人教版八年级上册 12.3 角的平分线的性质 教学设计
- 格式:docx
- 大小:1.55 MB
- 文档页数:4
人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。
这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。
教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。
但是,对于角的平分线的性质,学生可能较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:如何运用角的平分线的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。
2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。
3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。
2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。
同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。
3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。
12.3角的平分线的性质第2课时角平分线的判定教学目标:1.探究并证明角平分线的判定方法.2.会用角的平分线的判定解决实际问题.3.熟练掌握角的平分线的性质和角的平分线的判定的综合运用.教学重难点:重点:角平分线的判定.难点:三角形的内角平分线的应用.教学过程:课堂导入我们知道,角的平分线上的点到角的两边的距离相等,反过来,到角的两边的距离相等的点是否在这个角的平分线上呢?这节课我们来对这个问题进行探究.讲授新课知识点1角平分线的判定定理角的内部到角的两边的距离相等的点在角的平分线上吗?也就是交换角的平分线的性质中的已知和结论.下面我们证明这个命题的正确性.已知:如图所示,PD⊥OA,PE⊥OB,PD=PE.求证:点P在∠AOB的平分线上(OP平分∠AOB).证明:因为PD⊥OA,PE⊥OB(已知),所以∠PDO=∠PEO=90°.在Rt△PDO和Rt△PEO中,{PO=PO,PD=PE,所以Rt△PDO≌Rt△PEO(HL).所以∠POD=∠POE.即点P在∠AOB的平分线上.[归纳]角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.注意:(1)使用该判定定理的前提是这个点必须在角的内部;(2)角的平分线的判定定理是证明两角相等的重要办法.几何语言:如图所示,因为点P 是∠AOB 内的一点,PD ⊥OA,PE ⊥OB,垂足分别为D,E,且PD=PE, 所以点P 在∠AOB 的平分线OC 上.范例应用例1 如图所示,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路和铁路的交叉处500 m.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1∶20 000)? 解:因为图上距离500=120000, 所以图上距离=0.025 m=2.5 cm.如图所示,P 点即为所求.理由:P 点在这个交叉口的角平分线上,所以P 点到公路与铁路的距离相等.知识点2 角的平分线的性质定理与判定定理的关系点在角的平分线上(角的内部)点到角的两边的距离相等.正确理解两个定理的条件和结论,性质定理和判定定理的条件和结论是相反的,性质定理是证明两条线段相等的依据,判定定理是证明两个角相等的依据.知识点3 三角形三个内角平分线的性质1.如图所示,三角形的三个内角的角平分线已画出,从位置上你能观察出什么结论? 答案:三角形三个内角的平分线的交点位于三角形的内部.2.如图所示,过交点分别作三角形三边的垂线,根据角平分线的性质定理你能得出什么结论? 答案:过交点作的三角形三边的垂线段相等.范例应用例2 如图所示,△ABC 的角平分线AD,BE,:点P 到△ABC 三边AB,BC,CA 的距离相等. 证明:如图所示,过点P 作PM ⊥BC ,PN ⊥AC ,PO ⊥AB ,垂足分别为M ,N ,O.因为AD为△ABC的角平分线,所以PN=PO.因为BE为△ABC的角平分线,所以PM=PO.因为CF为△ABC的角平分线,所以PM=PN.所以PM=PN=PO,即点P到△ABC三边AB,BC,CA的距离相等.课堂训练1.判断题:(1)如图(1)所示,若QM=QN,则OQ平分∠AOB.(×)(2)如图(2)所示,若QM⊥OA于点M,QN⊥OB于点N,则OQ平分∠AOB.(×)2.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(D)处处处处第2题图第3题图3.