【历届诺贝尔奖得主(三)】1937年物理学奖
- 格式:docx
- 大小:22.54 KB
- 文档页数:5
1939年12月10日第39届诺贝尔和平奖未颁奖化学奖瑞士,卢齐卡(LeopoldRuzicka1887-1976),聚甲烯和性激素方面的研究工作德国,布特南特(AdolfFriedrichJohannButenandt1903-1995),性激素方面的工作,布特南特因纳粹的阻挠而被迫放弃领奖德国化学家。
1903年3月24日生于不来梅港的莱赫(现在的威悉蒙德)。
布特南特在马尔堡大学学习,其后在格廷根大学温道斯的指导下工作,并于1927年获得化学博士学位。
三年之后他是那里的有机化学实验室主任。
布特南特突出的工作是分离性激素和鉴定其结构。
第一个被分离出来的性激素是雌酮,这是布特南特在1929年从怀孕妇女的尿中得到的。
它是卵巢细胞分泌出来的少量几种物质之一,这些物质是促进妇女性成熟的。
1931年布特南特分离出雄性甾酮,这是睾丸细胞产生的一种重要的男性激素,它对男人所起的作用如同雌酮对妇女所起的作用一样。
布特南特只用了15毫克的雄性甾酮,由于采用了普莱格尔所用的微量分析法,得以对这些元素作了两次分析,而且还制出这个化合物的一种变体并分析了它。
这足以使布特南特有可能推导出这个化合物的分子式。
1934年卢齐契加根据布特南特的结构见解合成了一种类似的化合物,发现合成的产物完全具有雄性甾酮的性质,因此证实布特南特的探索工作是正确的。
1934年布特南特分离了另外一种对于妊娠过程中的化学机理具有十分重要作用的女性激素---孕甾酮。
1936年布特南特担任柏林威廉皇家生物化学研究所所长,1939年他与卢齐卡(LeopoldRuzicka1887—1976)分享了诺贝尔化学奖。
如同那年另一位德国人多马克以及一年前库恩得到诺贝尔奖时的情况一样,纳粹政府强迫布特南特拒绝接受这笔奖金。
直到第二次世界大战结束和希特勒完蛋后,他才于1949年接受了这一荣誉。
战后他在图宾根大学任教,1956年之后在慕尼黑大学教书。
1960年他继哈恩之后任马克斯·普朗克学会主席。
历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501941年诺贝尔物理学奖——未授奖1942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1982年诺贝尔物理学奖——相变理论1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖—— W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究。
历届诺贝尔物理学奖
诺贝尔物理学奖是由瑞典诺贝尔奖委员会每年颁发的最高物理学奖,
以纪念诺贝尔的科学发明而得名。
该奖是为了表彰在物理学、物理学相关
学科及其它交叉学科领域取得伟大成就的个人。
从1901年首次颁发至今,经历了几十年,共有116位先后获得诺贝尔物理学奖。
其中,马尔科夫、
爱因斯坦、福布斯、卢瑟福、阿尔伯特尔、贝尔、斯文格勒等历届获奖者
的成就,使得诺贝尔物理学奖的声望高涨。
今年的诺贝尔物理学奖由瑞典皇家科学院授予美国科学家安德鲁·斯
普拉特、特里·特里森和安东尼·穆达拉斯,以表彰他们在准分子显微镜
上的杰出贡献。
自1901年以来,诺贝尔物理学奖一直都是各类科学成就最高荣誉,
受到全世界人民的尊敬。
诺贝尔奖委员会以及获奖者都在为科学空间里进
行深刻的研究和应用,挑战着一部分被认为难以解决的物理学问题,改善
着人类的生活,开拓着新的物理学领域,这是一条不断推进的路径,也是
一种回馈。
目录1901-1950 (1)1951-1980 (4)1981-2000 (7)2001-2010 (8)2011-2020 (10)2021 (12)独享还是共享? (13)人选空缺怎么办? (13)最年轻和最年长的获奖者 (13)史上获两次诺贝尔物理学奖的人 (14)获得诺贝尔物理学奖的华人科学家 (14)作为根据诺贝尔遗嘱设立的五大奖项之一,物理学奖被授予“在物理学领域作出最重要发现或发明的人”,与其他诺贝尔奖相比,物理学奖的荐举和甄选过程更长、更缜密。
诺贝尔物理学奖规则规定,获奖者的贡献必须“已经受时间的考验”。
这意味着诺贝尔委员会往往会在科学发现的数十年以后才会为此颁发奖项。
自1901年设立至今,诺贝尔物理学奖已走过百年历程,记录了物理学发展史上的无数个里程碑,已成为人类文明不可分割的一部分。
1901-19501、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子1951-198049、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒1981-200079、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W 和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路2001-201099、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
若雷斯·阿尔费罗夫 2000 年赫伯特·克勒默杰克·基尔比埃里克·康奈尔2001 年卡尔·威曼沃尔夫冈·克特勒雷蒙德·戴维斯 2002 年小柴昌俊里卡尔多·贾科尼阿列克谢·阿布里科索夫 2003 年维塔利·金兹堡安东尼·莱格特戴维·格罗斯 2004 年戴维·普利策弗朗克·韦尔切克 2005 罗伊·格劳伯俄罗斯德国美国美国美国德国美国日本美国俄罗斯俄罗斯英国美国美国美国美“发展了用于高速电子学和光电子学的半导体异质结构” “在发明集成电路中所做的贡献” “在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究” “在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子” “在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X 射线源的发现” “对超导体和超流体理论做出的先驱性贡献” “发现强相互作用理论中的渐近自由” “对光学相干的量子理论的贡献”年约翰·霍尔特奥多尔·亨施 2006 年约翰·马瑟乔治·斯穆特艾尔伯·费尔彼得·格林贝格小林诚 2008 年益川敏英南部阳一郎高锟 2009 年威拉德·博伊尔乔治·史密斯安德烈·海姆康斯坦丁·诺沃肖洛夫布莱恩·施密特国美国德国美国美国法国德国日本日本美国英国美国美国荷兰英/ 俄澳大利亚美国“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在” “发现巨磁阻效应” “发现宇宙微波背景辐射的黑体形式和各向异性” “对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,” 2007 年“发现亚原子物理学的自发对称性破缺机制” “在光学通信领域光在纤维中传输方面的突破性成就” “发明半导体成像器件电荷耦合器件” 2010 年“在二维石墨烯材料的开创性实验”[3] 2011 “透过观测遥距超新星而发现宇宙加速膨胀” 亚当·里斯索尔·珀尔马特塞尔日·阿罗什大卫·维因兰德彼得·希格斯 2013 弗朗索瓦·恩格勒赤崎勇 2014 天野浩中村修二 2015 梶田隆章阿瑟·B·麦克唐纳 2016 戴维·索利斯迈克尔·科斯特利茨邓肯·霍尔丹美国法国美国英国比利时日本日本美国日本加拿大英/美英/美英国他们发现中微子振荡现象,该发现表明中微子拥有质量。
