函数训练题B
- 格式:doc
- 大小:412.00 KB
- 文档页数:5
一次函数培优训练知识掌握:(一)两个一次函数平行与垂直:当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。
注意:与y轴平行的直线没有函数解析式,与x轴平行的直线的解析式为常函数,(二)一次函数知识要点提醒:1.对一次函数概念理解时,不要漏掉一次项系数不为0这一限制条件;2.不要忽略一次函数自变量取值范围;(三)一次函数的对称:(1)若直线l与直线y=kx+b关于x轴对称,则直线l的解析式为y=-kx-b;(2)若直线l与直线y=kx+b关于y轴对称,则直线l的解析式为y=-kx+b;(3)若直线l与直线y=kx+b关于直线y=x对称,则直线l的解析式为y=1/kx-b/k;(4)若直线l与直线y=kx+b关于直线y=-x对称,则直线l的解析式为y=1/kx+b/k;(5)若直线l与直线y=kx+b关于原点对称,则直线l的解析式为y=kx-b.课堂训练:1.已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.2.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使AP=2OA,求△BOP的面积.3.(10分)我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些荔枝运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A 村运往C仓库的荔枝重量为x吨,A,B两村运往两仓库的荔枝运输费用分别为y A元和y B元.B与x之间的函数关系式;(3)考虑到B村的经济承受能力,B村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.4.(10分)已知一次函数y=kx+b的图象是过A(0,﹣4),B(2,﹣3)两点的一条直线.(1)求直线AB的解析式;(2)将直线AB向左平移6个单位,求平移后的直线的解析式.(3)将直线AB向上平移6个单位,求原点到平移后的直线的距离.5.(10分)如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A(4,0)、B(3,),直线l1、l2交于点C.(1)求直线l2的解析式;(2)求△ADC的面积;(3)试问:在直线l2上是否存在异于点C的另一点P,使得△ADP与△ADC的面积相等?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.一次函数y=mx+1与y=nx+2的图象相交于x轴上一点,那么m:n=.7.点P(3,a)、Q(,b)在一次函数y=﹣x+c的图象上,则a与b的大小关系是.8.为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?9.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?10.(10分)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.11.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,如图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图象.(1)A、B两地的距离是千米,乙车出发小时与甲相遇;(2)求乙车出发1.5小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围;(3)乙车出发多长时间,两车相距100千米?12.如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(,0),另一条直线经过点A、C.(1)求直线AC所对应的函数表达式;(2)动点M从B出发沿BC运动,运动的速度为每秒1个单位长度.当点M运动到C点时停止运动.设M运动t秒时,△ABM的面积为S.①求S与t的函数关系式;②当t为何值时,(注:S△ABC表示△ABC的面积),求出对应的t值;③当t=4的时候,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.(友情提醒:在解题过程中可以直接运用以下结论:在直角三角形中,30°的角所对的直角边的长等于斜边长的一半)13.已知一次函数y=+m(O<m≤1)的图象为直线l,直线l绕原点O旋转180°后得直线l′,△ABC三个顶点的坐标分别为A(﹣,﹣1)、B(,﹣1)、C(0,2).(1)直线AC的解析式为,直线l′的解析式为(可以含m);(2)如图,l、l′分别与△ABC的两边交于E、F、G、H,当m在其范围内变化时,判断四边形EFGH中有哪些量不随m的变化而变化?并简要说明理由;(3)将(2)中四边形EFGH的面积记为S,试求m与S的关系式,并求S的变化范围;(4)若m=1,当△ABC分别沿直线y=x与y=x平移时,判断△ABC介于直线l,l′之间部分的面积是否改变?若不变,请指出来;若改变,请写出面积变化的范围.(不必说明理由)。
函数的单调性专题训练一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a <124.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1; ②y =|x |x ; ③y =-x 2|x |; ④y =x +x |x |. A .①② B .②③ C .③④ D .①④5.已知函数f (x )=⎩⎪⎨⎪⎧ a -3 x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]二、填空题6.函数f (x )=|x -1|+2的单调递增区间为________.7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________. 8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧ -x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a的取值范围.10.已知函数f(x)=1x2-1.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上的单调性,并用定义加以证明.11.讨论函数f(x)=x+ax(a>0)的单调性.12.已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.函数的单调性专题训练答案一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性解析:选D 函数在区间(a ,b )∪(b ,c )上无法确定单调性.如y =-1x在(0,+∞)上是增函数, 在(-∞,0)上也是增函数,但在(-∞,0)∪(0,+∞)上并不具有单调性.2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定解析:选 D 根据单调函数的定义,所取两个自变量必须是同一单调区间内的任意两个自变量,才能由该区间上函数的单调性来比较出函数值的大小,而本题中的x 1,x 2不在同一单调区间,故f (x 1)与f (x 2)的大小不能确定,选D.3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a <12解析:选D ∵f (x )在R 上是减函数,故2a -1<0,即a <12. 