第12章 配位平衡
- 格式:ppt
- 大小:135.50 KB
- 文档页数:20
第十二章 配位平衡12-1 在1L 6 mol ·L -1的NH 3水中加入0.01 mol 固体CuSO 4,溶解后加入0.01 mol 固体NaOH ,铜氨络离子能否被破坏?(K 稳[Cu(NH 3)42+]=2.09×1013,K SP [Cu(OH)2]=2.2×10-20) 解:CuSO 4在过量的氨水溶液中几乎完全形成[Cu(NH 3)4]2+,则[Cu(NH 3)4]2+ === Cu 2+ + 4NH 3平衡时: 0.01-x x (6-0.04)+4x1342431009.2)496.5()01.0(])([⨯=+⋅-=+x x x NH Cu K 稳 11910792.3--⋅⨯=L mol x ])([108.3)01.0(10792.3]][[22321922OH Cu K OH Cu sp <⨯=⨯⨯=---+铜氨络离子不能被破坏。
12-2 在少量N H 4S C N 和少量Fe 3+同存于溶液中达到平衡时,加入NH 4F 使[F -]=[SCN -]= 1 mol ·L -1,问此时溶液中[FeF 63-]和 [Fe(SCN)3]浓度比为多少?(K 稳[Fe(SCN)3]=2.0×103,K 稳[FeF 63-]= 1×1016)解: ---+=+SCN FeF F SCN Fe 3][6])([363123163633663336105102101)]([][])([][]][)([]][[⨯=⨯⨯====-----SCN Fe K FeF K SCN Fe FeF F SCN Fe SCN FeF K 稳稳12-3 在理论上,欲使1×10-5 mol 的AgI 溶于1 cm 3氨水,氨水的最低浓度应达到多少?事实上是否可能达到这种浓度?(K 稳[Ag(NH 3)2+]=1.12×107,K SP [AgI]=9.3×10-17)解: -++=+I NH Ag NH AgI ])([2233起始浓度 a 0 0达到平衡时 a-2x x x (全部溶解时:101.0-⋅=L mol x )此反应的平衡常数:9177231004.1103.91012.1)(})({--+⨯=⨯⨯⨯=⨯=AgI Ksp NH Ag K K 稳 因此: 9221004.1]2[(-⨯=-=x a x K 1310-⋅=L mol a 事实上不可能达到这种浓度。
第 4 章配合物[ 教学要求]1 .掌握配位化合物的基本概念,组成,命名,分类。
2 .掌握配位化合物价键理论和晶体场理论的基本内容。
[ 教学重点]1 .配合物的异构问题2 .配合物的价键理论[ 教学难点]配合物的几何异构和对映异构[ 教学时数] 4 学时[ 主要内容]1 .配位化合物的基本概念:什么叫配合物,组成,命名。
2 .配合物的价键理论:配合物的立体结构和几何异构,配合物类型简介(简单配离子、螯合物、多核配合物)。
3 .晶体场理论要点:简介d 轨道的能级分裂和晶体场效应:八面体场的分裂、四面体场的分裂、平面四边形场的分裂;分裂能和影响分裂能的因素,稳定化能;晶体场理论对配合物性质的解释(颜色、磁性)。
[ 教学内容]4-1 配合物的基本概念“科学的发生和发展一开始就是由生产所决定的”。
配合物这门科学的诞生和发展,也是人类通长期过生产活动,逐渐地了解到某些自然现象和规律,加以总结发展的结果。
历史上有记载的最早发现的第一个配合物就是我们很熟悉的亚铁氰化铁Fe4[Fe(CN)6]3 ( 普鲁士蓝) 。
它是在1704 年普鲁士人狄斯巴赫在染料作坊中为寻找蓝色染料,而将兽皮、兽血同碳酸纳在铁锅中强烈地煮沸而得到的。
后经研究确定其化学式为Fe4[Fe(CN)6]3。
近代的配合物化学所以能迅速地发展也正是生产实际需要的推动结果。
如原子能、半导体、火箭等尖端工业生产中金属的分离楼术、新材料的制取和分析;50 年代开展的配位催比,以及60 年代蓬勃发展的生物无机化学等都对配位化学的发展起了促进作用。
目前配合物化学已成为无机化学中很活跃的一个领域。
今后配合物发展的特点是更加定向综合,它将广泛地渗透到有机化学、生物化学、分析化学以及物理化学、量子化学等领域中去。
如生物固氮的研究就是突出的一例。
4-1-1 配合物的定义当将过量的氨水加入硫酸铜溶液中,溶液逐渐变为深蓝色,用酒精处理后,还可以得到深蓝色的晶体,经分析证明为[Cu(NH3)4]SO4。