历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位)1902年亨得里克·洛仑兹荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰1903年亨利·贝克勒法国“发现天然放射性”皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究”玛丽·居里法国1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)1905年菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究”1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究"1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究”1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法”1909年古列尔莫·马可尼意大利“他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律”1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成”1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象”1915年威廉·亨利·布拉格英国“用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射”1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展”1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象”1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现”1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现”1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作”1924年卡尔·曼内·乔奇·塞格巴恩瑞典“他在X射线光谱学领域的发现和研究”[3]1925年詹姆斯·弗兰克德国“发现那些支配原子和电子碰撞的定律”古斯塔夫·赫兹德国1926年让·佩兰法国“研究物质不连续结构和发现沉积平衡”1927年阿瑟·康普顿美国“发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法”1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性”1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子”1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现”1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性”1945年沃尔夫冈·泡利奥地利“发现不相容原理,也称泡利原理”1946年珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现”1947年爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现”1948年帕特里克·梅纳德·斯图尔特·布莱克特英国“改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现”1949年汤川秀树日本“他以核作用力的理论为基础预言了介子的存在”1950年塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现”1951年约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作”欧内斯特·沃吞爱尔兰1952年费利克斯·布洛赫美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果”爱德华·珀塞尔美国1953年弗里茨·塞尔尼克荷兰“他对相衬法的证实,特别是发明相衬显微镜”1954年马克斯·玻恩英国“在量子力学领域的基础研究,特别是他对波函数的统计解释”瓦尔特·博特德国“符合法,以及以此方法所获得的研究成果”1955年威利斯·尤金·兰姆美国“他的有关氢光谱的精细结构的研究成果”波利卡普·库施美国“精确地测定出电子磁矩”1956年威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应”约翰·巴丁美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应”伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现”鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现”1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用”玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器"尼古拉·根纳季耶维奇·巴索夫苏联亚历山大·普罗霍罗夫苏联1965年朝永振一郎日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响”朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法”1967年汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现”1968年路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态”1969年默里·盖尔曼美国“对基本粒子的分类及其相互作用的研究发现”1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用”路易·奈耳法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用”1971年伽博·丹尼斯英国“发明并发展全息照相法”1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS理论”利昂·库珀美国约翰·罗伯特·施里弗美国1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献”尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究”1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应”1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破”卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用”汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性”亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔-吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中”1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子”,以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦-3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂-唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”卡尔·威曼美国沃尔夫冈·克特勒德国2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子”小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献”约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异性”乔治·斯穆特美国2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制”2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件”乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6] 弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)”天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
历年诺贝尔物理学奖得主(1901-2018)以下是历年诺贝尔物理学奖得主列表(1901-2016):1901年,___(德国)因发现不寻常的射线,即X射线(又称伦琴射线),并将其命名为伦琴射线,同时将其作为辐射量的单位。
1902年,___和___(荷兰)因发现了塞曼效应,即磁场对辐射现象的影响。
1903年,___(法国)因发现了天然放射性。
1904年,___(英国)因对___教授所发现的放射性现象进行了研究。
1905年,___和___(德国)因对阴极射线进行了研究。
1906年,___(英国)因对气体导电的理论和实验进行了研究。
1907年,___耳孙(美国)因发明了用于控制灯塔和浮标中气体蓄积器的自动调节阀。
1908年,___(法国)因发明了精密光学仪器,并借助它们进行了光谱学和计量学研究。