4.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1; ②y =|x |x ; ③y =-x 2|x |; ④y =x +x |x |. A .①② B .②③ C .③④ D .①④解析:选 C ①y =|x |+1=-x +1(x <0)在(-∞,0)上为减函数;②y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x |x |=x -1(x <0)在(-∞,0)上也是增函数.5.已知函数f (x )=⎩⎪⎨⎪⎧ a -3 x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]解析:选D 依题意得实数a 满足⎩⎪⎨⎪⎧ a -3<0,2a >0,a -3 +5≥2a ,解得0<a ≤2.二、填空题 6.函数f (x )=|x -1|+2的单调递增区间为________.解析:f (x )=⎩⎪⎨⎪⎧ x +1,x ≥1,3-x ,x <1,显然函数f (x )在x ≥1时单调递增.答案:[1,+∞)7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________. 解析:∵函数f (x )=x 2-(a -1)x +5的对称轴为x =a -12且在区间⎝ ⎛⎭⎪⎫12,1上是增函数, ∴a -12≤12,即a ≤2. 答案:(-∞,2]8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.解析:∵f (x )是定义域上的减函数,f (-3)=2,f (1)=-2,∴当x >-3时,f (x )<2,当x <1时,f (x )>-2,则当-3<x <1时,|f (x )|<2.答案:(-3,1)三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧ -x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a的取值范围.解:由对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0知函数f (x )在R 上为减函数.当x <0时,函数f (x )=-x +3-3a 为一次函数,且为减函数,则此时f (x )>f (0)=3-3a ;当x ≥0时,函数f (x )=-x 2+a 为二次函数,也为减函数,且有f (x )≤f (0)=a .要使函数f (x )在R 上为减函数,则有a ≤3-3a ,解得a≤34.所以a 的取值范围是⎝⎛⎦⎥⎤-∞,34. 10.已知函数f (x )=1x 2-1. (1)设f (x )的定义域为A ,求集合A ;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义加以证明.解:(1)由x 2-1≠0,得x ≠±1,所以函数f (x )=1x 2-1的定义域为A ={x ∈R|x ≠±1}. (2)函数f (x )=1x 2-1在(1,+∞)上单调递减. 证明:任取x 1,x 2∈(1,+∞),设x 1<x 2,则Δx =x 2-x 1>0,Δy =y 2-y 1=1x 22-1-1x 21-1= x 1-x 2 x 1+x 2 x 21-1 x 22-1 , ∵x 1>1,x 2>1,∴x 21-1>0,x 22-1>0,x 1+x 2>0.又x 1<x 2,所以x 1-x 2<0,故Δy <0.因此,函数f (x )=1x 2-1在(1,+∞)上单调递减.11.讨论函数f (x )=x +a x (a >0)的单调性.解:f (x )=x +a x (a >0).∵定义域为{x |x ∈R ,且x ≠0},∴可分开证明,设x 1>x 2>0,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2. 当0<x 2<x 1≤a 时,恒有a x 1x 2>1, 则f (x 1)-f (x 2)<0,故f (x )在(0,a ]上是减函数;当x 1>x 2>a 时,恒有0<a x 1x 2<1, 则f (x 1)-f (x 2)>0,故f (x )在(a ,+∞)上是增函数.同理可证f (x )在(-∞,-a )上是增函数,在[-a ,0)上是减函数.综上所述,f (x )在(-∞,-a ),(a ,+∞)上是增函数,在[-a ,0),(0,a ]上是减函数.12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明: 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2 x 1+2 x 2+2 . ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1 x 1-a x 2-a . ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述a 的取值范围是(0,1].。
函数的表示方法 测试题〔2〕一、制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、 选择题:1、函数x x x y ||+=的图像是以下图中的 〔 〕2、函数⎪⎩⎪⎨⎧<+=>-=)0(1)0(0)0(1)(x x x x x x f ,那么)]21([f f 的值是 〔 〕 A.21 B.21- C.23 D. 23- 3、以下各组函数中)(x f 和)(x g 一样的是 〔 〕A.0)(,1)(x x g x f ==B.x x x g x f ==)(,1)( C.⎩⎨⎧-∞∈-+∞∈==)0,(,),0(,)(|,|)(x x x x x g x x f D. 02)3)(3()(,3)3()(++=++=x x x g x x x f4.如右图,在直角梯形OABC 中,AB ∥OC,BC ⊥OC,且AB=1,OC=BC=2,直线l:x=t,截此梯形所得位于l 左方的图形面积为S,那么函数S=f(t)的大致图象是以以下图形中( )5、 设函数f(x)=,假设f(-4)=f(0),f(-2)=-2,那么关于x 的方程f(x)=x的解的个数为( ).A.1B.2二、填空题: 6、函数2][)(+=x x f ,那么=)35(f ___________.7、⎩⎨⎧∈-∈=]2,1((2]1,0[()(x x x x x f 的定义域为_________,值域为___________. 8、f(x)=⎩⎨⎧>-≤0,0,x x x x ,1)(+=x x g ,那么=)]([x g f ___________________. 三、解答题:9、设⎩⎨⎧>≤=)0(1)0(0)(x x x H 画出函数y =H(x -1)的图象10、函数的图象由两条射线及开口向下的抛物线(包括端点)组成,如下图,试求函数的表达式。
参考答案:1,C ;2,A ;3, D ;4,C ;5,C ;6,3;7,[0,2],[0,1];8,{1111-≤+->--x x x x ;9,略; 10,解:设左射线所在直线的表达式为y =kx +b∵ (1,1),(0,2)在直线上,故∴ 左射线的表达式为y =-x +2,x <1.同理可得右射线的表达式 为y =x -2,x >3再设抛物线的表达式为y =a(x -2)2+2 ∵ 点(1,1)在此抛物线上,∴a+2=1a =-1∴ 中间抛物线的表达工为y =-(x -2)2+2=-x 2+4x -2 1≤x≤3 总上所述,所求函数表达式为y =制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。
