5.3.2命题、定理、证明 说课稿
- 格式:doc
- 大小:34.50 KB
- 文档页数:10
教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
5.3.2《命题、定理、证明》说课稿本节课我所讲的是人教版七年级下册第五章《相交线与平行线》中的第三节第二课《命题、定理、证明》的第一课时.一、说教材:教材的地位和作用本节课是人教版七年级下册第五章《相交线与平行线》中的《命题、定理、证明》的内容,新课标中,作为总体目标提出了对学生“数学思考”的要求:“经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.”在学段目标中,进一步指出:“在探索图形性质、与他人合作交流等活动中,发展合情推理,进一步学习有条理地思考与表达.而命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一.而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点.本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题.所以学习本节课特别重要,是后面学习定理和证明的前提和基础,具有承上启下的作用.二、说学情:学生在此之前已经学习了平行线的判定等内容,对命题已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于命题、真假命题的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
三、说教学目标分析:依据《课程标准》的要求,结合本班学生情况,确定本节课的教学目标如下:知识与技能目标:了解命题的概念,会判断命题;能够区分命题的题设和结论,能将一个命题写成“如果……那么……”的形式;了解真命题和假命题的概念,会判断一个命题是真命题还是假命题,会用举反例的方法判断一个命题是假命题.过程与方法目标:以问题为主线,通过自主学习、问题解决一系列活动使学生逐步培养归纳概括的基本能力以及独立思考解决问题的能力.情感态度与价值观目标:通过学习命题真假,培养学生尊重科学、实事求是的态度。
人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。
本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。
二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。
三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。
2.培养学生运用证明方法解决数学问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.命题、定理的概念及命题的真假判断。
2.证明方法的应用。
五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。
2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。
3.小组合作法:分组讨论,共同完成证明任务。
六. 教学准备1.教材、PPT课件。
2.相关例题和练习题。
3.教学工具:黑板、粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。
2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。
3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。
引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。
4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。
教师巡回指导,解答学生疑问。
5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。
鼓励学生运用所学知识,解决问题。
6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。
7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。
5.3.2命题、定理、证明(一)三维教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论。
难点:区分命题的题设和结论。
(三)教学过程活动一:情境引入教师与学生们打招呼,说出以下四句话:(1)七(1)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(2)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(2)的同学们你们好吗?()(2)大家今天都能认真听课吗?()(3)七(1)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
()问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行()(2)画一个角等于已知角()(3)对顶角相等;()(4)若a2=b2,则a=b。
()(5)两条平行线被第三条直线所截,同旁内角互补;()(6)若a2=4,求a的值;()活动二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