1909年,___和___(意大利和德国)因对气体和液体的状态方程进行了研究。
1910年,___(荷兰)因对氢气、氧气、氮气等气体密度的测量进行了研究,并因测量氮气而发现了氩。
1911年,___(德国)因对热辐射的定律进行了研究。
1912年,___(瑞典)因发现晶体中的X射线衍射现象,并用X射线对晶体结构进行了研究。
1913年,___(荷兰)因发现了元素的特征伦琴辐射。
1914年,___(德国)因推动了量子物理学的发展。
1915年,___和___(英国)因发现了极隧射线的多普勒效应以及电场作用下谱线的分裂现象。
1917年,___(英国)因对镍钢合金的反常现象进行了研究,推动了物理学的精密测量。
1918年,___(德国)因对热辐射的定律进行了研究。
1919年,___(德国)因发现了那些影响热辐射的定律。
1920年,___(瑞士)因发明了利用干涉现象来重现色彩于照片上的方法。
1921年,___(德国)因对量子的发现进行了研究,推动了物理学的发展。
以上是历年诺贝尔物理学奖得主的列表,他们的成就和贡献对物理学的发展产生了重大影响。
物理学奖法国,德布罗意(PrinceLouis-VictorPierreRaymonddeBroglie1892-1987),提出粒子具有波粒二项性路易·维克多·德布罗意(LouisVictordeBroglie,1892.08.15—1987.03.19)出生于迪耶普,法国著名理论物理学家,波动力学的创始人,物质波理论的创立者,量子力学的奠基人之一。
1929年获诺贝尔物理学奖。
1932年任巴黎大学理论物理学教授,1933年被选为法国科学院院士。
生平和成果生平简介路易·维克多·德布罗意(LouisVictordeBroglie,1892年8月15日——1987年3月19日)法国著名理论物理学家,1929年诺贝尔物理学奖获得者,波动力学的创始人,物质波理论的创立者,量子力学的奠基人之一。
德布罗意1892年8月15日出生于迪耶普,1910年获巴黎索邦大学文学学士学位,1913年又获理学士学位,1924年获巴黎大学博士学位,在博士论文中首次提出了"物质波"概念。
1929年获诺贝尔物理学奖。
1932年任巴黎大学理论物理学教授,1933年被选为法国科学院院士。
1987年3月19日逝世。
德布罗意家族路易·维克多·德布罗意1892年8月15日出生于法国塞纳河畔的迪耶普(Dieppe),是法国一贵族家庭的次子。
德布罗意家族自17世纪以来在法国军队、政治、外交方面颇具盛名,数百年来在战场上和外交上为法国各朝国王服务。
1740年路易十四封德布罗意家族为世袭公爵,封号由一家之长承袭,第一代公爵的儿子曾在七年战争中为奥地利王族出力作战,获得王子封号,赐于家族中每一个成员。
德布罗意家族祖父J·V·A·德布罗意(1821~1901)是法国著名政治家和国务活动家,1871年当选为法国国民议会下院议员,同年担任法国驻英国大使,后来还担任过法国总理和外交部长等职务。
康普顿效应简介康普顿效应康普顿效应1923年康普顿在研究x射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长l0的x光外,还产生了波长l>l0的x光,其波长的增量随散射角的不同而变化。
这种现象称为康普顿效应(comptoneffect)。
用经典电磁理论来解释康普顿效应遇到了困难。
康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释.我国物理学家吴有训也曾对康普顿散射实验作出了杰出的贡献。
对康普顿散射现象的研究经历了一、二十年才得出正确结果。
康普顿效应第一次从实验上证实了爱因斯坦提出的关于光子具有动量的假设。
这在物理学发展史上占有重要的位置。
光子在介质中和物质微粒相互作用时,可能使得光向任何方向传播,这种现象叫光的散射.1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时发现,有些散射波的波长比入射波的波长略大,他认为这是光子和电子碰撞时,光子的一些能量转移给了电子,康普顿假设光子和电子、质子这样的实物粒子一样,不仅具有能量,也具有动量,碰撞过程中能量守恒,动量也守恒.按照这个思想列出方程后求出了散射前后的波长差,结果跟实验数据完全符合,这样就证实了他的假设。
这种现象叫康普顿效应。
发现康普顿康普顿1922~1923年康普顿研究了X射线被较轻物质(石墨、石蜡等)散射后光的成分,发现散射谱线中除了有波长与原波长相同的成分外,还有波长较长的成分。
这种散射现象称为康普顿散射或康普顿效应。
康普顿将0.71埃的X光投射到石墨上,然后在不同的角度测量被石墨分子散射的X光强度。
当θ=0时,只有等于入射频率的单一频率光。
当θ≠0(如45°、90°、135°)时,发现存在两种频率的散射光。
一种频率与入射光相同,另一种则频率比入射光低。
后者随角度增加偏离增大。
在1923年5月的《物理评论》上,A.H.康普顿以《X射线受轻元素散射的量子理论》为题,发表了他所发现的效应,并用光量子假说作出解释。
诺贝尔物理学奖获得者及其主要贡献简介获奖年度:2012年获奖者:塞尔日·阿罗什(Serge Haroche)和大卫·维因兰德(David Wineland)获奖者简介:塞尔日·阿罗什1944年生于摩洛哥的卡萨布兰卡,法国籍。
他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。
大卫·维因兰德,美国公民,博士学位,美国标准技术研究所教授,现供职于美国国家标准与技术研究院和科罗拉多大学波尔得分校。
主要贡献:瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。
塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。
通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。
这套新方法允许他们检验、控制并计算粒子。
两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。
他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。
就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。
极端精准的时钟在他们研究的推动下应运而生,有望成为未来新型时间标准的基础,而其精准度超越现代铯时钟百倍以上。
获奖年度:2011年获奖者:波尔马特(Saul Perlmutter) ,斯密特(Brian P. Schmidt) 和亚当-赖斯(Adam G. Riess) 获奖者简介:萨尔·波尔马特,美国人,1959年生于美国伊利诺斯州,1986年在美国加利福尼亚大学伯克利分校获得博士学位。
诺贝尔物理学奖百年得主列表诺贝尔物理学奖百年得主列表跳过字词转换说明为了阅读方便,本文使用全文手工转换。
转换内容:下方采用物理学组全文转换[编辑]原始语言:Gravitation;台灣:萬有引力;大陆:万有引力;当前用字模式下显示为→万有引力原始语言:traction;台灣:牽引力;大陆:牵引力;当前用字模式下显示为→牵引力原始语言:attraction;台灣:吸引力;大陆:吸引力;当前用字模式下显示为→吸引力原始语言:Integralform;台灣:積分形式;大陆:积分形式;当前用字模式下显示为→积分形式原始语言:Differentialform;台灣:微分形式;大陆:微分形式;当前用字模式下显示为→微分形式原始语言:Gravitationalacceleration;台灣:重力加速度;大陆:重力加速度;当前用字模式下显示为→重力加速度原始语言:equations;台灣:方程組;大陆:方程组;当前用字模式下显示为→方程组原始语言:Auger;大陆:俄歇;台灣:奧杰;当前用字模式下显示为→俄歇原始语言:Avogadroconstant;台灣:亞佛加厥常數;大陆:阿伏伽德罗常量;香港:阿佛加德羅常數;当前用字模式下显示为→阿伏伽德罗常量原始语言:Bohrmagneton;大陆:玻尔磁子;台灣:波耳磁元;当前用字模式下显示为→玻尔磁子原始语言:Born-Oppenheimerapproximation;大陆:玻恩-奥本海默近似;台灣:波恩-歐本海默近似法;当前用字模式下显示为→玻恩-奥本海默近似原始语言:BigBang;大霹靂?大陆:大爆炸;大霹靂?台灣:大霹靂;大霹靂?香港:大爆炸;大霹靂?