微积分求极限的方法(2·完整版)
- 格式:doc
- 大小:4.67 MB
- 文档页数:13
微积分中函数极限的几种常用求解方法与策略函数极限是微积分中的一个重要概念,它描述了一个函数在某一个点上的一种趋势或者特性。
计算函数极限可以帮助我们更好地理解和分析函数的性质和行为,有助于我们在实际问题中进行数学建模和分析。
在本文中,我们将介绍一些常用的函数极限求解方法和策略,以及应用这些方法进行问题求解的一些技巧和实例。
一、基本极限1. 常函数极限:对于任何一个常数C,有lim_x→a C = C。
这个极限很容易理解,因为常数C在a点的值就是C,没有任何变化。
2. 一次函数极限:对于一个一次函数f(x) = kx+b (k≠0),有lim_x→a f(x) = ka+b。
这个极限的求解也比较简单,就是将x代入函数,得到在a点的函数值,也就是k*a+b。
3. 幂函数极限:对于一个幂函数f(x) = x^n (n为正整数),有lim_x→a f(x) = a^n。
这个极限可以用夹逼定理来证明,也可以通过直接代入公式进行求解。
二、极限的四则运算法则在很多实际问题中,我们需要对函数进行加减乘除等运算,因此需要了解极限的四则运算法则。
这些法则包括:1. 两个函数之和的极限等于两个函数在该点的极限之和。
三、夹逼定理在实际问题中,我们有时会遇到一些复杂的函数,无法直接进行求解,这时候就需要用到夹逼定理来求解。
夹逼定理的核心思想是,我们可以找到两个比较简单的函数,一个上界函数和一个下界函数,这两个函数都可以收敛到某一个极限,然后我们就可以根据夹逼原理,得到我们要求解的函数的极限值。
四、洛必达法则洛必达法则是一种常用的求解极限的方法,其核心思想是通过对函数求导来得到某一个点的导数,然后再求极限。
如果这个极限存在的话,那么这个极限就是函数在这个点的极限。
具体求解方法如下:1. 当极限的代数式飞涨或者现实复杂时,可以使用该方法求解。
2. 求出极限函数f(x)的导函数f'(x),然后将x带入f'(x)求出导数。
积分中值定理求极限的条件(二)积分中值定理求极限的条件引言积分中值定理是微积分中非常重要的定理之一,它为我们求解函数的积分提供了一种便捷的方法。
在某些情况下,我们可以利用积分中值定理来求解函数在某一区间上的极限。
本文将探讨积分中值定理求极限的条件。
什么是积分中值定理?积分中值定理是微积分中的基本定理之一,它指出在某一区间上,如果一个函数连续,那么它一定存在一个点,使得在该点处的导数等于函数在整个区间上的平均变化率。
这一点被称为积分中值点。
积分中值定理有两个重要的特殊情况,即拉格朗日中值定理和柯西中值定理。
拉格朗日中值定理的条件拉格朗日中值定理是积分中值定理的一个特殊情况,它要求函数在某一闭区间上连续,在该闭区间的内部可导。
具体来说,拉格朗日中值定理的条件包括:•函数f(x)在闭区间[a,b]上连续;•函数f(x)在开区间(a,b)内可导。
柯西中值定理的条件柯西中值定理是积分中值定理的另一个特殊情况,它要求函数在某一闭区间上连续,并且存在一个非零的数c,使得c与函数f(x)在闭区间[a,b]上的导数f′(c)成比例。
具体来说,柯西中值定理的条件包括:•函数f(x)和g(x)在闭区间[a,b]上连续;•函数g(x)在闭区间[a,b]上不变为零。
积分中值定理求极限的条件在使用积分中值定理求解函数在某一区间上的极限时,我们需要注意以下条件:1.函数在该区间上连续:这是积分中值定理的基本条件,只有函数在该区间上连续,我们才能够使用积分中值定理来求取极限。
2.函数在该区间的导数存在:只有函数在该区间内可导,我们才能够确定存在积分中值点,进而利用中值定理来求解极限。
结论积分中值定理为我们求解函数的积分提供了一种便捷的方法,并且在某些情况下,我们可以利用积分中值定理来求解函数在某一区间上的极限。
但是,在使用积分中值定理求解极限时,我们需要满足函数在该区间上连续以及在该区间的导数存在这两个条件。
只有在满足这些条件的情况下,我们才能够得出准确的结果。
微积分计算极限以微积分计算极限为标题,下面将介绍一些关于微积分中极限的计算方法。
在微积分中,极限是一个非常重要的概念,它可以帮助我们研究函数的性质以及解决各种数学问题。
我们来看一下什么是极限。
在数学中,当自变量趋于某个特定的值时,函数的值可能会趋于某个确定的值,这个确定的值就是极限。
用数学符号表示,如果当自变量x趋于a时,函数f(x)的值趋于L,我们可以写成:lim(x→a) f(x) = L在微积分中,我们主要研究函数在某个点的极限。
通过计算极限,我们可以了解函数在这个点附近的性质,比如函数的斜率、单调性、凹凸性等等。