如图所示,O是△ABC内一点,O到三边AB,BC,CA的距离分别为OF,OD,OE,且OF=OD=OE,若∠BAC=70°,则∠BOC=125°.4.如图所示,:AP平分∠BAC.证明:如图所示,作PQ⊥BC,PM⊥AE,PN⊥AF,垂足分别为Q,M,N.因为P点在∠CBE和∠BCF的平分线上,所以PM=PQ,PN=PQ.所以PM=PN.又PM⊥AE,PN⊥AF,所以AP平分∠BAC.课堂小结1.三角形的三条角平分线的交点有且只有一个,且一定在三角形的内部.2.证明三线共点的思路:先设其中的两线交于一点,再证明该交点也在第三条直线上.3.在三角形内部,要找一点到三边距离相等时,只要作出两个角的平分线,其交点即是.4.角平分线的判定与性质的关系:由角平分线的判定方法知这个结论的逆命题也是正确的,即在三角形内,到三角形三边的距离相等的点是三角形三条角平分线的交点.板书设计第2课时角平分线的判定角平分线的判定{学会用添加辅助线的方法解题判定定理——角的内部到角的两边的距离相等的点在角的平分线上应用——综合利用角的平分线的性质和判定来解决实际问题教学反思本课时教学应重视以下几点:(1)由定理得到它的逆命题,并证明它的正确性,把两个定理正确地运用;(2)尽力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.(3)课堂中,可采用口答、动手做等方式组织学生比赛,教师依据具体情形予以点评指点,查缺补漏,使学生从本质上理解知识.。
放在角的顶点,ADBA(3)画射线AC.∴射线AC 即为所求.【三】巩固练习已知:OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E (课本图11.3─4)求证:PD=PE .证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO=∠PEO=90°在△PDO 和△PEO 中,∴△PDO ≌△PEO (AAS ) ∴PD=PE如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =120°,求∠MAB 的度数.解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°,再根据AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°,又∵∠ACD =120°,∴∠CAB =60°,由作法知,AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC =12×4×2+12AC ×2=7,解得AC =3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.拓展延伸,巩固强化知识。
【五】布置作业1.课本练习2.同步练习对应习题OCN别为点D、E.∴ PD=PE二次备课。
八年级数学上册 12.3 角的平分线的性质第2课时角的平分线的判定教学设计(新版)新人教版一. 教材分析《角的平分线的性质》是人教版八年级数学上册第12.3节的内容,这部分内容是学生在学习了角的概念、角的运算、垂线的性质等知识的基础上进行学习的。
角的平分线是数学中的一个重要概念,它在几何学习中有着广泛的应用。
本节内容主要介绍了角的平分线的性质,包括角的平分线上的点到角的两边的距离相等,角的平分线垂直于角的对边等。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对角的概念、角的运算、垂线的性质等有一定的了解。
但是,学生对角的平分线的性质的理解可能还不够深入,需要通过实例来帮助学生理解和掌握。
三. 教学目标1.理解角的平分线的性质,能够运用角的平分线解决一些几何问题。
2.培养学生的逻辑思维能力,提高学生解决问题的能力。
四. 教学重难点1.角的平分线的性质的理解和运用。
2.角的平分线与垂线的性质的联系和区别。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,引导学生通过观察、思考、讨论、实践等方式来学习和理解角的平分线的性质。
六. 教学准备1.准备相关的几何图形和实例。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过提问的方式引导学生回顾角的概念、角的运算、垂线的性质等知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用多媒体展示角的平分线的定义和性质,引导学生观察和思考,通过实例来帮助学生理解和掌握角的平分线的性质。
3.操练(10分钟)学生分组进行练习,教师给出一些有关角的平分线的问题,学生通过合作解决问题,巩固对角的平分线的性质的理解和运用。
4.巩固(10分钟)教师给出一些有关角的平分线的问题,学生独立解答,教师进行讲解和指导,帮助学生巩固对角的平分线的性质的理解和运用。