新加坡:大爆炸;当前用字模式下显示为→大爆炸原始语言:BigBang;台灣:大爆炸;大陆:大爆炸;香港:大爆炸;新加坡:大爆炸;当前用字模式下显示为→大爆炸原始语言:Biot-Savartlaw;台灣:必歐-沙伐定律;大陆:毕奥-萨伐尔定律;当前用字模式下显示为→毕奥-萨伐尔定律原始语言:Boltzmannconstant;大陆:玻尔兹曼常量;台灣:波茲曼常數;当前用字模式下显示为→玻尔兹曼常量原始语言:Brackettseries;大陆:布拉开线系;台灣:布拉克系;当前用字模式下显示为→布拉开线系原始语言:Brans-Dicke(theory);大陆:布兰斯-迪克;台灣:卜然斯-狄基;当前用字模式下显示为→布兰斯-迪克原始语言:Breit-Wigner;大陆:布赖特-维格纳;台灣:布萊特-維格納;当前用字模式下显示为→布赖特-维格纳原始语言:Center-of-massframe;台灣:質心系;大陆:质心系;当前用字模式下显示为→质心系原始语言:Centralforce;台灣:連心力;大陆:有心力;当前用字模式下显示为→有心力原始语言:Charge-massratio;台灣:電荷質量比;大陆:荷质比;当前用字模式下显示为→荷质比原始语言:Charm;台灣:魅;大陆:粲;当前用字模式下显示为→粲原始语言:Classical;台灣:古典;大陆:经典;当前用字模式下显示为→经典原始语言:Condensedmatter;台灣:凝態;大陆:凝聚态;当前用字模式下显示为→凝聚态原始语言:coldfusion;台灣:冷融合;大陆:冷聚变;香港:冷聚變;当前用字模式下显示为→冷聚变原始语言:collapse;大陆:坍缩;台灣:塌縮;当前用字模式下显示为→坍缩原始语言:confinementfusion;台灣:局限融合;大陆:约束聚变;香港:約束聚變;当前用字模式下显示为→约束聚变原始语言:criterion;台灣:準則;大陆:判据;当前用字模式下显示为→判据原始语言:Decoherence;台灣:去相干;大陆:退相干;当前用字模式下显示为→退相干原始语言:Diffraction;台灣:繞射;大陆:衍射;当前用字模式下显示为→衍射原始语言:Dimension;台灣:因次;大陆:量纲;当前用字模式下显示为→量纲原始语言:Dulong-Petitlaw;台灣:杜隆-泊替定律;大陆:杜隆-珀蒂定律;当前用字模式下显示为→杜隆-珀蒂定律原始语言:Electronhole;台灣:電洞;大陆:空穴;当前用字模式下显示为→空穴原始语言:Equation;台灣:方程式;大陆:方程;当前用字模式下显示为→方程原始语言:Fractal;台灣:碎形;大陆:分形;当前用字模式下显示为→分形原始语言:Fusionreaction;台灣:融合反應;大陆:聚变反应;香港:聚變反應;当前用字模式下显示为→聚变反应原始语言:Gravitation;台灣:重力;大陆:引力;当前用字模式下显示为→引力原始语言:Gravitationalwave;台灣:重力波;大陆:引力波;当前用字模式下显示为→引力波原始语言:Heliumfusion;台灣:氦融合;大陆:氦聚变;香港:氦聚變;当前用字模式下显示为→氦聚变原始语言:Holography;台灣:全像;大陆:全息;当前用字模式下显示为→全息原始语言:Hydrogenfusion;台灣:氫融合;大陆:氢聚变;香港:氫聚變;当前用字模式下显示为→氢聚变原始语言:Interaction;台灣:交互作用;大陆:相互作用;当前用字模式下显示为→相互作用原始语言:Ionizingradiation;台灣:游離輻射;大陆:电离辐射;当前用字模式下显示为→电离辐射原始语言:Laser;台灣:雷射;大陆:激光;香港:激光;新加坡:镭射;当前用字模式下显示为→激光原始语言:Legendretransformation;台灣:勒壤得轉換;大陆:勒让德变换;当前用字模式下显示为→勒让德变换原始语言:Liouville''stheorem;台灣:劉維定理;大陆:刘维尔定理;当前用字模式下显示为→刘维尔定理原始语言:Loopquantumgravity;台灣:迴圈量子重力;大陆:圈量子引力;当前用字模式下显示为→圈量子引力原始语言:Loopquantumgravitytheory;台灣:迴圈量子重力理論;大陆:圈量子引力论;当前用字模式下显示为→圈量子引力论原始语言:Lymanseries;台灣:來曼系;大陆:莱曼系;当前用字模式下显示为→莱曼系原始语言:Macroscopic;台灣:巨觀;大陆:宏观;当前用字模式下显示为→宏观原始语言:Magneticdomain;台灣:磁域;大陆:磁畴;当前用字模式下显示为→磁畴原始语言:Maser;台灣:邁射;大陆:激微波;当前用字模式下显示为→激微波原始语言:Meanfreepath;台灣:平均自由徑;大陆:平均自由程;当前用字模式下显示为→平均自由程原始语言:Mole;大陆:摩尔;台灣:莫耳;香港:摩爾;当前用字模式下显示为→摩尔原始语言:Muon;大陆:μ子;台灣:緲子;当前用字模式下显示为→μ子原始语言:Netforce;台灣:淨力;大陆:合力;当前用字模式下显示为→合力原始语言:Netexternalforce;台灣:淨外力;大陆:合外力;当前用字模式下显示为→合外力原始语言:Nuclearfission;大陆:核裂变;台灣:核分裂;当前用字模式下显示为→核裂变原始语言:Nuclearfusion;大陆:核聚变;香港:核聚變;台灣:核融合;当前用字模式下显示为→核聚变原始语言:Neutrino;台灣:微中子;大陆:中微子;当前用字模式下显示为→中微子原始语言:Noise;台灣:雜訊;大陆:噪声;当前用字模式下显示为→噪声原始语言:Plasma;台灣:電漿;大陆:等离子体;香港:等離子體;当前用字模式下显示为→等离子体原始语言:Plasma;漿?大陆:等离子体;漿?台灣:漿;漿?香港:等離子體;漿?新加坡:等离子体;当前用字模式下显示为→等离子体原始语言:Plasmastate;台灣:電漿態;大陆:等离子态;香港:等離子態;当前用字模式下显示为→等离子态原始语言:Positronium;台灣:正子電子偶;大陆:电子偶素;当前用字模式下显示为→电子偶素原始语言:Potentialenergy;台灣:位能;大陆:势能;当前用字模式下显示为→势能原始语言:Probability;台灣:機率;大陆:概率;当前用字模式下显示为→概率原始语言:Probability;几率?大陆:几率;几率?台灣:機率;几率?香港:機率;几率?新加坡:几率;当前用字模式下显示为→几率原始语言:Propertime;台灣:原時;大陆:固有时;当前用字模式下显示为→固有时原始语言:quark-gluonplasma;大陆:夸克-胶子等离子体;香港:夸克-膠子等離子體;台灣:夸克-膠子漿;当前用字模式下显示为→夸克-胶子等离子体原始语言:Scalar;台灣:純量;大陆:标量;当前用字模式下显示为→标量原始语言:Scalarpotential;台灣:純量位;大陆:标势;当前用字模式下显示为→标势原始语言:Singularity;台灣:奇異點;大陆:奇点;当前用字模式下显示为→奇点原始语言:Shearstress;台灣:切應力;大陆:剪应力;当前用字模式下显示为→剪应力原始语言:Staticallyindeterminate;台灣:靜不定;大陆:超静定;当前用字模式下显示为→超静定原始语言:Tesla;台灣:特斯拉;大陆:特斯拉;香港:忒斯拉;当前用字模式下显示为→特斯拉原始语言:Tunnelling;大陆:隧穿;台灣:穿隧;当前用字模式下显示为→隧穿原始语言:Turbulence;台灣:亂流;大陆:湍流;当前用字模式下显示为→湍流原始语言:Unitary;台灣:么正;大陆:幺正;当前用字模式下显示为→幺正原始语言:Vector;台灣:向量;大陆:矢量;当前用字模式下显示为→矢量原始语言:Vectorpotential;台灣:向量位;大陆:矢势;当前用字模式下显示为→矢势原始语言:Electroweakinteraction;台灣:電弱相互作用;大陆:弱电相互作用;当前用字模式下显示为→弱电相互作用原始语言:Viscosity;台灣:黏性;大陆:粘性;当前用字模式下显示为→粘性原始语言:Viscoelasticity;台灣:黏彈性;大陆:粘弹性;当前用字模式下显示为→粘弹性原始语言:Waveguide;台灣:導波;大陆:波导;当前用字模式下显示为→波导原始语言:Avogadro;台灣:亞佛加厥;大陆:阿伏伽德罗;香港:阿佛加德羅;当前用字模式下显示为→阿伏伽德罗原始语言:Becquerel;台灣:貝克勒;香港:貝克勒爾;大陆:贝克勒尔;当前用字模式下显示为→贝克勒尔原始语言:Bernoulli;台灣:白努利;大陆:伯努利;当前用字模式下显示为→伯努利原始语言:Biot;台灣:必歐;大陆:毕奥;当前用字模式下显示为→毕奥原始语言:Bohr;台灣:波耳;大陆:玻尔;香港:玻爾;当前用字模式下显示为→玻尔原始语言:Boltzmann;台灣:波茲曼;大陆:玻尔兹曼;当前用字模式下显示为→玻尔兹曼原始语言:Bravais;台灣:布拉菲;大陆:布拉维;当前用字模式下显示为→布拉维原始语言:Brillouin;台灣:布里元;大陆:布里渊;当前用字模式下显示为→布里渊原始语言:Cherenkov;台灣:契忍可夫;大陆:切连科夫;当前用字模式下显示为→切连科夫原始语言:D''Alembert;台灣:達朗伯特;大陆:达朗贝尔;当前用字模式下显示为→达朗贝尔原始语言:Doppler;台灣:都卜勒;大陆:多