那么,如何计算极限呢?下面我们介绍一些常用的计算方法。
1. 代入法:当函数在某个点a处有定义时,我们可以直接将a代入函数中计算得到极限的值。
这种方法适用于一些简单的函数,比如多项式函数、三角函数等。
2. 四则运算法则:对于两个函数之和、差、积、商的极限,可以通过对每个函数分别求极限,然后应用四则运算法则得到结果。
这个方法在计算复杂函数的极限时非常有用。
3. 夹逼定理:夹逼定理是一种非常重要的计算极限的方法。
当函数f(x)、g(x)、h(x)满足f(x) ≤ g(x) ≤ h(x) 且lim(x→a) f(x) = lim(x→a) h(x) = L 时,我们可以得到lim(x→a) g(x) = L。
这个方法在计算一些复杂函数的极限时非常有效。
4. 无穷小量与无穷大量:在一些特殊情况下,我们可以将函数表示成无穷小量和无穷大量的形式,然后通过对它们进行比较来计算极限。
比如当x趋于无穷大时,我们可以将函数表示成f(x)/g(x)的形式,然后根据g(x)的阶数来判断极限的值。
5. 泰勒展开:泰勒展开是一种用多项式逼近函数的方法,我们可以通过泰勒展开来计算一些复杂函数的极限。
泰勒展开可以将一个函数表示成无穷个项的和,然后通过截断展开式来计算极限。
除了上述方法外,还有一些其他的计算极限的方法,比如洛必达法则、换元法等等。
一,求极限的方法横向总结:
1带根式的分式或简单根式加减法求极限:1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)
2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到
2分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3等差数列与等比数列和求极限:用求和公式。
4分母是乘积分子是相同常数的n项的和求极限:列项求和
5分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6运用重要极限求极限(基本)。
7乘除法中用等价无穷小量求极限。
8函数在一点处连续时,函数的极限等于极限的函数。
9常数比0型求极限:先求倒数的极限。
10根号套根号型:约分,注意别约错了。
11三角函数的加减求极限:用三角函数公式,将sin化cos
二,求极限的方法纵向总结:
1未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2未知数趋近于0或无穷:1)将x放在相同的位置
2)用无穷小量与有界变量的乘积
3)2个重要极限
4)分式解法(上述)。
求极限方法一:直接代入法例一:lim x→−2(3x 2−5x +2)=24 例二:lim x→0(1−2x−3)=53 类似这种你直接把x 趋近的值代入到函数里面,就可以直接得到函数的极限了。
lim x→√3x 2−3x 4+x 2+1知识点1:当x 趋近值代入后,分子为0,分母不为0时,函数极限等于0lim x→2x 2−3x −2知识点2:当x 趋近值代入后,分子不为0,分母为0时,函数极限等于∞方法二:因式分解法(一般是平方差,完全平方,十字相乘)普通的就是分子分母约去相同的项,因为x 是趋近值,所以上下是可以约去的,不用考虑0的问题。
类似lim x→3x 2−9x−3=lim x→3(x +3)下面讲个例知识点3:x n −y n =(x-y)(x n−1+x n−2y +⋯+y n−1)例三:lim x→1x m −1x n −1=lim x→1x m−1+x m−2+⋯+1x n−1+x n−2+⋯+1=m n方法三:分母有理化(用于分母有根式,分子无根式) 例四:lim x→∞√x 2+x −x =lim √x 2+x+x =12方法四:分子有理化(用于分子有根式,分母无根式)例五:lim √x+1−√x−1=lim x→0√x+1+√x−12=1 方法五:分子分母同时有理化(用于分子有根式,分母有根式)例六:lim √2x+1−3√x−2−√2知识点4:(使用这个知识点时,必须注意只能在x 趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他)例七:lim n→∞(n−1)2n−3=∞ (分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大)例八:limx→∞1000x 1+x 2=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零)例九:lim x→∞2x+36x−1 (分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数分母最高次数项系数)方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式)例十:lim x→131−x 3-11−x知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。