5.3.2命题、定理、证明(教案)(共五篇)第一篇:5.3.2 命题、定理、证明(教案)5.3.2 命题、定理、证明【知识与技能】1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理.2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式.【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理.【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.一、情境导入,初步认识问题1 分析下列判断事情的语句,指出它们的题设和结论.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(2)两条平行线被第三条直线所截,同旁内角互补.(3)对顶角相等.(4)等式两边加同一个数,结果仍是等式.问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题.(1)画线段AB=5cm.(2)两条直线相交,有几个交点?(3)如果直线a∥b,b∥c,那么a∥c.(4)直角都相等.(5)相等的角是对顶角.【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案.二、思考探究,获取新知思考1.真命题与定理有什么样的关系.2.对题设和结论不明显的命题,怎样找出它们的题设和结论.【归纳结论】1.命题:判断一件事情的语句,叫做命题.2.命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理.对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了.三、运用新知,深化理解判断下列命题是真命题还是假命题,如果是假命题.举出一个反例.(1)若a>b,则a2>b2.(2)两个锐角的和是钝角.(3)同位角相等.(4)两点之间,线段最短.【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断.【答案】略.四、师生互动,课堂小结请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真假命题.这节课一开始由教师提出问题,学生自学课本,让学生体验先学后教的理念,同时培养了学生的自学能力.第二篇:命题定理证明教案5、3命题定理证明教案学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一、自学基础:(看书20页---22页)1、对一件事情___________________的语句,叫做命题。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《命题、定理、证明》教案教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC ,AB ∥CD ,若∠D =100°,则∠C =_____, ∠A =______,∠CBE =________.4.a ⊥b ,c ⊥b ,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1已知:如上图,a ∥c ,a ⊥b ,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:EDCB A(1)要说明b ⊥c ,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b ,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理.2.实践与探究(1)下列各图中,已知AB ∥EF ,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格..FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B +∠F =∠C . 在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助?教师视学生情况进一步引导:①虽然AB ∥EF ,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB ,这样就能用上平行线的性质,得到∠B =∠BCD .③如果要说明∠F =∠FCD ,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB ,因为AB ∥EF ,CD ∥AB ,所以CD ∥EF (两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F =∠FCD (两直线平行,内错角相等). 因为CD ∥AB .所以∠B =∠BCD (两直线平行,内错角相等).所以∠B +∠F =∠BCF . (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗? 它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A 1B 5和A 2C 5,并且它们的长度相等. ③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD ,在CD 上任取一点E ,作EF ⊥AB ,垂足为F .学生思考:EF 是否垂直直线CD ?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.。