5.拓展(10分钟)教师给出一些有关角的平分线和垂线的性质的问题,学生进行思考和讨论,通过实例来理解角的平分线和垂线的性质的联系和区别。
12.3角的平分线的性质第1课时角的平分线的性质教学步骤师生活动教学目标课题12.3第1课时角的平分线的性质授课人素养目标1.能用尺规作图:作一个角的平分线,强化学生的分析及作图能力.2.理解角平分线的概念,探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等,并能运用这个定理解决相关问题,培养学生观察、归纳及动手能力,发展学生的推理能力.教学重点尺规作图:作一个角的平分线,探索并证明角平分线的性质定理及应用.教学难点角平分线的性质定理的探索过程.教学活动教学步骤师生活动活动一:旧知回顾,新课引入设计意图回顾角的平分线的概念及作法,并设问为引入角平分线的尺规作图及其性质做铺垫.【复习引入】问题1:想一想,我们学过的角的平分线的概念是什么?答:问题2:我们在练习本上画一个角,怎样得到它的平分线?答:用量角器度量,或者用折纸的方法.我们已经能用尺规作一个角等于已知角了,那能否用尺规作一个角的平分线呢?角的平分线除了平分角之外,还具有其他的性质吗?让我们在这节课中展开探索吧.【教学建议】教师提问,选取学生代表进行回答,对于问题2,学生也可动手尝试,活跃气氛,在进入新课前进行实操演练.教师最后用总结结束回顾,以提问的方式引发学生思考,从而过渡到新课的内容.活动二:动手操作,交流新知设计意图通过实际情境引入角的平分线的尺规作图方法,并引导学生动手作图,加深学生对于作已知角的平分线的理解,加强作图能力.探究点1角的平分线的作法思考如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,AE 就是这个角的平分线.你能说明它的道理吗?答:在△ABC 和△ADC 中,AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC.∴AE 是∠BAD 的平分线.【教学建议】这里由一种平分角的仪器的工作原理引入了作一个角的平分线的尺规作图.与作一个角等于已知角的尺规作图类似,它们依据的都是全等三角形的“边边边”判定方法.教师可演示这种角平分仪,从而加深学生的直观感受.通过实验启发引入角平分线的尺规作图方法后,学生交流探究,自主动手画图.注意该作图属这种平分角的方法告诉了我们一种作已知角的平分线的方法,如下所示:请按这种方法自己动手试试看,然后与同伴交流操作心得,并回答下列问题:问题1:作图步骤(2)中,为什么要以“大于12MN 的长”为半径画弧?答:以“大于12MN 的长为半径画弧”是因为以小于12MN 的长为半径画弧,两弧没有交点,以等于12MN 的长为半径画弧不易操作.问题2:作图步骤(2)中,两弧的交点一定在∠AOB 的内部吗?答:若分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧的交点可能在∠AOB 的内部,也可能在∠AOB 的外部.而我们要作的是角的平分线,角的平分线在角的内部,所以交点应在∠AOB 内部寻找,否则两弧交点与顶点连线得到的射线就不是∠AOB 的平分线了.【对应训练】教材P 50练习第1题.于基本的尺规作图,课标有所要求,需要学生加以掌握.通过实践操作,按各种情况动手画一画,就能清楚地解释左栏问题1和问题2.教师注意跟学生强调作图步骤(3)中的“画射线OC”不能说成“连接OC”,因为“连接OC”得到的是线段,而角的平分线是射线,不是线段.【教学建议】设置练习是为了强化学生的基本作图能力,尺规作图可以不写作法,但最后一定要说明所求作的内容,作图痕迹必须保留因为可以据此看出作图思路.设计意图使学生经历探索角的平分线的性质定理的过程,并利用三角形全等证明角的平分线的性质定理,归纳证明几何命题的一般步骤,并通过例题与练习加深对于角的平分线的性质定理的理解.探究点2角的平分线的性质思考如图,任意作一个角∠AOB ,作出∠AOB 的平分线OC ,在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量PD ,PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?答:PD =PE.在OC 上再取几个点试一试,发现上述结论依然成立.于是我们猜想角的平分线有以下性质:【教学建议】设置思考可以让学生通过作图、测量来猜想角的平分线的性质.为了让学生准确推断该性质的内容,并且确信他们推出的性质具有一般性,教师需在学生作图时强调:(1)所作的角应为任意大小的;(2)在角的平分线上取的点应是任意位置的;(3)过角的平分线上一点向角的两边所作的与两边相交的线段必须是垂线教学步骤师生活动拓展:几何画板演示角的平分线的性质:如图,点P在∠AOB的平分线上:下面,我们利用三角形全等证明这个性质.首先,要分清其中的“已知”和“求证”.显然,已知为“一个点在一个角的平分线上”,要证的结论为“这个点到这个角两边的距离相等”.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OBPD=PE.