(完整版)高一函数大题训练带答案解析一、解答题1.(附加题,本小题满分10分,该题计入总分)已知函数()y f x =,若在区间()2,2-内有且仅有一个0x ,使得0()1f x =成立,则称函数()f x 具有性质M .(1)若()sin 2f x x =+,判断()f x 是否具有性质M ,说明理由; (2)若函数2()221f x x mx m =+++具有性质M ,试求实数m 的取值范围.2.已知函数()y f x =,若存在实数(),0m k m ≠,使得对于定义域内的任意实数x ,均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(),m k 称为函数()f x 的“平衡”数对.(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化时,求证:()2f x x =与()2xg x a =+的“平衡”数对相同;(3)若12,m m R ∈,且1,2m π⎛⎫ ⎪⎝⎭、2,4m π⎛⎫ ⎪⎝⎭均为函数()2cos f x x =的“平衡”数对.当04x π<≤时,求2212m m +的取值范围.3.已知定义在R 上的函数()x ϕ的图像是一条连续不断的曲线,且在任意区间上()x ϕ都不是常值函数.设011i i n a t t t t t b -=<<<<<<=,其中分点121n t t t -、、、将区间[],a b 任意划分成()*n n N ∈个小区间[]1,i i t t -,记{}()()()()()()01121,,n n M a b n t t t t t t ϕϕϕϕϕϕ-=-+-++-,称为()x ϕ关于区间[],a b 的n 阶划分“落差总和”.当{},,M a b n 取得最大值且n 取得最小值0n 时,称()x ϕ存在“最佳划分”{}0,,M a b n . (1)已知()x x ϕ=,求{}1,2,2M -的最大值0M ;(2)已知()()a b ϕϕ<,求证:()x ϕ在[],a b 上存在“最佳划分”{},,1M a b 的充要条件是()x ϕ在[],a b 上单调递增.(3)若()x ϕ是偶函数且存在“最佳划分”{}0,,M a a n -,求证:0n 是偶数,且00110i i n t t t t t -+++++=.4.已知集合M 是满足下列性质的函数()f x 的全体;在定义域内存在实数t ,使得(2)()(2)f t f t f +=+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.5.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.6.定义:若存在常数k ,使得对定义域D 内的任意两个不同的实数12,x x ,均有:1212()()f x f x k x x -≤-成立,则称()f x 在D 上满足利普希茨(Lipschitz)条件.(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数k 的值,并加以验证; (2)若函数()1f x x =+在[0,)+∞上满足利普希茨(Lipschitz)条件,求常数k 的最小值; (3)现有函数()sin f x x =,请找出所有的一次函数()g x ,使得下列条件同时成立: ①函数()g x 满足利普希茨(Lipschitz)条件;②方程()0g x =的根也是方程()0f x =的根,且()()()()g f t f g t =; ③方程(())(())f g x g f x =在区间[0,2)π上有且仅有一解.7.定义在D 上的函数()y f x =,如果满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤成立,则称函数()y f x =是D 上的有界函数,其中M 称为函数的上界.已知函数1112()1,()2412x xx xm f x a g x m -⋅⎛⎫⎛⎫=+⋅+= ⎪ ⎪+⋅⎝⎭⎝⎭. (1)当1a =时,求函数()y f x =在(,0)-∞上的值域,并判断函数()y f x =在(,0)-∞上是否为有界函数,请说明理由;(2)若函数()y f x =在[0,)+∞上是以3为上界的有界函数,求实数a 的取值范围; (3)若0m >,函数()y g x =在[]0,1上的上界是()T m ,求()T m 的解析式. 8.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况. 9.已知函数()y f x =的定义域D ,值域为A .(1)下列哪个函数满足值域为R ,且单调递增?(不必说明理由)①()1tan[()],(0,1)2f x x x π=-∈,②()1lg(1),(0,1)g x x x =-∈.(2)已知12()log (21),()sin 2,f x x g x x =+=函数[()]f g x 的值域[1,0]A =-,试求出满足条件的函数[()]f g x 一个定义域D ;(3)若D A ==R ,且对任意的,x y R ∈,有()()()f x y f x f y -=-,证明:()()()f x y f x f y +=+.10.已知函数()()2xf x x R =∈,记()()()g x f x f x =--.⑴解不等式:()()26f x f x -≤;⑵设k 为实数,若存在实数(]01,2x ∈,使得()()20021g x k gx =⋅-成立,求k 的取值范围;⑶记()()()22h x f x a f x b =++⋅+(其中a ,b 均为实数),若对于任意的[]0,1x ∈,均有()12h k ≤,求a ,b 的值. 11.已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点1A ,2A ,3A ,()*n A n N ⋯∈,并在第一象限内的抛物线232y x =上依次取点1B ,2B ,3B ,⋯,()*n B n N ∈,使得()*1k k k A B A k N -∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .⑴求()1f ,()2f ,并猜想()(f n 不要求证明);⑵令()98n a f n =-,记m t 为数列{}n a 中落在区间()29,9m m 内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2m S λ≤对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; ⑶已知数列{}n b满足:11n b b +={}n满足:111,n nc c +==,求证:12n n n b f c +π⎛⎫<< ⎪⎝⎭.12.对于函数f (x ),若f (x 0)=x 0,则称x 0为f (x )的“不动点”;若f [f (x 0)]=x 0,则称x 0为f (x )的“稳定点”满足函数f (x )的“不动点”和“稳定点”的集合分别记为A 和B ,即A ={x |f (x )=x },B ={x |f [f (x )]=x }. (Ⅰ)设f (x )=x 2-2,求集合A 和B ; (Ⅱ)若f (x )=x 2-a ,且满足∅A =B ,求实数a 的取值范围.13.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .14.对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[1,1]-上的“M 类函数”,求是实数m 的最小值;(3)若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”,求实数m 的取值范围.15.