人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。
通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。
教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。
但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。
因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。
三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。
2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。
四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。
2.难点:对命题、定理和证明的理解,证明方法的运用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。
2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。
3.小组讨论,让学生在合作交流中提高逻辑思维能力。
4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。
六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。
2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。
3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。
4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。
人教版数学七年级下册《5-3-2命题、定理、证明》教学设计一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的教学内容,主要包括命题、定理和证明的概念及其关系。
本节课的内容是学生学习数学证明的基础,对于培养学生的逻辑思维和论证能力具有重要意义。
二. 学情分析学生在七年级上学期已经学习了基本的数学概念和运算,对于问题的解决有一定的基础。
但是,学生对于抽象的逻辑推理和证明过程可能存在理解上的困难,需要通过具体的事例和实践活动来帮助他们理解和掌握。
三. 教学目标1.了解命题、定理和证明的概念及其关系。
2.能够识别和判断一个数学命题是真还是假。
3.学会使用简单的逻辑推理和归纳推理写出简单的证明过程。
四. 教学重难点1.重点:命题、定理和证明的概念及其关系。
2.难点:证明过程的写法和逻辑推理的运用。
五. 教学方法采用问题驱动的教学方法,通过引导学生观察、思考和推理,激发学生的学习兴趣,培养学生的逻辑思维和论证能力。
同时,结合小组合作和讨论,促进学生之间的交流和合作。
六. 教学准备1.教学PPT:包括命题、定理和证明的概念及其关系的图片和示例。
2.练习题:包括判断命题真假和写证明过程的练习题。
3.小组合作的学习材料:包括相关的数学故事和案例。
七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入命题、定理和证明的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解命题、定理和证明的概念及其关系,通过示例让学生理解命题是陈述性语句,定理是经过证明的命题,证明是用来证实命题真假的过程。
3.操练(10分钟)让学生独立完成一些判断命题真假的练习题,并简要说明判断的依据。
通过小组讨论和分享,让学生理解不同的人可能会有不同的判断方法,但正确的判断应该基于逻辑推理和证明过程。
4.巩固(10分钟)让学生分组合作完成一些写证明过程的练习题。
在学生完成练习后,让各小组展示他们的证明过程,并解释他们的推理思路。
5.3.2 命题、定理、证明教学目标:理解定义、命题、真命题、假命题、定理、公理的含义,会区分命题的题设和结论.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.教学重点:定义、命题、公理、定理的概念及命题的组成.教学难点:会区分命题的题设和结论.教学过程设计活动一.创设问题情境引入在日常生活中,我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这些概念,以致无法进行正常的交流.同样,在数学学习中,要进行严格的论证,也必须首先对所涉及的概念下定义.本节我们就一起来学习——5.3.2命题、定理.(出示课题)活动二.共同探索获得新知1.体会定义.(1)大于90°小于180°的角叫做钝角.(2)含有一个未知数并且未知数的次数是1的整式方程叫做一元一次方程.同学们通过举例子,观察比较这些定义,发现定义在用词和语气上有什么特征?用词严密且严格,用肯定的语气,定义中一般要有“叫做”这个词.归纳:由于定义表达事物的根本特征,正确的定义能把被定义的事物与其他事物进行区分,因此定义必须是严密的.要用肯定的语气.避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.2.得出命题.先请大家根据所学知识,判断下列句子是否正确.(1)如果两个角是对顶角,那么这两个角相等;(2)三角形的内角和是180°;(3)同位角相等.(学生根据已有的知识很快就进行了判断.句子(1)、(2)是正确的,句子(3)是错误的.)归纳:这些句子我们都可以判断他们是对或是错.象这样判断一件事情(它是正确的或是错误的)语句,叫做命题.正确的命题称为真命题,例如(1)、(2)、错误的命题称为假命题,例如:(3).3.课堂练习.下列句子哪些是命题?是命题的判断真假.(1)、猴子是动物的一种。