求极限方法一:直接代入法例一:=24例二:=类似这种您直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。
知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于方法二:因式分解法(一般就是平方差,完全平方,十字相乘)普通的就就是分子分母约去相同的项,因为x就是趋近值,所以上下就是可以约去的,不用考虑0的问题。
类似=下面讲个例知识点3:=(x-y)()例三:==方法三:分母有理化(用于分母有根式,分子无根式)例四:=方法四:分子有理化(用于分子有根式,分母无根式)例五:==1方法五:分子分母同时有理化(用于分子有根式,分母有根式)例六:知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用瞧各项的最高次数,不用管其她)例七:=(分子的最高次就是两次,大于分母最高次一次,所以直接得出极限为无穷大)例八:=0 (分子的最高次就是一次,小于分母最高次两次,所以直接得出极限为零)例九:(分子的最高次就是一次,等于分母最高次一次,所以直接得出极限为)方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式)例十:-知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。
(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍就是无穷小量)例十一:=0 函数左边用知识点4得出就是无穷小,右边3+cosx就是有界函数,所以新函数极限为无穷小,即0所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。
微积分求极限的方法微积分中,求极限是一个非常重要的概念和技巧。
它在数学、物理、工程等领域中都有广泛的应用。
求极限的方法有很多种,下面我将介绍几种常用的方法和技巧。
1.代入法:代入法是求解极限最常用的方法之一、它的基本思想是,将极限中的自变量替换为一个特定的值,然后计算函数在这个特定值附近的取值情况。
例如,求$\lim_{x \to 0}\frac{\sin x}{x}$,我们可以将 $x$ 替换为$0$,然后计算 $\frac{\sin 0}{0}$,根据 $\sin 0=0$,所以这个极限等于 $1$。
2.夹逼准则:夹逼准则也是求极限常用的方法之一、它的基本思想是,如果一个函数在一些点附近有两个函数夹住,这两个函数的极限都存在且相等,那么这个点的极限也存在且等于这个共同的极限。
例如,求极限 $\lim_{x\to 0}x\sin \frac{1}{x}$,我们可以使用夹逼准则,上下界函数分别是$-x$ 和 $x$,两个函数的极限都是 $0$,所以根据夹逼准则,该极限也是 $0$。
3.分子有理化和分母有理化:有时候,如果极限的表达式中有无理数或者根式,可以尝试用有理数近似代替无理数,然后对分子和分母进行有理化。
例如,求极限$\lim_{x \to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$,我们可以对分子有理化,得到 $\lim_{x \to 0}\frac{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{x(\sqrt{1+x}+\sqrt{1-x})}$,然后化简得 $\lim_{x \to 0}\frac{1}{\sqrt{1+x}+\sqrt{1-x}}$,再代入$x=0$ 可以求得极限等于 $1$。
4. L'Hospital法则:L'Hospital法则是求解极限中常用的一个重要方法。
它适用于形式为 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 的极限。