已知函数()21log 21mx f x x x +⎛⎫=- ⎪-⎝⎭()m 为常数是奇函数. (1)判断函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上的单调性,并用定义法证明你的结论;(2)若对于区间[]2,5上的任意值,使得不等式()2xf x n ≤+恒成立,求实数的取值范围.【参考答案】一、解答题1.(Ⅰ)()f x 具有性质M ; (Ⅱ)23m ≤-或2m >或0m =【解析】 【详解】试题分析:(Ⅰ)()sin 2f x x =+具有性质M .若存在()022x ∈﹣,,使得()01f x =,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数()2221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在()22﹣,上有且只有一个实根.设()222h x x mx m =++,即()222h x x mx m =++在()22﹣,上有且只有一个零点.讨论m 的取值范围,结合零点存在定理,即可得到m 的范围.试题解析:(Ⅰ)()sin 2f x x =+具有性质M .依题意,若存在0x ∈(2,2)-,使0()1f x =,则0x ∈(2,2)-时有0sin 21x +=,即0sin 1x =-,022x k ππ=-,k Z ∈.由于0x ∈(2,2)-,所以02x π=-.又因为区间(2,2)-内有且仅有一个02x π=-,使0()1f x =成立,所以()f x 具有性质M 5分(Ⅱ)依题意,若函数2()221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在(2,2)-上有且只有一个实根.设2()22h x x mx m =++,即2()22h x x mx m =++在(2,2)-上有且只有一个零点. 解法一:(1)当2m -≤-时,即2m ≥时,可得()h x 在(2,2)-上为增函数, 只需(2)0,{(2)0,h h -<>解得2,{2,3m m >>-交集得2m >.(2)当22m -<-<时,即22m -<<时,若使函数()h x 在(2,2)-上有且只有一个零点,需考虑以下3种情况:(ⅰ)0m =时,2()h x x =在(2,2)-上有且只有一个零点,符合题意. (ⅱ)当20m -<-<即02m <<时,需(2)0,{(2)0,h h -≤>解得2,{2,3m m ≥>-交集得∅.(ⅲ)当02m <-<时,即20m -<<时,需(2)0,{(2)0,h h ->≤解得2,{2,3m m <≤-交集得223m -<≤-.(3)当2m -≥时,即2m ≤-时,可得()h x 在(2,2)-上为减函数 只需(2)0,{(2)0,h h -><解得2,{2,3m m <<-交集得2m ≤-.综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m >或0m = 14分 解法二: 依题意,(1)由(2)(2)0h h -⋅<得,(42)(64)0m m -+<,解得23m <-或2m >. 同时需要考虑以下三种情况: (2)由22,{0,m -<-<∆=解得0m =. (3)由20,{(2)0,m h -<-<-=解得02,{2,m m <<=不等式组无解. (4)由02,{(2)0,m h <-<=解得20,{2,3m m -<<=-解得23m =-. 综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m > 或0m = 14分.考点:1.零点存在定理;2.分类讨论的思想.2.(1)()sin f x x =是“可平衡”函数,详见解析(2)证明见解析(3)221218m m <+≤【解析】 【分析】(1)利用两角和差的正弦公式求解即可.(2)根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,再列式利用恒成立问题求解即可.(3)根据“平衡数对”的定义将12,m m 用关于x 的三角函数表达,再利用三角函数的取值范围求解即可. 【详解】(1)若1m =,则()sin m f x x ⋅=,()()()()sin sin f x k f x k x k x k ++-=++-2sin cos x k =,要使得()f x 为“可平衡”函数,需使故()12cos sin 0k x -⋅=对于任意实数x 均成立,只有1cos 2k =,此时23k n ππ=±,n Z ∈,故k 存在,所以()sin f x x =是“可平衡”函数.(2)()2f x x =及()2xg x a =+的定义域均为R ,根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,即22222mx x k =+,即()22220m x k --=对于任意实数x 恒成立,只有2m =,0k =,故函数()2f x x =的“平衡”数对为()2,0,对于函数()2xg x a =+而言,()222x x k x k m a a a +-⋅+=+++()2222x k k a -=+⋅+, 所以()()22222x x k km a a -⋅+=+⋅+,()()22220xkkm a m -⎡⎤⋅-++⋅-=⎣⎦,()2220k k m a m -⎧=+⎪⎨⋅-=⎪⎩, 即22m m ≥⎧⎨=⎩,故2m =,只有0k =,所以函数()2xg x a =+的“平衡”数对为()2,0, 综上可得函数()2f x x =与()2xg x a =+的“平衡”数对相同.(3)2221cos cos cos 22m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以221cos 2sin m x x =,2222cos cos cos 44m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以22cos 1m x =,由于04x π<≤,所以21cos 12x ≤<,故(]212tan 0,2m x =∈,(]22sec 1,2m x =∈, ()22224121tan 4tan m m x x +=++()22222145tan 2tan 15tan 55x x x ⎛⎫=++=++ ⎪⎝⎭, 由于04x π<≤,所以20tan 1x <≤时,2116tan 555x <+≤, ()2212tan 238x <+-≤,所以221218m m <+≤.【点睛】本题主要考查了新定义的函数问题,需要根据题意列出参数满足的关系式,利用恒成立问题或表达出参数满足的解析式再分析求范围等.属于难题. 3.(1)3;(2)见解析;(3)见解析 【解析】 【分析】(1)直接利用题中给的定义求解即可;(2)利用函数的单调性和数列的信息应用求出充要条件;(3)利用函数的奇偶性和存在的最佳划分,进一步建立函数的单调区间,最后求出函数的关系式.(1)()()()()010023M ϕϕϕϕ=--+-=; (2)若()x ϕ在[],a b 上单调递增,则{}()()()(){}11,,,,1ni i i M a b n t t b a M a b ϕϕϕϕ-==-=-=⎡⎤⎣⎦∑,故()x ϕ在[],a b 上存在“最佳划分”{},,1M a b若()x ϕ在[],a b 上存在“最佳划分”{},,1M a b ,倘若()x ϕ在[],a b 上不单调递增, 则存在[]()()121212,,,,x x a b x x x x ϕϕ∈<>.