒是燃料元件的核心组成部分,它们通常被排列在芯内。
在布置燃料棒时,需要考虑燃料棒之间的间隔、堆芯的形状和冷却剂的流动方式。
3. 控制棒设计:控制棒用于调节核反应堆的功率。
控制棒的设计需要考虑其运动方式、密封性能和材料耐辐照性能。
同时,还需考虑控制棒的位置和数量,以保证核反应的稳定性。
4. 冷却剂循环系统:冷却剂循环系统用于将冷却剂(如水或氦气)输送到核反应堆中,以吸收核反应释放的热量。
该系统的设计需要考虑循环泵的选型、管道布局和冷却剂的流动速度等因素。
二、蒸汽发生器系统蒸汽发生器系统负责将核反应堆产生的热量转化为蒸汽,驱动汽轮机发电。
该系统的设计机械知识点主要包括蒸汽发生器的结构和换热器的选型。
1. 蒸汽发生器结构:蒸汽发生器是核电站的关键设备之一,用于将冷却剂的热能传递给工作介质。
蒸汽发生器的设计需要考虑其体积、材料和换热面积等因素。
2. 换热器选型:核电站常用的换热器有壳程换热器和管束换热器。
换热器的选型需要考虑热交换效率、材料耐腐蚀性和清洗维护难易程度等因素。
三、汽轮机系统汽轮机是核电站发电的关键设备,将蒸汽的热能转化为机械能。
在核电站设计中,汽轮机系统的一些重要机械知识点包括轮毂和叶片的设计、排气系统和轴承的选型等。
1. 轮毂和叶片设计:汽轮机的轮毂和叶片是将热能转化为动能的关键部分。
核电站的发电机组工作原理核电站是一种利用核能进行发电的设施,其中核电发电机组是核电站的核心部分。
核电发电机组工作原理是通过核裂变反应产生的热能转化为电能。
本文将从核裂变反应、核反应堆、冷却剂和蒸汽发电等方面详细介绍核电发电机组的工作原理。
一、核裂变反应核裂变反应是核电发电机组发电的基础。
核裂变是指重核在中子的轰击下发生裂变,产生两个或更多的轻核和放出大量的能量。
这种能量释放的过程称为核链式反应。
在核电发电机组中,一般使用铀-235作为裂变材料,通过将中子轰击铀-235核使其发生裂变,进而释放出大量的热能。
二、核反应堆核反应堆是核电发电机组的关键组件,用于维持核裂变反应的链式反应过程。
核反应堆主要由反应堆堆芯、反应控制系统和热量转换系统组成。
1. 反应堆堆芯反应堆堆芯是核反应堆中放置裂变材料和控制棒的区域。
铀-235燃料以柱状的燃料棒或UO2燃料微粒的形式放置在堆芯内。
控制棒是通过控制中子流的流动来调节核反应的强度。
当控制棒插入堆芯时,可以吸收中子,减弱核反应的强度。
堆芯中的燃料棒和控制棒的排列形式是根据设计和操作要求进行合理布置的。
2. 反应控制系统反应控制系统用于控制核反应的速率,以保持核裂变反应处于可控状态。
反应控制系统主要包括控制棒、补充中子和反应堆稳定控制系统等。
控制棒的升降可以增加或减少中子的流量,从而控制反应堆的输出功率。
补充中子是在核反应过程中向堆芯内添加中子,从而使核反应维持在可持续状态。
3. 热量转换系统热量转换系统将核反应堆生成的热能转化为电能。
核反应堆产生的热能通过冷却剂传递到蒸汽发生器,使其中的水蒸汽产生高温高压的蒸汽。
蒸汽驱动涡轮机运转,进而带动发电机转动,最终将热能转化为电能。
三、冷却剂冷却剂在核电发电机组中发挥着重要的作用。
冷却剂的主要功能是带走核反应中产生的热量,并将其传递给热量转换系统,使其工作。
在核电发电中,常用的冷却剂有水、重水、钠和气体等。
冷却剂选择的主要考虑因素是其热物性和对核反应的适应性。
浅谈“核电汽轮机”(一)核电汽轮机结构特点由于产生蒸汽的方式不同,核电站汽轮机与常规火电站汽轮机在热力参数上存在差异。
贺电汽轮机由于使用了饱和蒸汽,因此其参数相对于火电汽轮机来说有所降低,有效焓降较小,蒸汽流量较大,低压缸出口的蒸汽湿度较大,从而使汽轮机在设计和结构上与火电汽轮机存在差异:(1)采用饱和蒸汽新蒸汽参数低在典型压水堆核电站中,汽轮机主汽门前的蒸汽压力约为6MPa,这主要取决于一回路冷却剂参数,后者则主要受反应堆壳体制造技术和材料的限制。
由于核电汽轮机采用了饱和蒸汽,且新蒸汽的参数较低,使核电汽轮机有以下特点1).核电汽轮机的级数少而不设中压缸;2).低压缸功率占全部功率的比例增大,约为50%~6o%,因此低压缸的经济性对整个汽轮机有重要影响;3).汽轮机的排汽损失,分离再热器和进、排汽管道的压力损失对核电汽轮机的经济性影响增大。
(2)可用焓降低、蒸汽流量大蒸汽在汽轮机中的膨胀过程使高压缸中蒸汽从起始参数膨胀到1.2MPa,而湿度则从在蒸汽发生器中产出的起始值约0.5%增到约12%。
按照汽轮机通流部分侵蚀损耗的条件,不允许继续利用有这样湿度的蒸汽。
因此,蒸汽在进入低压缸之前需通过蒸汽分离再热器进行汽水分离和再热。
与火电汽轮机相比较,核电汽轮机的蒸汽压力低,而且是饱和蒸汽。
由于核电汽轮机的可用焓降小、级效率又较低、蒸汽压力低、比容大,因此汽轮机进汽的容积流量就要比相同功率的火电汽轮机增大60%-90%。