一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即根据题意,画出图形,并用符号表示已知和求证;师生活动活动三:综合运用,巩固新知设计意图综合考查角的平分线的性质与三角形的面积,强化角的平分线的性质定理的运用能力.例如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.若△ABC 的面积为70,AB =16,DE =5,求BC 的长.解:如图,过点D 作DF ⊥BC 于点F.∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴DF =DE =5.∵S △ABD =12AB·DE =12×16×5=40,S △ABC =70,∴S △BCD =S △ABC -S △ABD =70-40=30.又S △BCD =12BC·DF =12BC×5=30,∴BC =12.【对应训练】如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,AF 是△ABC 的中线,AB =16,AC =8,DE =5.求△ADF 的面积.解:如图,过点D 作DM ⊥AB ,垂足为M.∵AD 是△ABC 的角平分线,DE ⊥AC ,DM ⊥AB ,∴DM =DE =5,∴S △ABD =12AB·DM =12×16×5=40,S △ACD =12AC·DE =12×8×5=20,∴S △ABC =S △ABD +S △ACD =40+20=60.∵AF 是△ABC 的中线,∴S △ACF =12S △ABC =12×60=30,∴S △ADF =S △ACF -S △ACD =30-15=15.【教学建议】角平分线的性质定理可以得到垂线段相等,所以角平分线跟三角形的面积结合时,往往能分割出等高的三角形,于是面积问题就转化为了边长问题.解答此类题目,当题干中出现角平分线时,要首先想到是否可利用角的平分线的性质定理解题,有时候也需要添加辅助线,一般是过角的平分线上一点向角的两边作垂线段.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是角的平分线?你能用尺规作一个角的平分线吗?2.角的平分线的性质是什么?你能证明吗?能运用角的平分线的性质解题吗?3.证明一个几何命题的一般步骤是什么?【知识结构】【作业布置】1.教材P51~52习题12.3第2,4,5,6题.2.《创优作业》主体本部分相应课时训练.板书设计12.3角的平分线的性质第1课时角的平分线的性质1.尺规作图:作已知角的平分线.2.角的平分线的性质:角的平分线上的点到角的两边的距离相等.3.证明几何命题的一般步骤.教学步骤师生活动教学反思本节课采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而学生对所学的新知识掌握较好,达到了教学的目的.教学中需要注意:学生对定理的图形语言认识不足出现混淆,如把角平分线上的点到角两边的距离错当成过此点与角平分线垂直(或相交)的直线与角两边相交所得的线段的长.解题大招一与尺规作图有关的推理题作一个角的平分线是课标要求的尺规作图,学生不仅要能够作图,还要了解作图的原理,而最直观的体现就是通过作图痕迹去判断作图目的.例1如图,在Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=5,P为AB上一动点,则DP的最小值为5.解析:由尺规作图可知:AE是∠CAB的平分线,由垂线段最短可知:当DP⊥AB时,DP最小.∵AE是∠CAB的平分线,DP⊥AB,∠C=90°,∴DP=CD=5.故DP的最小值为5.解题大招二文字类几何命题的证明方法1.根据命题的题设结合图形写出已知,根据命题的结论结合图形写出求证.2.为了便于分清命题中的已知和求证,可以将命题改写成“如果……那么……”或“若……则……”的形式.例2求证:两角和其中一角对应的角平分线分别相等的两个三角形全等.分析:首先将文字命题用符号表示成已知和求证,然后进行证明.解:已知:如图,AD,A′D′分别为△ABC,△A′B′C′的角平分线,且AD=A′D′,∠B=∠B′,∠BAC=∠B′A′C′.求证:△ABC≌△A′B′C′.证明:∵AD,A′D′分别为△ABC,△A′B′C′的角平分线,∴∠1=12∠BAC,∠2=12∠B′A′C′.∵∠BAC=∠B′A′C′,∴∠1=∠2.在△ABD和△A′B′D′B=∠B′,1=∠2,=A′D′,∴△ABD≌△A′B′D′(AAS).∴AB=A′B′.在△ABC和△A′B′C′B=∠B′,=A′B′,BAC=∠B′A′C′,∴△ABC≌△A′B′C′(ASA).解题大招三与角的平分线的性质有关的线段证明(不作辅助线)当题目中要证相等的一组线段分别与一个角的两边垂直,且它们的公共点在这个角的平分线上时,可利用角平分线的性质定理直接得证(学过角平分线的性质定理后,不要再使用先证三角形全等再利用性质去解题,那样会使过程繁琐),所有证明条件的收集都应围绕这个“两垂直,一平分”进行展开,这样可以明确解题思路.