由()()()()()()()()1122a b a x x x x b ϕϕϕϕϕϕϕϕ-≤-+-+-(*)等号当且仅当()()()()()()11220,0,0a x x x x b ϕϕϕϕϕϕ-≥->-≥时取得,此时()()()()()()()()()()11220a b a x x x x b a b ϕϕϕϕϕϕϕϕϕϕ-=-+-+-=-<,与题设矛盾,舍去,故(*)式中等号不成立,即:增加分点12,x x 后,“落差总和”会增加,故{},,M a b n 取最大值时n 的最小值大于1,与条件矛盾. 所以()x ϕ在[],a b 上单调递增;(3)由(2)的证明过程可知,在任间区间[],a b 上,若()x ϕ存在最佳划分{},,1a b ,则当()()a b ϕϕ=时,()x ϕ为常值函数(舍);当()()a b ϕϕ<时,()x ϕ单调递增;当()()a b ϕϕ>时,()x ϕ单调递减,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则此时在每个小区间[]()10,1,2,,i i t t i n -=上均为最佳划分{}1,,1i i M t t -.否则,添加分点后可使()x ϕ在[],a b 上的“落差总和”增大,从而{}0,,M a b n 不是“落差总和”的最大值,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都是单调,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则()x ϕ在相邻的两个区间[][]11,,i i i i t t t t -+、上具有不同的单调性,否则,()()()()()()11111i i i i i t t t t t t ϕϕϕϕϕϕ-+-+-=-+-,减少分点i t ,“落差总和”的值不变,而n 的值减少1,故n 的最小值不是0n ,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,()x ϕ存在“最佳划分”{}0,,M a a n -,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都单调,而()x ϕ是偶函数,故()x ϕ在y 轴两侧的单调区间对称,共有偶数个单调区间,且当000,1,,2n i j n i ⎛⎫+== ⎪⎝⎭时,0i j t t +=,从而有00120n t t t t ++++=.【点睛】本题是信息给予题,考查了数学阅读能力,考查了函数和数列的综合应用能力,考查了数学运算能力.4.(1)不属于,理由详见解析;(2)[12-+;(3)详见解析.【分析】(1)利用f (x )=3x +2,通过f (t +2)=f (t )+f (2)推出方程无解,说明f (x )=3x +2不属于集合M ; (2)由()22a f x lgx =+属于集合M ,推出()222622a a a lg lg lg x x =++++有实解,即(a ﹣6)x 2+4ax +6(a ﹣2)=0有实解,对参数分类讨论,利用判断式求解即可;(3)当f (x )=2x +bx 2时,方程f (x +2)=f (x )+f (2)⇔3×2x +4bx ﹣4=0,令g (x )=3×2x +4bx ﹣4,则g (x )在R 上的图象是连续的,当b ≥0时,当b <0时,判断函数是否有零点,证明对任意实数b ,都有f (x )∈M . 【详解】解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+, 故()32f x x =+不属于集合M ﹒ (2)由2()lg 2af x x =+,属于集合M ,可得 方程22lglg lg (2)226a a ax x =++++有实解()22(2)262a x x ⎡⎤⇔++=+⎣⎦有实解2(6)46(2)0a x ax a ⇔-++-=有实解,若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤≤+,故所求a 的取值范围是[12-+.(3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔ 2222(2)24432440x+x x b x bx b bx ++=+++⇔⨯+-=,令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点当0b <时,(0)10g =-<,11320bg b ⎛⎫=⨯> ⎪⎝⎭,故()g x 在1,0b ⎛⎫ ⎪⎝⎭内至少有一个零点故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. 【点睛】本题考查抽象函数的应用,函数的零点以及方程根的关系,考查转化思想以及计算能力. 5.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.6.(1)()f x x =,2k =,见解析;(2)min 12k =(3)11(),[,0)(0,]22g x kx k =∈-⋃【解析】 【分析】(1)令()f x x =,可以满足题意,一次函数和常值函数都可以满足; (2)根据定义化简1212()()f x f x x x --12<,得出k 的最小值;(3)由于所有一次函数均满足(1)故设()()0g x kx b k t =+≠是()0g x =的根,推得0b =,若k 符合题意,则k -也符合题意,可以只考虑0k >的情形,分①若1k,②若112k <<,分别验证是否满足题意,可得k 的范围. 【详解】(1)例如令()f x x =,由12122x x x x -≤-知可取2k =满足题意(任何一次函数或常值函数等均可). (2)()f x =[0,)+∞为增函数∴对任意12,x x R ∈有1212()()f x f x x x --12==<(当120,0x x =→时取到)所以min 12k =(3)由于所有一次函数均满足(1)故设()()0g x kx b k t =+≠是()0g x =的根()0bg t t k∴=⇒=-, 又(())(())(0)(0)0()f g t g f t f g b g x kx =∴=∴=∴=若k 符合题意,则k -也符合题意,故以下仅考虑0k >的情形. 设()(())(())sin sin h x f g x g f x kx k x =-=- ①若1k,则由sin sin 0h k kk πππ⎛⎫=-<⎪⎝⎭且3333sin sin sin 02222k k h k k ππππ⎛⎫=-=+≥⎪⎝⎭所以,在3,2k ππ⎡⎤⎢⎥⎣⎦中另有一根,矛盾.②若112k <<,则由[]sin sin 0,2h k h k k ππππ⎛⎫=-≥⎪⎝⎭sin 2sin 20k k ππ=-< 所以,在,2kππ⎡⎤⎢⎥⎣⎦中另有一根,矛盾.102k ∴<≤以下证明,对任意1(0,],()2k g x kx ∈=符合题意.当(0,]2x π∈时,由sin y x =图象在连接两点()(0,0),,sin x x 的线段的上方知sin sin kx k x >()0h x ∴>当(,]22x kππ∈时,sin sinsin sin ()022k kx k k x h x ππ>≥≥∴>当,22x k ππ⎛⎫∈⎪⎝⎭时,sin 0,sin 0,()0kx x h x >∴ 综上:()0h x =有且仅有一个解0x =,()g x kx ∴=在1(0,]2k ∈满足题意. 综上所述:11(),[,0)(0,]22g x kx k =∈-⋃, 故得解. 【点睛】本题考查运用所学的函数知识解决新定义等相关问题,关键在于运用所学的函数知识,紧紧抓住定义,构造所需要达到的定义式,此类题目综合性强,属于难度题.7.