求极限方法一:直接代入法例一:()=24例二:(一)=类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。
知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0知识点2 :当x趋近值代入后,分子不为0,分母为0时,函数极限等于方法二:因式分解法(一般是平方差,完全平方,十字相乘)普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。
类似一= ()下面讲个例知识点3: =(x-y)()方法三:分母有理化(用于分母有根式,分子无根式)例四:-^^=方法四:分子有理化(用于分子有根式,分母无根式)例五:_ = ------ =1方法五:分子分母同时有理化(用于分子有根式,分母有根式)例六:=一='Fo o 4癒;li JYl JS丽彳==丿%口―二伽鮫逆鱼拘御逹药炒妙闰^pXS(?j +3)ffi5 -h|i)诃仅」帧窃播3) =間2^^十爭屮4两+3_ 2反一3的曲沁赠向于卫局严8述尖如I? n<m* 加帕心+二僞戒丁慣加扪他,側节5晞&)& “阳知识点4 : (使用这个知识点时,必须注意只能在x趋近于无穷时使用, 且使用时只用看各项的最高次数,不用管其他)例七: (分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大)例八:——=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零)例九:——(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数)分母最高次数项系数方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式)例十:知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。
无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量)例^一: —()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0所有求极限的题中,代入x趋近值后,若出现■或一,都可以使用洛必达法则求解极限。
页脚内容1专题一 求极限的方法【考点】求极限1、 近几年来的考试必然会涉及求极限的大题目,一般为2-3题12-18分左右,而用极限的概念求极限的题目已不会出现。
一般来说涉及到的方法主要涉及等价量代换、洛必达法则和利用定积分的概念求极限,使用这些方法时要注意条件,如等价量代换是在几块式子乘积时才可使用,洛必达法则是在0比0,无穷比无穷的情况下才可使用,运用极限的四则运算时要各部分极限存在时才可使用等。
2、 极限收敛的几个准则:归结准则(联系数列和函数)、夹逼准则(常用于数列的连加)、单调有界准则、子数列收敛定理(可用于讨论某数列极限不存在)3、 要注意除等价量代换和洛必达法则之外其他辅助方法的运用,比如因式分解,分子有理化,变量代换等等。
4、 两个重要极限0sin lim 1x xx→= 101lim(1)lim(1)x x x x x e x →∞→+=+=,注意变形,如将第二个式子1lim(1)xx x e→+=中的x 变成某趋向于0的函数()f x 以构造“1∞”的形式的典型求极限题目。
5、 一些有助于解题的结论或注意事项需要注意总结,如:(1)利用归结原则将数列极限转化为函数极限(2)函数在某点极限存在的充要条件是左右极限存在且相等。
有时可以利用这点进行解题,如111lim x x e-→因左右极限不相等而在这点极限不存在。
(当式子中出现绝对值和e 的无穷次方的结构时可以考虑从这个角度出发)页脚内容2(3)遇到无限项和式求极限时想三种方法:①看是否能直接求出这个和式(如等比数列求和)再求极限 ②夹逼定理③用定积分的概念求解。
(4)如果f(x)/g(x)当x →x0时的极限存在,而当x →x0时g(x)→0,则当x →x0时f(x)也 →0 (5)一个重要的不等式:sin x x ≤(0x >) *其中方法②③考到的可能性较大。
6、 有关求极限时能不能直接代入数据的问题。
7、 闭区间上连续函数的性质(最值定理、根的存在性定理、介值定理) 8、 此部分题目属于基本题型的题目,需要尽量拿到大部分的分数。
【例题精解·求极限的方法】方法一:直接通过化简,运用极限的四则运算进行运算。