第12章配位平衡12-1:在1L 6mol/L 的NH3水中加入0.01 mol固体CuSO4,溶解后加入0.01mol 固体NaOH,铜氨络离子能否被破坏?(K稳SCN [Cu(NH3)42+]=2.09×1013,K SP[Cu(OH)2]=2.2×10-20)12-2当少量NH4SCN和少量Fe3+ 同存于溶液中达到平衡时,加入NH4F使[F- ]=[SCN-]=1mol/L-1,问此时溶液中[FeF63- ]和[Fe(SCN)3]浓度比为多少?(K稳Fe[SCN]3=2.0×103,K稳[FeF6]=1×1016)解:5×101212-3:在理论上,欲使1×10-5mol的AgI溶于1cm3氨水,氨水的最低浓度应达到多少?事实上是否可能达到这种浓度?(K稳[Ag(NH3)2+]=1.12×107;Ksp(AgI)=9.3×10-17)解:3×102mol/L,实际上不可能达到。
12-4:通过配离子稳定常数和Zn2+/ Zn 和Au+/Au 的电极电势计算出Zn(CN)42-/Zn和Au(CN)2- /Au,说明提炼金的反应:Zn + 2 Au(CN)2- = Zn(CN)42-+ 2Au在热力学上是自发的。
12-5:为什么在水溶液中Co3+(aq) 离子是不稳定的,会被水还原而放出氧气,而3+氧化态的钴配合物,例如Co(NH3)63+,却能在水中稳定存在,不发生与水的氧化还原反应?通过标准电极电势作出解释。
(稳定常数:Co(NH3)62+ 1.38×105 ; Co(NH3)63+1.58×1035.标准电极电势:Co3+/Co2+1.808V,O2/H2O1.229V,O2/OH-0.401V;K b(NH3)=1.8×10-5)12-6:欲在1L水中溶解0.10molZn(OH)2,需加入多少克固体NaOH ?(Ksp[Zn(OH)2]=1.2×10-17;[Zn(OH)42-]=4.6×1017)解:13g12-7:在PH=10的溶液中需加入多少NaF才能阻止0.10mol/L 的Al3+溶液不发生Al(OH)3沉淀?(Ksp Al(OH)3=1.3×20-20; K稳(AlF63-)=6.9×1019)解:1.62mol/L12-8:测得Cu|Cu(NH3)42+ 1.00mol/L,NH31.00mol/L||H+1.00mol/L-1|H21bar, Pt的电动势为0.03V,试计算Cu(NH3)42+ 的稳定常数。
配位平衡的定义配位平衡是指在一个系统中不同配位体之间的相对含量达到一定的平衡状态。
配位体是指与中心离子或原子形成配位键的分子或离子。
在配位化学中,配位平衡是非常重要的概念,因为它能够帮助我们理解配位体之间的相互作用以及它们在化学反应中的角色。
配位平衡的概念最早是由法国化学家保罗·萨布莱特(Paul Sabatier)提出的。
他在研究铂催化剂的反应机理时,发现不同配位体之间的相对含量对反应速率有重要影响。
后来,这个概念被广泛应用于配位化学的研究中。
在配位平衡中,不同配位体之间的相对含量是通过一个平衡常数来描述的。
平衡常数是指在平衡状态下反应物和产物的浓度比值。
对于一个配位反应,平衡常数可以表示为:K = [MLn] / ([M] × [L])其中,[MLn]表示配合物的浓度,[M]和[L]分别表示金属离子和配位体的浓度,n表示配位体的配位数。
配位平衡的影响因素包括温度、溶剂、PH值、金属离子的价态、配位体的种类和数量等。
其中,温度是影响配位平衡最重要的因素之一。
一般来说,随着温度升高,反应速率会增加,但是平衡常数会减小。
这是因为高温下反应物的活性增加,但是产物的稳定性降低。
另外,溶剂也对配位平衡有影响。
不同的溶剂对于不同的配位体有不同的溶解度和配位能力。
例如,在水溶液中,氨和水的配位能力相似,但是氨的溶解度比水低,因此在水溶液中,水配位体的含量会更高。
PH值也能够影响配位平衡。
在酸性溶液中,配位体中的羧基和氨基会质子化,从而影响它们与金属离子的配位能力。
另外,金属离子的价态也会影响配位平衡。
例如,在Fe3+和Fe2+之间的配位平衡中,Fe3+的配位能力更强,因此在配位体浓度相同的情况下,Fe3+的配合物含量会更高。
总之,配位平衡是配位化学中的一个重要概念,它能够帮助我们理解配位体之间的相互作用以及它们在化学反应中的角色。
配位平衡的影响因素包括温度、溶剂、PH值、金属离子的价态、配位体的种类和数量等。