(1)见解析;(2)51a -≤≤;(3)1,01()12,12m m mT m m m m ⎧-<≤⎪+⎪=⎨-⎪>⎪+⎩.【解析】 【分析】(1)通过判断函数()y f x =的单调性,求出()y f x =的值域,进而可判断()y f x =在(,0)-∞上是否为有界函数;(2)利用题中所给定义,列出不等式,换元,转化为恒成立问题,通过分参求构造函数的最值,就可求得实数a 的取值范围;(3)通过分离常数法求()y g x =的值域,利用新定义进而求得()T m 的解析式. 【详解】(1)当1a =时,11()124xxf x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,由于()f x 在(,0)-∞上递减,∴()(0)3,f x f >=∴函数()y f x =在(,0)-∞上的值域为(3,)+∞,故不存在常数0M >,使得|()|f x M ≤成立,∴函数()y f x =在(,0)-∞上不是有界函数 (2)()y f x =在[0,)+∞上是以3为上界的有界函数,即|()|3f x ≤,令12xt ⎛⎫= ⎪⎝⎭,则1131324xxa ⎛⎫⎛⎫-≤+⋅+≤ ⎪ ⎪⎝⎭⎝⎭,即2313,01at t t -≤++≤<<由213at t ++≤得2(01)a t t t≤-<<, 令2()(01)h t t t t=-<<,()h t 在(0,1)上单调递减,所以()(1)1h t h >= 由213at t ++≥-得4(01)a t t t ⎛⎫≥-+<< ⎪⎝⎭,令4()(01)h t t t t ⎛⎫=-+<< ⎪⎝⎭,()h t 在(0,1)上单调递增,所以()(1)5h t h <=-所以51a -≤≤;(3)122()1,0,01,()1221x x xm g x m x g x m m -⋅==->≤≤∴+⋅⋅+在[]0,1上递减, (1)()(0)g g x g ∴≤≤,即121()121m mg x m m--≤≤++, 当1121|2m m m m --≥++时,即当0m <≤1|()|1m g x m -≤+当1121|2m m m m --<++时,即当m >时,12|()|12m g x m -≤+∴1,01()12,12m m mT m m m m ⎧-<≤⎪+⎪=⎨-⎪>⎪+⎩. 【点睛】本题主要考查学生利用所学知识解决创新问题的能力,涉及到函数求值域的有关方法,以及恒成立问题的常见解决思想.8.(1)()y f x =的图象是中心对称图形,对称中心为:()0,b ;(2)当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【解析】 【分析】(1)设()()h x f x b =-,通过奇偶性的定义可求得()h x 为奇函数,关于原点对称,从而可得()f x 的对称中心,得到结论;(2)()()0y f x g x =-=,可知0x =为一个解,从而将问题转化为222b x a =-解的个数的讨论,即22222a b x a b b+=+=的解的个数;根据b 的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果. 【详解】(1) 设()()11h x f x b x a x a=-=+-+ ()h x ∴定义域为:{}x x a ≠± ()()1111h x h x x a a x x a x a ⎛⎫-=+=-+=- ⎪---+-⎝⎭()h x ∴为奇函数,图象关于()0,0对称()y f x ∴=的图象是中心对称图形,对称中心为:()0,b (2)令()()110y f x g x bx x a x a=-=+-=-+ ()()20x b x a x a ⎡⎤∴-=⎢⎥-+⎢⎥⎣⎦,可知0x =为其中一个解,即0x =为一个零点 只需讨论222b x a =-的解的个数即可①当0b =时,222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点②当0b >时 ,2220x a b =+> x ∴=222b x a =-的解()()y f x g x ∴=-有x =0x =共3个零点 ③当0b <时,22222a bx a b b+=+=(i )若220a b +<,即22b a <-时,220a bb+>x ∴=222b x a =-的解()()y f x g x ∴=-有x =0x =共3个零点 (ii )若220a b +=,即22b a =-时,222b x a =-的解为:0x = ()()y f x g x ∴=-有且仅有0x =一个零点(iii )若220a b +>,即220b a -<<时,220a bb+<,方程222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 综上所述:当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程222b x a =-根的个数的讨论,从而根据b 的不同范围得到方程根的个数,进而得到零点个数,属于较难题. 9.(1)见解析;(2)见解析;(3)见解析 【解析】 【分析】(1)由正切函数与对数函数的性质可直接判断;(2)由()()[]12log 2sin211,0f g x x ⎡⎤=+∈-⎣⎦,得[]2sin211,2x +∈,进而利用正弦函数的性质列式求解即可;(3)利用反证法,假设存在,a b 使得()()()f a b f a f b +≠+,结合条件推出矛盾即可证得. 【详解】(1)()()1tan ,0,12f x x x π⎡⎤⎛⎫=-∈ ⎪⎢⎥⎝⎭⎣⎦满足.()()1lg 1,0,1g x x x ⎛⎫=-∈ ⎪⎝⎭不满足.(2)因为()()[]12log 2sin211,0f g x x ⎡⎤=+∈-⎣⎦,所以[]2sin211,2,x +∈ 即1sin20,2x ⎡⎤∈⎢⎥⎣⎦,所以][522,22,2,.66x k k k k k Z πππππππ⎡⎤∈+⋃++∈⎢⎥⎣⎦所以][5,,,,12122x k k k k k Z πππππππ⎡⎤∈+⋃++∈⎢⎥⎣⎦ 满足条件的0,12D π⎡⎤=⎢⎥⎣⎦(答案不唯一).(3)假设存在,a b 使得()()()f a b f a f b +≠+ 又有()()()()()(),f a f a b f b f b f a b f a =+-=+-, 所以()()()()()(),f a f a b f b f b f a b f a -=+--=+-,结合两式:()()(),0f a f b f a b =+=,所以()()()0f b f a f a b --=+=, 故()()()f a f b f a -==.由于()()()f a b f a f b +≠+知:()0f a ≠.又()()12222a a a f f a f f f a ⎛⎫⎛⎫⎛⎫=-⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 类似地,由于()0f a -≠,()22a a f f a f ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭得()()11222a f f a f a ⎛⎫-=-= ⎪⎝⎭.所以()022a a f a f f ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,与()0f a ≠矛盾,所以原命题成立. 【点睛】本题主要考查了复合函数的性质及反证法的证明,属于难题. 10.