【例1】求极限 11lim 1m n x x x →--解 1212111(1)()lim lim 1(1)()m m m n n n x x x x x x x x x x ----→→--++=--++…1…1=mn注:此题通过洛必达法则进行求解也非常方便。
还可通过变量代换构造等价量。
【例2】求极限lim x →+∞页脚内容3解1lim lim2x x →+∞==注:1、遇到“根号加减根号”基本上有两种方法——有理化和采取倒变量的方法。
2、一个最基本的多项式极限112112lim n n nm m x n a x a x a b x b x b --→+∞++++++……(系数均不为0):①若n>m ,则极限为正无穷; ②若n<m ,则极限为0;③若n=m ,则极限为11a b 。
(本质为比较次数) 要注意的是x 是趋向于正无穷,而且分子分母遇到根号时要以根号里x 的最高次的12次来计算,如的次数为1。
方法二:利用单调有界准则来证明极限存在并求极限 【例3】设112u ≥-,11,2,...)n u n +==,证明lim n n u →∞存在并求之页脚内容4方法三:利用夹逼定理——适用于无限项求极限时可放缩的情况。
【例4】求极限(1lim 123...n n n n n n→∞++++解 因(1111=123...=n n n n n n n n n n n n⋅<++<⋅ 而 lim1=lim =1nn n n →∞→∞页脚内容5故由夹逼定理(1lim 1...n n→∞++++=1方法四&方法五:等价量代换、洛必达法则——未定式极限。
(化加减为乘除!)【例5】求极限tan 0lim tan x x x e e x x→--解 原式=tan 00(1)(tan )lim lim 1tan tan x x x x x x e e e x x x x x x-→→--==--【例6】求极限1121lim ()xx x x a a+→+∞-解 111111222(1)111lim ()=lim (1)lim 1(1)x x x x x x x x x x x a ax aax a-++++→+∞→+∞→+∞--=⋅⋅-=21lim 1ln ln (1)x x a a x x →+∞⋅⋅⋅=+【例7】求极限lim x →解原式=x →页脚内容6=()022tan sin lim4sin 23x x xx x x →-+⋅⋅ =02tan (1cos )lim sin 423x x x x x x x x →-⎛⎫+⋅⋅ ⎪⎝⎭ =302132lim 416123x xx x →=⋅⋅⋅【例8】求极限01cos cos 2cos3lim1cos x x x xx→--解:直接运用洛必达法则和等价量代换可得01cos cos 2cos3lim1cos x x x xx→--=000sin cos 2cos34cos sin 2cos39cos cos 2sin 3limlim lim23x x x x x x x x x x x x x x x→→→++=000sin cos 2cos32cos sin 2cos33cos cos 2sin 3limlim limsin sin sin x x x x x x x x x x x xx x x →→→++= 000sin cos 2cos32cos sin 2cos33cos cos 2sin 3limlim limx x x x x x x x x x x xx x x→→→++= 000sin cos 2cos34cos sin 2cos39cos cos 2sin 3limlim lim23x x x x x x x x x x x xx x x→→→++=1+4+9=14【例9】求极限lim log ()a b x x x x →+∞+解: 由换底公式,页脚内容7=ln()lim ln a b x x x x →+∞+(∞∞)=lim a b a bx ax bx x x →+∞++=lim a ba b x ax bx x x →+∞++ 若a b ≥,则极限为a ;若a b <,则极限为b ,综上,极限为max{,}a b方法六:幂指函数求极限——取对数再取指数。