普勒;当前用字模式下显示为→多普勒原始语言:Drude;台灣:德汝德;大陆:德鲁德;当前用字模式下显示为→德鲁德原始语言:Fabry;台灣:法布立;大陆:法布里;当前用字模式下显示为→法布里原始语言:Fourier;台灣:傅立葉;大陆:傅里叶;当前用字模式下显示为→傅里叶原始语言:Franck;台灣:法蘭克;大陆:弗兰克;当前用字模式下显示为→弗兰克原始语言:Gerlach,Walther;台灣:革拉赫;大陆:格拉赫;当前用字模式下显示为→格拉赫原始语言:Gibbs;台灣:吉布士;大陆:吉布斯;当前用字模式下显示为→吉布斯原始语言:Gordon;台灣:戈登;大陆:高登;当前用字模式下显示为→高登原始语言:Heaviside;台灣:黑維塞;大陆:赫维赛德;当前用字模式下显示为→赫维赛德原始语言:Hooke;台灣:虎克;大陆:胡克;当前用字模式下显示为→胡克原始语言:Hubble;台灣:哈柏;大陆:哈勃;香港:哈勃;当前用字模式下显示为→哈勃原始语言:Ising;台灣:易辛;大陆:伊辛;当前用字模式下显示为→伊辛原始语言:Jacobi;台灣:亞可比;大陆:雅可比;当前用字模式下显示为→雅可比原始语言:Kelvin;台灣:克耳文;大陆:开尔文;当前用字模式下显示为→开尔文原始语言:Kepler;台灣:克卜勒;大陆:开普勒;香港:開普勒;当前用字模式下显示为→开普勒原始语言:Kirchhoff;台灣:克希荷夫;大陆:基尔霍夫;香港:基爾霍夫;当前用字模式下显示为→基尔霍夫原始语言:Kruskal;台灣:克魯斯卡;大陆:克鲁斯卡尔;当前用字模式下显示为→克鲁斯卡尔原始语言:Landau;台灣:蘭道;大陆:朗道;当前用字模式下显示为→朗道原始语言:Langmuir;台灣:蘭米爾;大陆:朗缪尔;当前用字模式下显示为→朗缪尔原始语言:Lenz;台灣:冷次;大陆:楞次;香港:楞次;当前用字模式下显示为→楞次原始语言:Liénard;台灣:黎納;大陆:李纳;当前用字模式下显示为→李纳原始语言:Lorentz;台灣:勞侖茲;大陆:洛伦兹;当前用字模式下显示为→洛伦兹原始语言:Lorenz;台灣:勞侖次;大陆:洛伦茨;当前用字模式下显示为→洛伦茨原始语言:Maxwell;台灣:馬克士威;大陆:麦克斯韦;香港:麥克斯韋;当前用字模式下显示为→麦克斯韦原始语言:Michelson;台灣:邁克生;大陆:迈克耳孙;当前用字模式下显示为→迈克耳孙原始语言:Minkowski;台灣:閔考斯基;大陆:闵可夫斯基;当前用字模式下显示为→闵可夫斯基原始语言:Morley;台灣:莫立;大陆:莫雷;当前用字模式下显示为→莫雷原始语言:Moseley;台灣:莫斯利;大陆:莫塞莱;当前用字模式下显示为→莫塞莱原始语言:Olbers;台灣:歐伯斯;大陆:奧伯斯;当前用字模式下显示为→奧伯斯原始语言:Pauli;台灣:包立;大陆:泡利;当前用字模式下显示为→泡利原始语言:Penrose;台灣:潘洛斯;大陆:彭罗斯;当前用字模式下显示为→彭罗斯原始语言:Perot;台灣:培若;大陆:珀罗;当前用字模式下显示为→珀罗原始语言:Poisson;台灣:帕松;大陆:泊松;当前用字模式下显示为→泊松原始语言:Poynting;台灣:坡印廷;大陆:坡印亭;当前用字模式下显示为→坡印亭原始语言:Rayleigh;台灣:瑞立;大陆:瑞利;当前用字模式下显示为→瑞利原始语言:Reissner;台灣:萊斯納;大陆:雷斯勒;当前用字模式下显示为→雷斯勒原始语言:Rutherford;台灣:拉塞福;大陆:卢瑟福;香港:盧瑟福;当前用字模式下显示为→卢瑟福原始语言:Rydberg;台灣:芮得柏;大陆:里德伯;当前用字模式下显示为→里德伯原始语言:Schr?dinger;台灣:薛丁格;大陆:薛定谔;香港:薛定諤;当前用字模式下显示为→薛定谔原始语言:Snell;台灣:司乃耳;大陆:斯涅尔;香港:斯涅耳;当前用字模式下显示为→斯涅尔原始语言:Stefan;台灣:斯特凡;大陆:斯特藩;当前用字模式下显示为→斯特藩原始语言:Stern,Otto;台灣:斯特恩;大陆:施特恩;当前用字模式下显示为→施特恩原始语言:JosephThomson;台灣:湯姆森;大陆:汤姆孙;香港:湯姆生;当前用字模式下显示为→汤姆孙原始语言:VandeGraaff;台灣:凡德格拉夫;大陆:范德格拉夫;当前用字模式下显示为→范德格拉夫原始语言:VanderWaals;台灣:凡得瓦;大陆:范德瓦耳斯;当前用字模式下显示为→范德瓦耳斯原始语言:vonNeumann;台灣:馮?諾伊曼;大陆:冯?诺伊曼;香港:馮?紐曼;当前用字模式下显示为→冯?诺伊曼原始语言:Wien;台灣:維因;大陆:维恩;当前用字模式下显示为→维恩原始语言:Wiechert;台灣:維謝;大陆:维谢尔;当前用字模式下显示为→维谢尔原始语言:Wilson;台灣:威爾森;大陆:威耳逊;当前用字模式下显示为→威耳逊原始语言:Witten;台灣:維騰;大陆:威滕;当前用字模式下显示为→威滕原始语言:Α,α,alpha;大陆:阿尔法;香港:阿爾法;台灣:阿伐;当前用字模式下显示为→阿尔法原始语言:Β,β,beta;大陆:贝塔;香港:貝塔;台灣:貝他;当前用字模式下显示为→贝塔原始语言:Γ,γ,gamma;大陆:伽马;台灣:伽瑪;当前用字模式下显示为→伽马[展开]?字词转换说明字词转换是中文维基的一项自动转换,目的是通过计算机程序自动消除繁简、地区词等不同用字模式的差异,以达到阅读方便。
历年诺贝尔奖名单列表篇一:诺贝尔奖是一项极为重要的奖项,旨在表彰在物理学、化学、医学、经济学等领域的杰出贡献。
以下是历年诺贝尔奖的名单列表,以及对这些奖项的介绍和拓展。
1. 1901年 - 物理学奖:约翰·普雷斯珀·斯托曼(John presper Sto Stomenoff)2. 1902年 - 化学奖:威廉·亨利·纽曼(William Henry Newman)3. 1903年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)4. 1904年 - 化学奖:路易斯·达盖尔(Louis de Groot Dagendarian)5. 1905年 - 物理学奖:约翰·伯努利(John Perseby努利)6. 1906年 - 化学奖:爱德华·泰勒(Edward DeWitt泰勒)7. 1907年 - 物理学奖:詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)8. 1908年 - 化学奖:伊萨克·牛顿·萨克雷(Isaac Newton萨勒姆)9. 1909年 - 物理学奖:莱布尼茨·普朗克(Gottfried Wilhelm Leibniz)10. 1910年 - 化学奖:约翰·冯·诺伊曼(John von Neumann)11. 1911年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)12. 1912年 - 化学奖:尼古拉·约瑟夫·弗拉迪米尔·霍夫斯塔特(Nicolaus Copernicus)13. 1913年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)14. 1914年 - 化学奖:爱德华·泰勒(Edward DeWitt泰勒)15. 1915年 - 物理学奖:罗伯特·胡克(Robert Hooke)16. 1916年 - 化学奖:尼古拉·尼古拉耶维奇·门捷列夫(Niels Bohr)17. 1917年 - 物理学奖:约翰·伯努利(John Perseby努利)18. 1918年 - 化学奖:阿图尔·谢尔比(Atal Sherbi)19. 1919年 - 物理学奖:詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)20. 1920年 - 化学奖:弗朗茨·伯姆(弗朗茨·冯·伯姆)21. 1921年 - 物理学奖:尼尔斯·玻尔(Niels Bohr)22. 1922年 - 化学奖:雅各布·伯努利(Jacob Bernoulli)23. 1923年 - 物理学奖:艾萨克·阿西莫夫(Isaac Asimov)24. 1924年 - 化学奖:尼古拉·约瑟夫·弗拉迪米尔·霍夫斯塔特(Nicolaus Copernicus)25. 1925年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)26. 1926年 - 化学奖:弗朗茨·伯姆(弗朗茨·冯·伯姆)27. 1927年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)28. 1928年 - 化学奖:约翰·普雷斯珀·斯托曼(John presper Sto Stomenoff)29. 1929年 - 物理学奖:约翰·麦克斯韦(James Clerk Maxwell)30. 1930年 - 化学奖:雅各布·伯努利(Jacob Bernoulli)31. 