核电汽轮机在结构上有以下特点:1)核电汽轮机的进汽管道和阀门的尺寸及重量增大;2)当功率增大到500~800MW时高压缸要做成双流道的;3)高压缸叶片较高,扭叶片数量增多,增加了设备的投资额;4)由于叶片高度增加,增加了调节级设计的困难,低负荷时叶片的弯曲应力增大,应尽量避免采用喷嘴调节;5)汽轮机出口蒸汽流量大,不仅使末级叶片增高而加大汽轮机径向尺寸,还要采用多排汽口结构,使汽轮机结构复杂,重量、尺寸增大;6)凝汽器也因排汽量大而使其换热面增大,循环水量几乎增加一倍。
核电厂系统与设备知识点2020年前要新建核电站31座,今后每年平均需要建设两个百万千瓦级核电机组我国发展核电的基本政策是:坚持集中领导,统一规划,并与全国能源和电力发展相衔接;核电政策:自主,国产化,与压水堆配套;引进的基础上,消化,改进,国产化。
在核电布局上优先考虑一次能源缺乏、经济实力较强的东南沿海地区。
坚持“质量第一,安全第一”,坚持“以我为主,中外合作”我国确定发展压水堆核岛:一回路系统及其辅助系统、安全设施及厂房。
常规岛:汽轮发电机组为核心的二回路及其辅助系统和厂房。
配套设施:除核岛、常规岛的其余部分。
压水堆核电厂将核能转变为电能是分四个环节,在四个主要设备中实现的:1)核反应堆:将核能经转变为热能,并将热能传给反应堆冷却剂,是一回路压力边界的重要部件。
2)蒸汽发生器:将反应堆冷却剂的热量传递给二回路的水,使其变为蒸汽。
在此只进行热量交换,不进行能量形态的转变;3)汽轮机:将蒸汽的热能转变为高速旋转的机械能;4)发电机:将汽轮机传来的机械能转变为电能。
大亚湾核电厂共有348个系统核电厂平面布置原则:a.区分脏净,脏区尽可能在下风口;b.满足工艺要求,便于设备运输,减少管线迂回纵横交叉;c.反应堆厂房为中心,辅助厂房,燃料厂房设在同一基岩的基垫层上,防止因厂房承载或地震所产生的沉降差导致管线断裂.d.以反应堆厂房为中心,辅助厂房,燃料厂房,主控制室应急柴油发电机厂房四周.双机组厂可采用对称布置,公用部分辅助厂房.布置分区:核心区、三废区、供排水区、动力供应区、检修及仓库区、厂前区核心区布置按反应堆厂房与汽轮机厂房的相对位置,有T型与L型布置:T型:汽轮机叶片旋转平面与安全壳不相交.占地大,单独汽机厂房。
L型:汽轮机叶片旋转平面与安全壳相交,须设置防止汽轮机飞车时汽轮机叶片对安全壳和冲击的屏障.占地少,两台以上机组可公用汽轮机厂房,仅用一台吊车。
我国采用T型布置。
安全分级的目的是正确选择用于设备设计、制造、检验的规范标准安全功能:1 安全停堆和维持安全停堆状态;2 停堆后余热导出;3 事故后防止放射性物质释放,以保证放射性物质释放不超过容许值。
核电站简介核电站是利用核裂变或核聚变反应所释放的能量产生电能的发电厂。
目前商业运转中的核能发电厂都是利用核裂变反应而发电。
核电站一般分为两部分:利用原子核裂变生产蒸汽的核岛(包括反应堆装置和一回路系统)和利用蒸汽发电的常规岛(包括汽轮发电机系统),使用的燃料一般是放射性重金属:铀、钚。
1、简介:核电站又称核电厂,它指用铀、钚等作核燃料,将它在裂变反应中产生的能量转变为电能的发电厂。
核电厂主要以反应堆的种类相区别,有压水堆核电厂、沸水堆核电厂、重水堆核电厂、石墨水冷堆核电厂、石墨气冷堆核电厂、高温气冷堆核电厂和快中子增殖堆核电厂等。
核电厂由核岛(主要是核蒸汽供应系统)、常规岛(主要是汽轮发电机组)和电厂配套设施三大部分组成。
核燃料在反应堆内产生的裂变能,主要以热能的形式出现。
它经过冷却剂的载带和转换,最终用蒸汽或气体驱动涡轮发电机组发电。
核电厂所有带强放射性的关键设备都安装在反应堆安全壳厂房内,以便在失水事故或其他严重事故下限制放射性物质外溢。
为了保证堆芯核燃料在任何情况下等到冷却而免于烧毁熔化,核电厂设置有多项安全系统。
火力发电站利用煤和石油发电,水力发电站利用水力发电,而核电站是利用原子核内部蕴藏的能量产生电能的新型发电站。
核电站大体可分为两部分:一部分是利用核能产生蒸汽的核岛,包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。
核电站用的燃料是铀。
铀是一种很重的金属。
用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,就会产生电,这些电能通过电网送到四面八方。
这就是最普通的压水反应堆核电站的工作原理。
2、工作原理:核电站以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,使核能转变成热能来加热水产生蒸汽。
利用蒸汽通过管路进入汽轮机,推动汽轮发电机发电,使机械能转变成电能。