【例10】21lim sin n n n n →∞⎛⎫ ⎪⎝⎭(1)∞解 2221011sin lim sin =lim sin lim n x t n x t t n x n x t +→∞→+∞→⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2sin 1sin 0sin lim 11t t t t t t tt t t +-⋅⋅-→⎛⎫=+- ⎪⎝⎭3200sin 0cos 11limlim036t t t t t t teee++→→--⎛⎫-⎪⎝⎭===【例11】1ln +lim arctan 2xx x π→∞⎛⎫-⎪⎝⎭0(0)解 +1ln arctan 2ln lim ()ln +lim arctan =2x x xx x x eππ→∞⎛⎫- ⎪∞⎝⎭∞→∞⎛⎫-⎪⎝⎭页脚内容82211()1()arctan 021lim lim()10arctan 2x x x xxxx xeeππ→+∞→+∞⋅-+--+-==221lim11x x x ee→+∞--+==【例12】求极限cot 1lim arc xxx e x →+∞⎛⎫- ⎪⎝⎭❉注意x 是趋向正无穷,此时需要先分析底数和指数分别趋向于多少,分析底数易知底数趋向于正无穷。
但是指数arccotx 这个函数不是很熟,可以通过图像先分析cotx 再分析arccotx 趋向于多少,最后得出结论是指数趋于0。
故是一个“0∞”型,所以要用“先取对数再取指数”的方法。
对于之后arccotx 的处理,若用罗比达对其求导则会发现再接下来比较难做,这里给出一个转化为熟悉的,可等加量代换的式子的方法,方法较灵活,需要对三角函数之间的转换有很深的熟悉度。
解 原式=1arccot ln lim x e x x x e⎛⎫- ⎪ ⎪⎝⎭→+∞=1lim arccot ln x x e x x e→+∞⎛⎫- ⎪ ⎪⎝⎭=11lim arctan ln x x e x x e→+∞⎛⎫- ⎪ ⎪⎝⎭=()ln 1ln lim x x e x x e→+∞--∞⎛⎫⎪∞⎝⎭=1lim1xx x e x e e→+∞--=e页脚内容9❉关于第三个等号左右的变化:令cot y arc x =,则1cot tan x y y ==,故1tan y x =,1arctan y x=,综上,1cot tan arc x arc x=方法七:运用泰勒定理求极限——适用于直接洛必达不好算时考虑的方法。
【例13】求极限22202lim (cos )x x x x x e →+--解2441()28x x o x =+-+0x →,,23cos 1()02!x x o x x =-+→,2221()0x e x o x x =++→, 代入原式可得,原式=422420232222()4lim 1()1()2!x x x x o x x x o x x o x →+--++⎡⎤-+---⎢⎥⎣⎦=44044()4lim 3()2x x o x x o x →+-+=16-方法八:通过定积分的概念来求极限 【例14】求22222lim (...)149n n n n nn n n n n →+∞++++++++ 解 由于此题无法直接对式子进行化简,也无法用夹逼定理,故想到用定积分的概念来求解,即页脚内容10原式=2222222221lim (...)149n n n n n n n n n n n →+∞++++++++ =222211111lim ...1231111n n n n n n n →+∞⎤⎡⎥⎢⎥⎢++++⎥⎢⎛⎫⎛⎫⎛⎫⎛⎫++++⎥⎢ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ =2111lim1nn i n i n →+∞=⎛⎫+ ⎪⎝⎭∑ 此时由定积分的概念可将上面的和式看成被积函数21()1f x x=+在[0,1]上的定积分,故 22222lim (...)149n n n n n n n n n n →+∞++++++++=12011dx x +⎰=4π【例15】求极限1111lim ln 1[(1)(2)...21]lim (!)=lim nn i i nn n nn n n n n n e n n→+∞=→+∞→+∞∑--⋅=解 1111[(1)(2)...21](1)(2)...21lim (!)=lim lim nnnn n n n n n n n n n n n n n →+∞→+∞→+∞--⋅--⋅⎡⎤=⎢⎥⎣⎦11231lim (...)nn n n n n n n n→+∞-=⋅⋅⋅11231limln(...)n n nn n n n n n e→+∞-⋅⋅⋅=11lim ln nn i in n e→+∞=∑=1ln xdx e⎰=10(ln )|1x x x e e --==页脚内容11【例16】2222221sin sin lim ln nn k k k n k k n n →+∞=⎛⎫-+- ⎪⎝⎭∑ 【分析】此题看似复杂,其实仔细观察可以发现本质仍为无限项的和式求极限,故再次想到用定积分的概念求解。