例3如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M,N.求证:PM=PN.证明:∵BD是∠ABC的平分线,∴∠ABD=∠CBD.在△ABD 和△CBD =CB ,ABD =∠CBD ,=BD ,∴△ABD ≌△CBD(SAS ).∴∠ADB =∠CDB.∴∠ADP =∠CDP ,即DP 平分∠ADC.∵PM ⊥AD ,PN ⊥CD ,∴PM =PN.解题大招四利用角的平分线的性质作垂线解题利用角的平分线的性质解决问题的关键是确定角的平分线上的点到角的两边的垂线段,若已知条件中存在一条垂线段,则考虑通过作辅助线作出另一条垂线段;若已知条件中不存在垂线段,则考虑通过作辅助线作出两条垂线段.1.作一条垂线例4如图,点P 在∠AOB 的平分线上,过点P 作PC ⊥OA ,垂足为C.若PC =8,点P 到直线OB 的距离为8.解析:如图,过点P 作PD ⊥OB 于点D.∵点P 在∠AOB 的平分线上,PC ⊥OA ,PD ⊥OB ,∴PD =PC =8,即点P 到直线OB 的距离为8.例5如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,E 为AC 上一点,且∠ECD =∠EDC.(1)求证:DE ∥BC ;(2)若∠A =90°,S △BCD =26,BC =13,求AD 的长.(1)证明:∵CD 平分∠ACB ,∴∠ECD =∠BCD.又∠ECD =∠EDC ,∴∠BCD =∠EDC ,∴DE ∥BC.(2)解:如图,过点D 作DF ⊥BC 于点F.∵∠A =90°,DF ⊥BC ,CD 平分∠ACB ,∴AD =DF.∵S △BCD =26,BC =13,∴12×13DF =26,∴DF =4,∴AD =4.2.作两条垂线例6如图,∠AOB =90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C 和点D.求证:PC =PD.证明:如图,过点P 分别作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEC =∠PFD =90°.∵OM 是∠AOB 的平分线,∴PE =PF.∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°-90°-90°=180°.又∠PDO +∠PDF =180°,∴∠PCE =∠PDF.在△PCE 和△PDF PCE =∠PDF ,PEC =∠PFD ,=PF ,∴△PCE ≌△PDF(AAS ),∴PC =PD.培优点与角的平分线的性质有关的探究题例(1)如图①,在△ABC 中,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,∠MDN 的两边分别与AB ,AC 相交于M ,N 两点,且DM =DN ,求证:∠BAC +∠MDN =180°;(2)如图②,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,∠BAC +∠MDN =180°,试判断AM ,AN ,AC 之间的数量关系,并说明理由.分析:(1)先利用角的平分线的性质得到DE =DF ,再利用“HL ”证明Rt △DEM ≌Rt △DFN ,于是可得∠MDE =∠NDF ,进一步利用角的和差得∠MDN =∠EDF ,最后再结合四边形的内角和为360°可得结论.(2)先结合已知、四边形的内角和为360°及角的和差可得∠MDE =∠NDC ,再根据角的平分线的性质得DE =DC ,同时易知AE =AC ,然后利用“ASA ”证明△MDE ≌△NDC ,于是得EM =CN ,最后再根据线段的和差可得结论.(1)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠DEM =∠DFN =90°,DE =DF.在Rt △DEM 和Rt △DFN =DN ,=DF ,∴Rt △DEM ≌Rt △DFN(HL ),∴∠MDE =∠NDF.∴∠MDE +∠EDN =∠NDF +∠EDN ,即∠MDN =∠EDF.∵四边形AEDF 的内角和是360°,且∠AED +∠AFD =90°+90°=180,∴∠BAC +∠MDN =∠BAC +∠EDF =360°-(∠AED +∠AFD)=180°.(2)解:AM +AN =2AC.理由如下:如图②,过点D 作DE ⊥AB 于点E ,∴∠AED =∠DEM =90°,∴∠BAC +∠CDE =360°-∠AED -∠C =360°-90°-90°=180°.又∠BAC +∠MDN =180°,∴∠MDN =∠CDE ,∴∠MDN -∠EDN =∠CDE -∠EDN ,即∠MDE =∠NDC.∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DE =DC ,且易得AE =AC.在△MDE 和△NDC DEM =∠C =90°,=DC ,MDE =∠NDC ,∴△MDE ≌△NDC(ASA ),∴EM =CN.∴AM +AN =(AE +EM)+(AC -CN)=(AE +AC)+(EM -CN)=2AC.模型提炼:如图,∠1=∠2,AP =CP ,∠PCB +∠BAP =180°,BF =12(AB +BC),这四个条件可知二推二.。