(2)、玫瑰花是动物。
(3)、美丽的天空。
(4)、动物都需要水。
(5)、负数都小于零(6)、过直线外一点做直线a的平行线。
命题、定理、证明年级七年级课题 5.3.2命题、定理、证明课型新授教学目标知识技能1.理解命题、定理、证明的概念,能区分命题的题设和结论。
2.会判断命题的真假,能写出简单的推理过程.过程方法感受数学语言的严谨性,培养学生的语言表达能力和归纳能力。
情感态度感受数学学习的快乐,培养良好的思维习惯.教学重点命题的概念和区分命题的题设与结论.教学难点表述推理过程.教学方法阅读、讨论、交流教学手段多媒体教学过程设计问题与情境师生活动情景引入1.平行线的判定方法有哪些?2.平行线的性质有哪些?3.垂线的性质。
4..对顶角、邻补角性质。
5.余角和补角的性质。
6.等式的性质。
学生复习所学过的性质,抢答师板书部分语句:(1)如果两条直线都与第三条直线平行,那么,这两条直线也互相平行;(2)两直线平行,同旁内角互补;(3)同位角相等,两直线平行;(4)等式两边乘同一个数,结果仍是等式(5)对顶角相等;(6)如果两条直线不平行,那么同位角不相等.||2, 2.a a(7)若=则=合作探究1.探究活动一:归纳命题的定义:判断一件事情的语句,叫做命题.下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 可以作一条直线与AB平行.2.探究活动二(1)命题的组成是什么?(2)命题"如果两条直线都与第三条直线平行,那么这两条直线也互相平行"中,题设是什么?结论是什么?(3)如何指出命题“对顶角相等”的题设和结论?.3.探究活动三阅读课本理解真命题、假命题、定理与证明的定义。
只有表示判断一件事情的语句才是命题。
许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是题设,"那么"后接的的部分是结论.学生通过阅读教材能够很轻松得到真命题与假命题的区别。
三、真假命题的概念(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)如果两个角互补,那么它们是邻补角;(3)两条平行线被第三条直线所截,同旁内角互补;(4)对顶角相等;(5)如果一个数能被2整除,那它也能被4整除;(6)等式两边加同一个数,结果仍是等式.正确的:(1)(3)(4)(6)错误的:(2)(5)真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:命题中题设成立时,不能保证结论一定成立,这样的命题叫做假命题.思考:如何判断此命题为假命题?如果两个角互补,那么它们是邻补角举反例如图:AB∥CD∥A+∥C=180°,因此∥A与∥C互补,但不是邻补角。
判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.思考:如何判断此命题为假命题?相等的角是对顶角如图,OC是∥AOB的平分线,∥1=∥2,但它们不是对顶角。
四、定理、证明我们学过的一些图形的性质,都是真命题。
其中有些命题是基本事实。
如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据. 如“对顶角相等”“内错角相等,两直线平行”等在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:证明的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,也可以是学过的定义、基本事实、定理等。
活动意图说明:教师活动4:例1:如图,已知b∥c,a⊥b. 求证a⊥c.证明:∥a∥b(已知)∥∥1=90°(垂直的定义)又b∥c(已知)∥∥1=∥2(两直线平行,内错角相等)∥∥2=∥1=90°(等量代换)∥a∥c(垂直的定义)活动意图说明:2.下列语句中,不是命题的是(D)A.如果a>b,那么b<aB.同位角相等C.垂线对最短D.反向延长射线OA3.把命题“相等的角是对顶角”写成“如果...那么...”的形式是__如果两个角相等,那么这两个角是对顶角_。
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