(1) (]2,log 3-∞(2) 27119,2259k ⎡⎫∈⎪⎢⎣⎭(3)12a =-,172b = 【解析】 【分析】⑴函数()2xf x =,()()26f x f x -≤,即为22260x x --≤,即为()()22230x x +-≤,可得解集;⑵根据()()20021g x k gx =⋅-,利用换元法,求解最值,即可求解k 的取值范围;⑶根据()()()22h x f x a f x b =++⋅+(其中a ,b 均为实数),[]0,1x ∈,均有()12h k ≤,建立关系即可求解a ,b 的值.⑴函数()2xf x =,()()26f x f x -≤, 即为22260x x --≤,即为()()22230x x+-≤,即有23x ≤,解得2log 3x ≤, 即解集为(]2,log 3-∞;⑵存在实数(]01,2x ∈,使得()()20021g x k g x =⋅-成立,即为()000022212222x x x x k --+-=-, 设022x x t -=-,在(]1,2递增,可得31524t <≤, ()00002222222224x x x x t --+=++=+,即有21kt +,则21k t =+ 设21m t =,164,2259m ⎡⎫∈⎪⎢⎣⎭,即有y m =,在164,2259m ⎡⎫∈⎪⎢⎣⎭递增, 可得27119,2259y ⎡⎫∈⎪⎢⎣⎭, 即有27119,2259k ⎡⎫∈⎪⎢⎣⎭. ⑶()()()22h x f x a f x b =++⋅+ ()22222422x x xx a b a b +=+⋅+=+⋅+,令2x v =,[]0,1x ∈,[]1,2v ∴∈,()()24h x v v av b ϕ∴==++.若对于任意的[]0,1x ∈,均有()12h x ≤, 即对任意[]1,2v ∈,()2142v v av b ϕ=++≤. 214211622161162a b a b b a ⎧⎪++≤⎪⎪∴++≤⎨⎪⎪-≤⎪⎩①②③,解得:12a =-,172b =.本题主要考查了函数恒成立问题的求解,分类讨论以及转化思想的应用,二次函数闭区间是的最值以及单调性的应用.11.⑴()11f =,()22f =,()f n n =;⑵3λ≤;⑶详见解析 【解析】 【分析】()()111f =,()22f =,进而猜想出()f n . ()298n a n =-.由21218899899999m m m m n n --<-<⇒+<<+,可得191m n -=+,192m -+,⋯,219m -,21199.m m m t --=-利用等比数列的求和公式即可得出m S .根据2mS λ≤对任意*m N ∈恒成立即可得出λ范围.()13sin4b π=,记1sin ,4n n b πθθ==,可得()*11sin sin 22n n n n n N θπθθ++=⇒=∈,1tan 4c π=,记1tan ,4n n c πϕϕ==,可得()*11sec 1tan tan tan 22n n n n n n n N ϕϕπϕϕφ++-==⇒=∈,根据当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan x x x <<即可得出. 【详解】解:()()111f =,()22f = 猜想()f n n =()298n a n =-,由21218899899999m m m m n n --<-<⇒+<<+, 191m n -∴=+,192m -+,⋯,219m -21199m m m t --∴=-()()()()35221191999999m m m S --∴=-+-+-+⋯+-()()35212199991999m m --=+++⋯+-+++⋯+()()22129191991091191980m mm m +---⋅+=-=--2m S λ≤对任意*m N ∈恒成立()1min 283m S S λλ⇒≤==⇒≤⑶证明:1sin 4b π=,记1sin ,4n n b πθθ==,则()*11sin sin 22n n n n n N θπθθ++==⇒=∈ 1tan4c π=,记1tan ,4n n c πϕϕ==,则()*11sec 1tan tan tan 22n n n n n n n N ϕϕπϕϕφ++-==⇒=∈ 11sin,tan 22n n n n b c ππ++∴==,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan x x x <<可知:1111sin tan 2222n n n n n n b f c ππππ++++⎛⎫=<=<= ⎪⎝⎭,【点睛】本题考查了数列与函数的关系、等比数列的通项公式与求和公式及其性质、三角函数求值及其性质,考查了推理能力与计算能力,属于难题.12.(Ⅰ)A ={-1,2};B -13}(Ⅱ)[-14,34]【解析】 【分析】(Ⅰ)由f (x )=x 得x 2-x -2=0,解得x =-1,x =2,故A ={-1,2};由f (f (x ))=x ,可得f (x 2-2)=x ,即(x 2-2)2-(x 2-2)-2=x ;求解x 可得集合B .(Ⅱ)理解A =B 时,它表示方程x 2-a =x 与方程(x 2-a )2-a =x 有相同的实根,根据这个分析得出关于a 的方程求出a 的值. 【详解】(Ⅰ)由f (x )=x 得x 2-x -2=0,解得x =-1,x =2,故A ={-1,2}; 由f (f (x ))=x ,可得f (x 2-2)=x ,即(x 2-2)2-(x 2-2)-2=x ; 即x 4-2x 3-6x 2+6x +9=0,即(x +1)(x -3)(x 2-3)=0,解得x =-1,x =3,x x B -13}; (Ⅱ)∵∅A =B ,∴x 2-a =x 有实根,即x 2-x -a =0有实根,则△=1+4a ≥0,解得a ≥-14由(x 2-a )2-a =x ,即x 4-2ax 2-x +a 2-a =0的左边有因式x 2-x -a , 从而有(x 2-x -a )(x 2+x -a +1)=0. ∵A =B ,∴x 2+x -a +1=0要么没有实根,要么实根是方程x 2-x -a =0的根. 若x 2+x -a +1=0没有实根,则a <34;若x 2+x -a +1=0有实根且实根是方程x 2-x -a =0的根, 由于两个方程的二次项系数相同,一次项系数不同, 故此时x 2+x -a +1=0有两个相等的根-12,此时a =34方程x 2-x -a =0可化为:方程x 2-x -34=0满足条件,故a 的取值范围是[-14,34].【点睛】本题考查对新概念的理解和运用的能力,同时考查了集合间的关系和方程根的相关知识,解题过程中体现了分类讨论的数学思想.13.(1)见解析;(2)[33a ∈+;(3)见解析 【解析】 【分析】(1)直接进行验证或用反证法求解;(2)由()2ln 1af x x =∈+M 得到方程()22lnlnln 1211aa ax x =++++在定义域内有解,然后转化成二次方程的问题求解;(3)验证函数()f x 满足()()()0011f x f x f +=+即可得到结论成立. 【详解】 (1)()21f x M x=+∉.理由如下: 假设()21f x M x=+∈, 则在定义域内存在0x ,使得()()()0011f x f x f +=+成立, 即00221131x x +=+++, 整理得2003320x x ++=, ∵方程2003320x x ++=无实数解,∴假设不成立, ∴()21f x M x=+∉. (2)由题意得()2ln +1af x M x =∈, ()22lnlnln 1211aa ax x ∴=++++在定义域内有解, 即()222220a x ax a ---+=在实数集R 内有解,当2a =时,12x =-,满足题意;当2a ≠时,由0∆≥,得2640a a -+≤,解得33a ≤2a ≠,综上33a ≤∴实数a的取值范围为33⎡⎣.