角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。
以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。
角的平分线的性质教学设计一、教学分析1.教学内容分析本节课是新人教版教材《数学》八年级上册第12.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.3.教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体教学系统辅助教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.二、教学目标1、知识与技能:(1)掌握用尺规作已知角的平分线的方法.(2)理解角的平分线的性质并能初步运用.2、过程与方法:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.3、情感态度价值观:充分利用多媒体教学及学生手工操作,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.三、教学重点、难点重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:(1)利用引导学生动手折纸及多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.四、教学过程(一)教学环节设计1.温故导入:创设情景,动手操作【温故】:①请把发给大家的纸片拿出来,请同学们想一想,不利用工具,将这个用纸片做的角分成两个相等的角,你有什么办法?②学生回答:对折。
角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.知识回顾问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.合作探究思考:右图是一个平分角的仪器,其中,.将点A放在角的顶点,和沿着角的两边放下,沿画一条射线,就是角平分线.你能说明它的道理吗?要说明是∠的平分线,其实就是证明∠∠.∠和∠分别在△和△中,那么证明这两个三角形全等就可以了.看看条件够不够在△和△.因为所以△≌△().所以∠∠.即射线就是∠的平分线.这种平分角的方法告诉了我们一种作已知角的平分线的方法。
作已知角的平分线的方法:已知:∠.求作:∠的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交、于M、N.的长为半径作弧.两弧在∠内部交(2)分别以M、N为圆心,大于12于点C.(3)作射线,射线即为所求.议一议:的长”这个条件行吗?1.在上面作法的第二步中,去掉“大于122.第二步中所作的两弧交点一定在∠的内部吗?总结:1.去掉“大于1的长”这个条件,所作的两弧可能没有交点,所以2就找不到角的平分线.2.若分别以M、N为圆心,大于1的长为半径画两弧,两弧的交点可2能在∠ 的内部,也可能在∠的外部,而我们要找的是∠内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.思考如图,任意画一角∠,做出∠的角平分线,在上任取一点O,过点O 画出的垂线,分别记垂足为。
测量并作比较,你得到什么结论?在上再取几个点试试。
通过以上测量,你发现了角的平分线的什么性质?PⅢ.课堂精讲我们猜想角的平分线有以下性质:角平分线的性质:角平分线上的点到角的两边的距离相等.下面,我们利用三角形全等证明这个性质。
人教版八年级上册 12.3 角的平分线的性质教学设计
12.3 角平分线的性质
教学目标:
知识与技能:
1.掌握用尺规作已知角平分线的方法和步骤.
2.掌握角平分线的性质并能初步应用.
过程和方法:
1.在探究作已知角平分线的方法和角平分线的
性质的过程中,发展几何直觉.
2.初步了解角平分线的性质在生活、生产中的应
用。
情感态度与价值观:
培养学生探究问题的兴趣,增强解决问题的信
心,获得解决问题的成功体验.
教学设想:
本节案例主要采用的是课件展示的展现方式,对学生在学
习过程中表现出来的情感与态度,对知识、技能的掌握情
况,所使用的方法等各个方面进行了观察.
教材分析:
本节课是在七年级学习了角平分线的概念和前面刚学完证明三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。