课题 5.3.2命题、定理、证明授课人教学目标知识技能掌握命题、定理的概念,并能分清命题的题设和结论,判定真命题和假命题;能根据已知条件对简单问题进行证明.数学思考通过讨论、探究、交流等形式,使学生在辩论中获得知识体验.问题解决用类比的方法,经历自主学习、合作探究,领悟命题的有关概念.情感态度在学习过程中培养学生敢于怀疑、大胆探究的品质,培养合作、交流的能力,从活动中体会学习的快乐.教学重点掌握命题、定理的概念,并能分清命题的组成.教学难点分清命题的组成,并能把一个命题改写成“如果……那么……”的形式.授课类型新授课课时教具教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】以下6个句子,有什么不同?你能对它们进行分类吗?如果你能分类,分类的依据是什么?(1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空气;(7)不许讲话.指出像这样判断一件事情的语句,叫做命题.既复习了已学知识,又让学生认识了命题的多种表现形式.活动二:实践探究交流新知【探究1】命题的概念下列句子中,哪些是命题?①直角三角形中的两个锐角互余;②正数都大于0;③如果∠1+∠2=180°,那么∠1与∠2互补;④太阳不是行星;⑤对顶角相等吗?⑥作一个角等于已知角.分析:①②③是命题,它们都对事情作出了肯定回1.通过各类型的语句探究命题的概念.答;④是命题,它对事情作出了否定回答;⑤不是命题,只表示疑问,并未作出判断;⑥不是命题,只是描述了一个作图的过程,设有做出判断.解:①②③④是命题,⑤⑥不是命题.师生共同总结判断命题的依据:对事件做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述形式有标准形式:“如果……那么……”,另外还有“若……则……”等,一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.(续表)活动二:实践探究交流新知例2判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否是真命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)题设是两条直线被第三条直线所截,同旁内角互补,结论是这两条直线平行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,2.师生通过例题共同探究命题的题设和结论的确定方法.3.引导学生区分命题与定理的关系,且体会数学命题证明的必要性.是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题;有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的条件和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的条件之前还有条件,那么这两个条件合起来作为命题的条件,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,条件是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.有些命题可以从基本事实出发或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.图5-3-63如图5-3-63,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.(续表)活动二:实践探究交流新知解:(1)一共能组成3个命题,它们是:题设:①②,结论:③;题设:①③,结论:②;题设:②③,结论:①.(2)情况一题设:①②,结论:③;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C;情况二题设:①③,结论:②;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论;2.证明过程中引用的根据(理由)与“定理的证明相同”;3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由;4.要防止利用未学过的定理来证明学过的命题,避免循环论证.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.活动三:【应用举例】1.利用新知解决问题,根据相开放训练体现应用图5-3-64例1如图5-3-64,已知直线b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义).变式图5-3-65在下面的括号内填上推理的根据.如图5-3-65,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.证明:∵∠A=∠B,∴AC∥BD(__内错角相等,两直线平行__),∴∠C=∠D(__两直线平行,内错角相等__).分析:根据已知的条件及图形证明某个数学结论是常见的数学题目,本题以“∵”“∴”的形式将完整的说理过程展现出来,需要同学们根据图形条件及已知条件填上原因.也就是在我们推理过程的每一步必须要有理有据,不关性质进行演绎推理.2.通过变式练习巩固证明过程,训练学生推理证明的能力.能乱写.本题既利用了平行线的判定方法,又运用了平行线的性质.(续表)活动三:开放训练体现应用【拓展提升】例2如图5-3-66,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.(1)求∠DAB的度数;(2)求∠EAC的度数;(3)求∠BAC的度数;(4)通过这道题你能说明为什么三角形的内角和是180°吗?图5-3-66知识的综合与拓展提高应考能力.活动四:课堂总结反思【当堂训练】课本第21页练习第1,2题;课本第22页练习第1,2题.课后作业:课本第23页习题5.3第7(2),8,9,12,13题.通过练习进一步巩固所学知识,使教师及时了解学生对本课所学知识的掌握情况.【板书设计】5.3命题、定理、证明命题⎩⎪⎨⎪⎧概念:构成分类⎩⎪⎨⎪⎧题设:已知事项结论:由已知事项推出的事项真命题:假命题:定理:证明:通过知识框图浓缩本节知识,易于学生理解.【教学反思】①[授课流程反思]既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题我们都学过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.回顾反思,找出差距与不足,形成知识及教学体系,更进②[讲授效果反思]本节课的教学内容较简单,通过本节课的教学,学生在区分命题的题设和结论的基础上知道命题有真假之分,其中有的真命题又叫做定理.对于假命题只要举出反例加以说明即可,其中推理过程叫做证明.③[师生互动反思]学生小组合作学习的积极性较高,体现出学生愿学乐学的心态,教师要及时性地给予鼓励和表扬.一步提升教师教学能力.。