1931年 - 物理学奖:詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)32. 1932年 - 化学奖:尼古拉·尼古拉耶维奇·门捷列夫(Nicolaus Copernicus)33. 1933年 - 物理学奖:尼尔斯·玻尔(Niels Bohr)34. 1934年 - 化学奖:乔治·奥威尔(George Orwell)35. 1935年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)36. 1936年 - 化学奖:爱德华·泰勒(Edward DeWitt泰勒)37. 1937年 - 物理学奖:约翰·麦克斯韦(James Clerk Maxwell)38. 1938年 - 化学奖:弗朗茨·伯姆(弗朗茨·冯·伯姆)39. 1939年 - 物理学奖:罗伯特·胡克(Robert Hooke)40. 1940年 - 化学奖:乔治·塔普斯科特(George Taylor)41. 1941年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)42. 1942年 - 化学奖:尼古拉·约瑟夫·弗拉迪米尔·霍夫斯塔特(Nicolaus Copernicus)43. 1943年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)44. 1944年 - 化学奖:雅各布·伯努利(Jacob Bernoulli)45. 1945年 - 物理学奖:约翰·麦克斯韦(James Clerk Maxwell)46. 1946年 - 化学奖:约翰·普雷斯珀·斯托曼(John presper Sto Stomenoff)47. 1947年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)48. 1948年 - 化学奖:乔治·塔普斯科特(George Taylor)49. 1949年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)50. 1950年 - 化学奖:弗朗茨·伯姆(弗朗茨·冯·伯姆)51. 1951年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)52. 1952年 - 化学奖:乔治·塔普斯科特(George Taylor)53. 1953年 - 物理学奖:尼尔斯·玻尔(Niels Bohr)54. 1954年 - 化学奖:雅各布·伯努利(Jacob Bernoulli)55. 1955年 - 物理学奖:罗伯特·胡克(Robert Hooke)56. 1956年 - 化学奖:阿图尔·谢尔比(Atal Sherbi)57. 1957年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)58. 1958年 - 化学奖:乔治·塔普斯科特(George Taylor)59. 1959年 - 物理学奖:约翰·麦克斯韦(James Clerk Maxwell)60. 1960年 - 化学奖:爱德华·泰勒(Edward DeWitt泰勒)61. 1961年 - 物理学奖:尼尔斯·玻尔(Niels Bohr)62. 1962年 - 化学奖:雅各布·伯努利(Jacob Bernoulli)63. 1963年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)64. 1964年 - 化学奖:乔治·塔普斯科特(George Taylor)65. 1965年 - 物理学奖:阿尔伯特·爱因斯坦(Albert Einstein)66. 1966年 - 化学奖:尼古拉·约瑟夫·弗拉迪米尔·霍夫斯塔特(Nicolaus Copernicus)67. 1967年 - 物理学奖:詹姆斯·普雷斯珀·海森伯(James Clerk Maxwell)68. 1968年 - 化学奖:乔治·塔普斯科特(George Taylor)69. 1969年 - 物理学奖:阿图尔·谢尔比(Atal Sherbi)70. 1970年 - 化学奖:阿尔伯特·爱因斯坦(Albert Einstein)71. 1971年 - 物理学奖:约翰·麦克斯韦(James Clerk篇二:诺贝尔奖是一个备受尊敬的奖项,旨在表彰在物理学、化学、医学、和平等领域做出杰出贡献的科学家。
(完整)历年诺贝尔物理学奖得主(1901-2018)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)历年诺贝尔物理学奖得主(1901-2018))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)历年诺贝尔物理学奖得主(1901-2018)的全部内容。
历年诺贝尔物理学奖得主(1901—2016)年份获奖者国籍获奖原因1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X射线,又称伦琴射线,并伦琴做为辐射量的单位)1902年亨得里克·洛仑兹荷兰“关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰1903年亨利·贝克勒法国“发现天然放射性”皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的共同研究”玛丽·居里法国1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩"(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩)1905年菲利普·爱德华·安东·冯·莱纳德德国“关于阴极射线的研究”1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究”1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究”1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法”1909年古列尔莫·马可尼意大利“他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国1910年范德华荷兰“关于气体和液体的状态方程的研究" 1911年威廉·维恩德国“发现那些影响热辐射的定律"1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀”1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成"1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象”1915年威廉·亨利·布拉格英国“用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射”1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展”1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象”1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现”1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现"1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作”1924年卡尔·曼内·乔奇·塞格巴恩瑞典“他在X射线光谱学领域的发现和研究”[3]1925年詹姆斯·弗兰克德国“发现那些支配原子和电子碰撞的定律”古斯塔夫·赫兹德国1926年让·佩兰法国“研究物质不连续结构和发现沉积平衡”1927年阿瑟·康普顿美国“发现以他命名的效应”查尔斯·威耳逊英国“通过水蒸气的凝结来显示带电荷的粒子的轨迹的方法"1928年欧文·理查森英国“他对热离子现象的研究,特别是发现以他命名的定律”1929年路易·德布罗意公爵法国“发现电子的波动性"1930年钱德拉塞卡拉·文卡塔·拉曼印度“他对光散射的研究,以及发现以他命名的效应”1932年维尔纳·海森堡德国“创立量子力学,以及由此导致的氢的同素异形体的发现”1933年埃尔温·薛定谔奥地利“发现了原子理论的新的多产的形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程)保罗·狄拉克英国1935年詹姆斯·查德威克英国“发现中子”1936年维克托·弗朗西斯·赫斯奥地利“发现宇宙辐射”卡尔·戴维·安德森美国“发现正电子"1937年克林顿·约瑟夫·戴维孙美国“他们有关电子被晶体衍射的现象的实验发现”乔治·汤姆孙英国1938年恩里科·费米意大利“证明了可由中子辐照而产生的新放射性元素的存在,以及有关慢中子引发的核反应的发现”1939年欧内斯特·劳伦斯美国“对回旋加速器的发明和发展,并以此获得有关人工放射性元素的研究成果”1943年奥托·施特恩美国“他对分子束方法的发展以及有关质子磁矩的研究发现"1944年伊西多·艾萨克·拉比美国“他用共振方法记录原子核的磁属性" 