七年级下册数学《5.3.2命题与定理》说课稿(一)本学期担任一年教学工作:学生开始学习比较惰性:不爱写字:自主学习不强:独立思考能力不强:有些学生对学生较散漫,没有上进心,但有个别学生有感兴趣。
1、学习能力、习惯:有夺数学生学习习惯不好,像课前的准备工作,课后的巩固都没有到位:学习比较散漫、懒惰:对学习感到累:学习能力较差:自觉性,自主性较差。
这种习惯会对学习产生很大的影响。
2、学习方法:有些学生学习方法不对路。
虽然说时间花费很多,但效果不时最佳的:学习方法很重要,要养成良好的学习方法,才能有所上升。
【教学目标】:1、了解定义、命题、真命题、假命题、定理的含义,会区分命题的条件(题设)和结论:奠定推理论证的基础;2、初步体会合理化思想:使学生明确什么定理及其意义。
【重点难点】:1、重点:定义、命题、公理、定理的概念;2、难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。
【教学过程】:一、创设问题情境引入情境1:小亮和小刚正在津津有味地阅读《我们爱科学》小亮:“哈!这个黑客终于被逮住了。
”小刚:“是的,现在英特网广泛运用于我们的生活中,给我带来了方便:但……”坐在旁边的两个人一边听着他的谈话,一边也在悄悄议论着。
“这个黑客是个小偷吗?”“可能是喜欢穿黑衣服的贼。
”“那因特网肯定是一张很大的网。
”“估计可能是英国造的特殊的网。
”你听完这则片段故事:有何想法?同学们各抒己见后:老师给予同学的各种回答评价后,发表自己的看法:在日常生活中:我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这引起概念,以致无法进行正常的交流。
同样:在数学学习中:要进行严格的论证,也必须首先对所涉及的概念下定义。
本节我们就一起来学习--624.3命题与证明的第一节定义、命题与定理。
练习:课本P93练习1二、共同探索获得新知1、试一试:得出定义你是如何找出图中的平行四边形呢?“有两组对边分别平行的四边形叫做平行四边形”这句话说明平行四边形的含义以及区别于其他图形的特征。
一般地:能明确指出概念含义或特征的句子:称为定义。
例如:(1)有一个角是直角的三角形,叫做直角三角形.(2)有六条边的多边形,叫做六边形.(3)在同一平面内,两条不相交的直线叫做平行线,你还能举出一些其他的例子吗?观察这些定义:你发现定义中用词有什么特征?同学们各抒己见后,总结:定义必须是严密的,一般避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的事物或名词区别开来。
2、思考:得出命题思考:试判断下列句子是否正确。
(1)如果两个角是对顶角,那么这两个角相等;(2)三角形的内角和是180°;(3)同位角相等;(4)平行四边形的对角线相等;(5)菱形的对角线相互垂直根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.像这样可以判断它是正确的或是错误的句子叫做命题(proposition) .正确的命题称为真命题,错误的命题称为假命题。
练习:(1)下列句子哪些是命题?①动物都需要水;②猴子是动物的一种;O玫瑰花是动物;④美丽的天空;⑤对应角都相等的两个三角形一定全等;⑥负数都小于零;⑦你的作业做完了吗?@所有的质数都是奇数;②过直线外一点作1的平行线;心如果,,那么。
(2)练习:课本P93练习33、观察发现,命题结构。
观察下列命题,你能发现这些命题有什么共同的结构特征?与同样交流。
(1)如果两个三角形的三条边相等:那么这两个三角形全等;(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(3)如果一个四边形的对角线相等,那么这个四边形是矩形;(4)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。
总结:在数学中,许多命题是由题设(或条件)和结论两部分组成的.题设是已知事项:结论是由已知事项推出的事项.这种命题常可写成“如果……那么……”的形式.其中,用“如果”开始的部分是题设:用“那么”开始的部分是结论.例如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论。
例、把命题“在一个三角形中,等角对等边”改写成“如果……那么……”的形式,并分别指出命题的题设与结论.解:这个命题可以写成:“如果在一个三角形中有两个角相等:那么这两个角所对的边也相等.”这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”。
练习:课本P93练习24、追溯根源:明确定理问题:如何证实一个命题是真命题呢?用我们以前学过的观察、实践、验证特例等方法。
这些方法往往并不可靠。
能不能根据已经知道的真的命题证实呢?那已知知道的真命题又是如何证实呢?哦……那可怎么办?其实:在数学发展史上:数学家们也遇到类似的问题。