1945年沃尔夫冈·泡利奥地利“发现不相容原理,也称泡利原理”1946年珀西·威廉斯·布里奇曼美国“发明获得超高压的装置,并在高压物理学领域作出发现”1947年爱德华·维克托·阿普尔顿英国“对高层大气的物理学的研究,特别是对所谓阿普顿层的发现”1948年帕特里克·梅纳英国“改进威尔逊云雾室方法和由此在核物理德·斯图尔特·布莱克特和宇宙射线领域的发现”1949年汤川秀树日本“他以核作用力的理论为基础预言了介子的存在"1950年塞西尔·弗兰克·鲍威尔英国“发展研究核过程的照相方法,以及基于该方法的有关介子的研究发现”1951年约翰·道格拉斯·考克饶夫英国“他们在用人工加速原子产生原子核嬗变方面的开创性工作"欧内斯特·沃吞爱尔兰1952年费利克斯·布洛赫美国“发展出用于核磁精密测量的新方法,并凭此所得的研究成果"爱德华·珀塞尔美国1953年弗里茨·塞尔尼克荷兰“他对相衬法的证实,特别是发明相衬显微镜”1954年马克斯·玻恩英国“在量子力学领域的基础研究,特别是他对波函数的统计解释”瓦尔特·博特德国“符合法,以及以此方法所获得的研究成果”1955年威利斯·尤金·兰姆美国“他的有关氢光谱的精细结构的研究成果”波利卡普·库施美国“精确地测定出电子磁矩”1956年威廉·布拉德福德·肖克利美国“他们对半导体的研究和发现晶体管效应”约翰·巴丁美国沃尔特·豪泽·布喇顿美国1957年杨振宁中国“他们对所谓的宇称不守恒定律的敏锐地研究,该定律导致了有关基本粒子的许多重大发现”李政道中国1958年帕维尔·阿列克谢耶维奇·切连科夫苏联“发现并解释切连科夫效应"伊利亚·弗兰克苏联伊戈尔·叶夫根耶维奇·塔姆苏联1959年埃米利奥·吉诺·塞格雷美国“发现反质子”欧文·张伯伦美国1960年唐纳德·阿瑟·格拉泽美国“发明气泡室”1961年罗伯特·霍夫施塔特美国“关于对原子核中的电子散射的先驱性研究,并由此得到的关于核子结构的研究发现"鲁道夫·路德维希·穆斯堡尔德国“他的有关γ射线共振吸收现象的研究以及与这个以他命名的效应相关的研究发现"1962年列夫·达维多维奇·朗道苏联“关于凝聚态物质的开创性理论,特别是液氦”1963年耶诺·帕尔·维格纳美国“他对原子核和基本粒子理论的贡献,特别是对基础的对称性原理的发现和应用"玛丽亚·格佩特-梅耶美国“发现原子核的壳层结构”J·汉斯·D·延森德国1964年查尔斯·汤斯美国“在量子电子学领域的基础研究成果,该成果导致了基于激微波-激光原理建造的振荡器和放大器”尼古拉·根纳季耶维奇·巴索夫苏联亚历山大·普罗霍罗夫苏联1965年朝永振一郎日本“他们在量子电动力学方面的基础性工作,这些工作对粒子物理学产生深远影响"朱利安·施温格美国理查德·菲利普·费曼美国1966年阿尔弗雷德·卡斯特勒法国“发现和发展了研究原子中赫兹共振的光学方法”1967年汉斯·阿尔布雷希特·贝特美国“他对核反应理论的贡献,特别是关于恒星中能源的产生的研究发现”1968年路易斯·沃尔特·阿尔瓦雷茨美国“他对粒子物理学的决定性贡献,特别是因他发展了氢气泡室技术和数据分析方法,从而发现了一大批共振态"1969年默里·盖尔曼美国“对基本粒子的分类及其相互作用的研究发现”1970年汉尼斯·奥洛夫·哥斯达·阿尔文瑞典“磁流体动力学的基础研究和发现,及其在等离子体物理学富有成果的应用"路易·奈耳法国“关于反铁磁性和铁磁性的基础研究和发现以及在固体物理学方面的重要应用"1971年伽博·丹尼斯英国“发明并发展全息照相法”1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS理论”利昂·库珀美国约翰·罗伯特·施里弗美国1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”伊瓦尔·贾埃弗挪威布赖恩·戴维·约瑟夫森英国“他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应的现象”1974年马丁·赖尔英国“他们在射电天体物理学的开创性研究:赖尔的发明和观测,特别是合成孔径技术;休伊什在发现脉冲星方面的关键性角色”安东尼·休伊什英国1975年奥格·尼尔斯·玻尔丹麦“发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系发展了有关原子核结构的理论”本·罗伊·莫特森丹麦利奥·詹姆斯·雷恩沃特美国1976年伯顿·里克特美国“他们在发现新的重基本粒子方面的开创性工作”丁肇中美国1977年菲利普·沃伦·安德森美国“对磁性和无序体系电子结构的基础性理论研究”内维尔·莫特英国约翰·凡扶累克美国1978年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现”阿尔诺·艾伦·彭齐亚斯美国“发现宇宙微波背景辐射”罗伯特·伍德罗·威尔逊美国1979年谢尔登·李·格拉肖美国“关于基本粒子间弱相互作用和电磁相互作用的统一理论的,包括对弱中性流的预言在内的贡献”阿卜杜勒·萨拉姆巴基斯坦史蒂文·温伯格美国1980年詹姆斯·沃森·克罗宁美国“发现中性K介子衰变时存在对称破坏”瓦尔·洛格斯登·菲奇美国1981年凯·西格巴恩瑞典“对开发高分辨率电子光谱仪的贡献"尼古拉斯·布隆伯根美国“对开发激光光谱仪的贡献”阿瑟·肖洛美国1982年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”1983年苏布拉马尼扬·钱德拉塞卡美国“有关恒星结构及其演化的重要物理过程的理论研究”威廉·福勒美国“对宇宙中形成化学元素的核反应的理论和实验研究"1984年卡洛·鲁比亚意大利“对导致发现弱相互作用传递者,场粒子W和Z的大型项目的决定性贡献”西蒙·范德梅尔荷兰1985年克劳斯·冯·克利青德国“发现量子霍尔效应"1986年恩斯特·鲁斯卡德国“电子光学的基础工作和设计了第一台电子显微镜”格尔德·宾宁德国“研制扫描隧道显微镜”海因里希·罗雷尔瑞士1987年约翰内斯·贝德诺尔茨德国“在发现陶瓷材料的超导性方面的突破"卡尔·米勒瑞士1988年利昂·莱德曼美国“中微子束方式,以及通过发现梅尔文·施瓦茨美国子中微子证明了轻子的对偶结构”1989年诺曼·拉姆齐美国“发明分离振荡场方法及其在氢激微波和其他原子钟中的应用"汉斯·德默尔特美国“发展离子陷阱技术”沃尔夫冈·保罗德国1990年杰尔姆·弗里德曼美国“他们有关电子在质子和被绑定的中子上的深度非弹性散射的开创性研究,这些研究对粒子物理学的夸克模型的发展有必不可少的重要性"亨利·肯德尔美国理查·泰勒加拿大1991年皮埃尔—吉勒·德热纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中"1992年乔治·夏帕克法国“发明并发展了粒子探测器,特别是多丝正比室”1993年拉塞尔·赫尔斯美国“发现新一类脉冲星,该发现开发了研究引力的新的可能性”约瑟夫·泰勒美国1994年伯特伦·布罗克豪斯加拿大“对中子频谱学的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究"克利福德·沙尔美国“对中子衍射技术的发展,以及对用于凝聚态物质研究的中子散射技术的开创性研究”1995年马丁·佩尔美国“发现τ轻子",以及对轻子物理学的开创性实验研究弗雷德里克·莱因斯美国“发现中微子,以及对轻子物理学的开创性实验研”1996年戴维·李美国“发现了在氦—3里的超流动性”道格拉斯·奥谢罗夫美国罗伯特·理查森美国1997年朱棣文美国“发展了用激光冷却和捕获原子的方法”克洛德·科昂—唐努德日法国威廉·菲利普斯美国1998年罗伯特·劳夫林美国“发现一种带有分数带电激发的新的量子流体形式”霍斯特·施特默德国崔琦美国1999年杰拉德·特·胡夫特荷兰“阐明物理学中弱电相互作用的量子结构”马丁纽斯·韦尔特曼荷兰2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”2001年埃里克·康奈尔美国“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质卡尔·威曼美国沃尔夫冈·克特勒德国属性质的早期基础性研究”2002年雷蒙德·戴维斯美国“在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子"小柴昌俊日本里卡尔多·贾科尼美国“在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X射线源的发现”2003年阿列克谢·阿布里科索夫俄罗斯“对超导体和超流体理论做出的先驱性贡献”维塔利·金兹堡俄罗斯安东尼·莱格特美国2004年戴维·格娄斯美国“发现强相互作用理论中的渐近自由”休·波利策美国弗朗克·韦尔切克美国2005年罗伊·格劳伯美国“对光学相干的量子理论的贡献"约翰·霍尔美国“对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,”特奥多尔·亨施德国2006年约翰·马瑟美国“发现宇宙微波背景辐射的黑体形式和各向异性”乔治·斯穆特美国2007年艾尔伯·费尔法国“发现巨磁阻效应”彼得·格林贝格德国2008年小林诚日本“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在”益川敏英日本南部阳一郎美国“发现亚原子物理学的自发对称性破缺机制"2009年高锟英国“在光学通信领域光在纤维中传输方面的突破性成就”威拉德·博伊尔美国“发明半导体成像器件电荷耦合器件"乔治·史密斯美国2010年安德烈·海姆俄罗斯“在二维石墨烯材料的开创性实验”康斯坦丁·诺沃肖洛夫俄罗斯2011年布莱恩·施密特澳大利亚“透过观测遥距超新星而发现宇宙加速膨胀”亚当·里斯美国索尔·珀尔马特美国2012年塞尔日·阿罗什法国“能够量度和操控个体量子系统的突破性实验手法”大卫·维因兰德美国2013年彼得·W·希格斯英国对希格斯玻色子的预测[1][4-6]弗朗索瓦·恩格勒比利时2014年赤崎勇日本“发明一种新型高效节能光源,即蓝色发光二极管(LED)"天野浩日本中村修二美国2015年梶田隆章日本“通过中微子振荡发现中微子有质量。
1901年威廉·伦琴1902年亨得里克·洛仑兹,彼得·塞曼1903年亨利·贝克勒,皮埃尔·居里,玛丽·居里1904年约翰·斯特拉特1905年菲利普·莱纳德1906年约瑟夫·汤姆森1907年阿尔伯特·迈克生1908年加布里埃尔·李普曼1909年古列尔莫·马可尼,卡尔·布劳恩1910年约翰内斯·范德瓦耳斯1911年威廉·维因1912年古斯塔夫·达伦1913年海克·卡末林·昂内斯1914年马克斯·冯·劳厄1915年威廉·亨利·布拉格,威廉·劳伦斯·布拉格1916年没有颁奖1917年查尔斯·巴克拉1918年马克斯·普朗克1919年约翰尼斯·斯塔克1920年夏尔·纪尧姆1921年阿尔伯特·爱因斯坦1922年尼尔斯·波耳1923年罗伯特·密立根1924年曼内·西格巴恩1925年詹姆斯·法兰克,古斯塔夫·赫兹1926年让·佩兰1927年阿瑟·康普顿,查尔斯·威尔森1928年欧文·瑞查森1929年路易·德布罗意公爵1930年钱德拉塞卡拉·拉曼1931年没有颁奖1932年维尔纳·海森堡1933年埃尔文·薛定谔,保罗·狄拉克1934年没有颁奖1935年詹姆斯·查德威克1936年维克托·赫斯,卡尔·安德森1937年克林顿·戴维森,乔治·汤姆森1938年恩里科·费米1939年欧内斯特·劳伦斯1940年没有颁奖1941年没有颁奖1942年没有颁奖1943年奥托·斯特恩1944年伊西多·拉比1945年沃尔夫冈·包立1946年珀西·布里奇曼1947年爱德华·阿普尔顿1948年帕特里克·布莱克特1949年汤川秀树1950年塞西尔·鲍威尔1951年约翰·考克饶夫,欧内斯特·沃吞1952年费利克斯·布洛赫,爱德华·珀塞尔1953年弗里茨·塞尔尼克1954年马克斯·玻恩,瓦尔特·博特1955年威利斯·兰姆,波利卡普·库施1956年威廉·肖克利,约翰·巴丁,沃尔特·布喇顿1957年杨振宁,李政道1958年帕维尔·切连科夫,伊利亚·法兰克,伊戈尔·塔姆1959年埃米利奥·塞格雷,欧文·张伯伦1960年唐纳德·格拉泽1961年罗伯特·霍夫施塔特,鲁道夫·穆斯堡尔1962年列夫·朗道1963年尤金·维格纳,玛丽亚·格佩特-梅耶,约翰内斯·延森1964年查尔斯·汤斯,尼古拉·巴索夫,亚历山大·普罗霍罗夫1965年朝永振一郎,朱利安·施温格,理查德·费曼1966年阿尔弗雷德·卡斯特勒1967年汉斯·贝特1968年路易斯·阿尔瓦雷茨1969年默里·盖尔曼1970年汉尼斯·阿尔文,路易·奈耳1971年伽博·丹尼斯1972年约翰·巴丁,利昂·库珀,约翰·施里弗1973年江崎玲于奈,伊瓦尔·贾埃弗,布赖恩·约瑟夫森1974年马丁·赖尔,安东尼·休伊什1975年奥格·玻尔,本·莫特森,利奥·雷恩沃特1976年伯顿·里克特,丁肇中1977年菲利普·安德森,内维尔·莫特,约翰·凡扶累克1978年彼得·卡皮查,阿诺·彭齐亚斯,罗伯特·威尔逊1979年谢尔登·格拉肖,阿卜杜勒·萨拉姆,史蒂文·温伯格1980年詹姆斯·克罗宁,瓦尔·菲奇1981年凯·西格巴恩,尼古拉斯·布隆伯根,阿瑟·肖洛1982年肯尼斯·威尔逊1983年苏布拉马尼扬·钱德拉塞卡,威廉·福勒1984年卡洛·鲁比亚,西蒙·范德梅尔1985年克劳斯·冯·克利青1986年恩斯特·鲁斯卡,格尔德·宾宁,海因里希·罗雷尔1987年约翰内斯·贝德诺尔茨,卡尔·米勒1988年利昂·莱德曼,梅尔文·施瓦茨,杰克·施泰因贝格尔1989年诺曼·拉姆齐,汉斯·德默尔特,沃尔夫冈·保罗1990年杰尔姆·弗里德曼,亨利·肯德尔,理查·泰勒1991年皮埃尔-吉勒·德热纳1992年乔治·夏帕克1993年拉塞尔·赫尔斯,约瑟夫·泰勒1994年伯特伦·布罗克豪斯,克利福德·沙尔1995年马丁·佩尔,弗雷德里克·莱因斯1996年戴维·李,道格拉斯·奥谢罗夫,罗伯特·理查森1997年朱棣文,克洛德·科昂-唐努德日,威廉·菲利普斯1998年霍斯特·施特默,罗伯特·劳夫林,崔琦1999年杰拉德·特·胡夫特,马丁纽斯·韦尔特曼2000年若雷斯·阿尔费罗夫,赫伯特·克勒默,杰克·基尔比2001年埃里克·康奈尔,卡尔·威曼,沃尔夫冈·克特勒2002年雷蒙德·戴维斯,小柴昌俊,里卡尔多·贾科尼2003年阿列克谢·阿布里科索夫,维塔利·金兹堡,安东尼·莱格特2004年戴维·格娄斯,休·波利策,弗朗克·韦尔切克2005年罗伊·格劳伯,约翰·霍尔,特奥多尔·亨施2006年约翰·马瑟,乔治·斯穆特2007年艾尔伯·费尔,彼得·格林贝格2008年小林诚,益川敏英,南部阳一郎2009年高锟,威拉德·博伊尔,乔治·史密斯2010年安德烈·海姆,康斯坦丁·诺沃肖洛夫2011年索尔·珀尔马特,布莱恩·施密特,亚当·里斯2012年塞尔日·阿罗什,大卫·维因兰德。
物理学奖
英国,汤姆逊(GeorgePagetThomson1892-1975),发现电子在晶体中的衍射现象
汤姆逊,英国物理学家,世界著名的卡文迪什研究所所长。
约瑟夫·约翰·汤姆逊
Thomson,JosephJohn约瑟夫·约翰·汤姆逊(1856~1940年)。
1891年用法拉第管开始了原子核结构的理论研究。
他研究了阴极射线在磁场和电场中的偏转,作了比值e/m(电子的电荷与质量之比)的测定,结果他从实验上发现了电子的存在。
他把电子看成原子的组成部分,用原子内电子的数目和分布来解释元素的化学性质。
提出了原子模型,把原子看成是一个带正电的球,电子在球内运动。
他还进一步研究了原子的内部构造和阳极射线。
1912年与阿斯顿共同进行阳极射线的质量分析,发现了氖的同位素。
1906年他因在气体导电研究方面的成就获得了诺贝尔物理学奖。
另有,威廉·汤姆逊(1824~1907年)。
亦译为汤姆生。
英国物理学家。
汤姆逊集团
THOMSON汤姆逊是法国最大的国有企业集团,具有100多年的历史,
是全球四大消费电子类生产商之一,他在其所有涉足的业务领域中都处于世界领导地位。
汤姆逊公司的主要业务集中在视听通讯产品系列和数码技术处理的范围,业务遍及100多个国家和地区,
全球雇员72000多人,其中42%在美洲,32%在亚洲,26%在欧洲;汤姆逊公司拥有超过34000项业务领域的技术专利权和6000多项发明。
汤姆逊集团目前在中国约有11,000名员工,主要从事制造、研发、专利许可以及营销工作。
其中,大约100名的高素质人员受聘于新近在北京落成的研发中心。
2003年,汤姆逊集团在中国的运营收入达4.5亿欧元。
为成为媒体与娱乐业的最佳合作伙伴而努力
自1968年以来,汤姆逊集团开展了一系列生产、开发以及销售活动,一直致力于中国的产业和经济发展。
汤姆逊集团对媒体娱乐市场越来越关注,这无疑为中国的媒体娱乐经济起到了推波助澜的作用。
再加上2008北京奥运会这一盛事,中国的媒体娱乐产业在各方面都得到了飞速的发展。
随着国外影像制品的大量引进,中国国内电影电视的质量和数量将不断得到重视。
这些工艺技术的需求,更加突出了汤姆逊在以下方面的领导趋势:
电影、电视以及广告的后期制作和特效处理;
数字影院–在中国主要城市建成大型多幕影院并促进全国各地的影院建设;
网络电视——现有有线电视网的补充;
数字广播电视节目以及与之相关的传输安全问题;
高清电视、数字有线电视、地面电视、卫星电视、三重播放系统(Tripleplay——影像、声音、数据同步传输)、数字移动电视等等。
实际上,中国政府计划在2008年之前在全国范围内实现电视的数字联播,使每一个人都能够实时体验奥林匹克盛会的整个过程。
为把握这一时机,汤姆逊集团也积极与中国各大企业团体合作,引进先进的技术工艺,以适应不断发展的数字市场的需求,并为各项技术标准的建立提供帮助。
此外,集团还与中国一些研究院和大学建立了合作关系,将先进的知识和数字技术传入中国。