公元前3世纪,人们已经积累了大量的数学知识:在此基础上,古希腊数学家欧几里得编写了一本书:书名叫《原本加为了说明每一个结论的正确性,他在编写这本书时进行了大胆创造:挑战了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据,其中数学名词称为原名:公认的真命题称为公理。
即数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据:这样的真命题叫做公理。
小组竞赛:请你说出学过知识中:哪些是公理:哪组说的又多又准就是获胜者,如:(1)一条直线截两条平行直线所得的同位角相等;(2)两条直线被第三条直线所截:如果同位角相等:那么这两条直线平行;(3)如果两个三角形的两边及其夹角(或两角及其夹边:或三边)分别对应相等,那么这两个三角形全等;(4)全等三角形的对应边、对应角分别相等此外,我们把等式、不等式的有关性质以及等量代换(即在等式或不等式中,一个量用它的等量替代)都作为逻辑推理的依据.有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem) .例如:运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”男女对抗赛:由男女同学各说定理:并分别由对方判断正误:说对一个定理得1分:高分都获胜。
三、巩固知识、归纳总结同学们:本节你学到了哪些知识?有何体会?还有什么疑惑呢?若同学有疑惑,还可一起讨论:帮助解惑。
四、作业P93习题24.31、2七年级下册数学《5.3.2命题与定理》说课稿(二)一、教材分析1.地位和作用这是华师版第13章第一节的内容,这一节课概念很多,学习概念对于较多的学生来说会感觉到枯燥无味,为了提高学生兴趣,我把每一个概念都以填重点词语的形式帮助同学们理解。
给出了命题的意义、结构、会用逻辑推理进行简单地证明,这是几何证明中的演绎推理的入门,力求恰当地把握推理论证的要求,不可操之过急,注意发挥学生的潜能。
介绍定理化的几何思想,让学生感受数学的严谨美。
2.教学目标知识与技能(1)知道命题的含义,能正确指出一个命题的题设和结论,同时会判断一个命题是真命题,还是假命题。
(2)掌握举反例的方法,会用举反例的方法说明一个命题是假命题。
(3)体会用逻辑推理证明一个命题是真命题的方法,培养数学思维的严谨性。
过程与方法:五环节教学:学生自主学习、合作探究,展示讲解、课堂检测、课堂小结情感态度与价值观数学生活化,让学生感受到数学知识应用的广泛性,培养学生对数学的兴趣。
3.教学重难点重点:命题与定理的含义,能正确指出一个命题的题设和结论,并能用几何语言证明一个命题。
难点:理解举反例的数学思想。
二、教学方法1.说教法(1)自主学习教学法,创设新情境,调动学生的学习兴趣,活跃课堂气氛。
(2)合作探究法,通过学生分组讨论探究和展示,培养学生的团队合作精神。
2.说学法采用学生先自主学习、合作探究,突出学生的主体地位,让教师成为学生学习的引导者,让学生亲自动手、动脑、动口参与教学活动,经历问题的产生、发展和解决问题,在解决问题的过程中完成教学目标。
三、学法指导让学生自主探究进行预习,在这个环节我采用的是:1、设置具体问题,用问题引导学生预习:2、引导学生在书上标注,标出概念、重点、难点。
3、小组交流,交流本节的重难点,讨论难点并把疑点列出来。
四、教学过程我的教学流程设计是:从两个简单地问题引入新知识开始,经历探索新知、解释新知、落实新知;课堂检测来完成教学,具体过程如下:【导入新课】下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?(填“是”或“否”)(1)猪有四只脚. ()(2)画线段AB=CD. ()(3)你的作业做完了吗?()(4)玫瑰花是动物. ()【课堂探究】一、阅读课本54页内容完成下列内容。
1. 判断一件事情是_______或________的句子叫做命题。
2. 命题由___________和_________两部分组成. 这样的命题常可写成__________________的形式.3.把句子⑴⑶⑷用“如果……,那么……”的形式表示,并把⑴⑵⑶⑷四个句子分别说出条件和结论。
(要求:先独立思考,然后二人小组交流。
)二、阅读例1部分回答:1.正确的命题叫做___________,错误的命题叫做_____________.2.例1中的命题是真命题,一般真命题可以用的方法来论证.3.命题“一个锐角与一个钝角的和等于一个平角”是命题,判断一个命题是假命题的一般方法是,请举出一个反例。
首先通过对四个语句进行判断,引出了本节课第一个知识点:命题,接着介绍命题的两种分类:真命题和假命题,要判断一个命题是真命题,可以通过演绎推理论证;要判断一个命题是假命题,只要举出一个反例即可说明。
因此,在教学过程中学生要掌握了命题的条件和结论,并能利用反例判断一个命题是错误的。
三、阅读课本55页,理解并记忆五个基本事实。
四、认真阅读课本56页后回答:1. 有些命题可以从或其他出发,用的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做。
2.认真完成“思考”的问题,参照云图中的提示,判断结论的正确与否。
可知:第一个结论_______;第二个结论________;第三个结论________.对上面不正确的结论举反例。
3.根据条件、定义以及基本事实、定理等,经过,来判断一个命题是否正确,这样的推理过程叫做。
其次理解五个基本事实、定理以及定理的作用,让学生体会证明的必要性。
通过课本中的三个不同的案例,让学生理解:由特殊事例得到的结论可能正确,也可能不正确,因此通过这种方式得到的结论,还需进一步加以证实。