(3)证明:∵()23x f x x =+,∴()()()()()000212000003113134232x x x f x f x f x x x +⎛⎫+-+=++---=+- ⎪⎝⎭,又函数3x y =的图象与函数32y x =-+的图象有交点,设交点的横坐标为a ,则3302aa +-=, ∴003302xx +-=,其中0x a =, ∴ 存在0x 使得()()()0011f x f x f +=+成立, ∴()f x M ∈. 【点睛】本题以元素与集合的关系为载体考查函数与方程的知识,解题的关键是根据题意中集合元素的特征将问题进行转化,然后再结合方程或函数的相关知识进行求解,考查转化能力和处理解决问题的能力.14.(1)函数()sin()3f x x π=+是“M 类函数”;(2)54-;(3)[1,1)-.【解析】 【详解】试题分析:(1) 由()()f x f x -=-,得sin()sin()33x x ππ-+=-+整理可得02x R π=∈满足00()()f x f x -=-(2) 由题存在实数0[1,1]x ∈-满足00()()f x f x -=-,即方程2220x x m -++=在[1,1]-上有解.令12[,2]2xt =∈分离参数可得11()2m t t =-+,设11()()2g t t t =-+求值域,可得m 取最小值54-(3) 由题即存在实数0x ,满足00()()f x f x -=-,分02x ≥,022x -<<,02x ≤-三种情况讨论可得实数m 的取值范围.试题解析:(1)由()()f x f x -=-,得:sin()sin()33x x ππ-+=-+0x = 所以存在02x R π=∈满足00()()f x f x -=-所以函数()sin()3f x x π=+是“M 类函数”,(2)因为()2x f x m =+是定义在[1,1]-上的“M 类函数”, 所以存在实数0[1,1]x ∈-满足00()()f x f x -=-, 即方程2220x x m -++=在[1,1]-上有解. 令12[,2]2xt =∈则11()2m t t =-+,因为11()()2g t t t =-+在1[,1]2上递增,在[1,2]上递减所以当12t =或2t =时,m 取最小值54-(3)由220x mx ->对2x ≥恒成立,得1m <因为若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”所以存在实数0x ,满足00()()f x f x -=-①当02x ≥时,02x -≤-,所以22003log (2)x mx -=--,所以00142m x x =- 因为函数142y x x=-(2x ≥)是增函数,所以1m ≥- ②当022x -<<时,022x -<-<,所以33-=,矛盾③当02x ≤-时,02x -≥,所以2200log (2)3x mx +=,所以00142m x x =-+因为函数142y x x=-+(2)x ≤-是减函数,所以1m ≥-综上所述,实数m 的取值范围是[1,1)-点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.15.(1)()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数;证明见解析 (2)25log 63n ≥- 【解析】 【详解】试题分析:(1)利用奇偶性,确定函数的解析式,然后利用函数单调性的定义,判断函数的单调性;(2)利用函数的单调性,结合不等式恒成立问题,求解参数的取值范围. 试题解析:(1)由条件可得()()0f x f x -+=,即 2211log log 02121mx mx x x -+⎛⎫⎛⎫+= ⎪ ⎪---⎝⎭⎝⎭化简得222114m x x -=-,从而得2m =±;由题意2m =-舍去,所以 2m =即()212log 21x f x x x +⎛⎫=- ⎪-⎝⎭, ()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数,证明如下:设1212x x <<<+∞, 则()()12f x f x -=122122121212log log 2121x x x x x x ⎛⎫⎛⎫++--+ ⎪⎪--⎝⎭⎝⎭因为1212x x <<<+∞,所以210x x ->,12210,210x x ->->; 所以可得1212122112112x x x x +-⋅>-+,所以()()120f x f x ->,即()()12f x f x >;所以函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, (2)设()()2x g x f x =- ,由(1)得()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, 所以()()2x g x f x =-在[]2,5上单调递减;所以()()2x g x f x =-在[]2,5上的最大值为()252log 63g n =≥-. 由题意知()n g x ≥在[]2,5上的最大值,所以25log 63n ≥-.。
高中数学第三章函数的概念与性质专项训练题单选题1、若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f(a)−f(b)a−b>0成立,则必有( )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增 答案:A分析:根据条件可得当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),从而可判断. 由f(a)−f(b)a−b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.2、若函数y =√ax 2+4x +1的值域为[0,+∞),则a 的取值范围为( ) A .(0,4)B .(4,+∞)C .[0,4]D .[4,+∞) 答案:C分析:当a =0时易知满足题意;当a ≠0时,根据f (x )的值域包含[0,+∞),结合二次函数性质可得结果. 当a =0时,y =√4x +1≥0,即值域为[0,+∞),满足题意; 若a ≠0,设f (x )=ax 2+4x +1,则需f (x )的值域包含[0,+∞), ∴{a >0Δ=16−4a ≥0,解得:0<a ≤4;综上所述:a 的取值范围为[0,4]. 故选:C.3、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B4、已知幂函数y =x m 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m 3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32)答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m =1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32.故应选:D .5、已知函数f (x +1)的定义域为(−1,1),则f (|x |)的定义域为( ) A .(−2,2)B .(−2,0)∪(0,2) C .(−1,0)∪(0,1)D .(−12,0) 答案:B分析:根据抽象函数定义域的求法求得正确答案. 依题意函数f (x +1)的定义域为(−1,1), −1<x <1⇒0<x +1<2, 所以0<|x |<2,解得−2<x<0或0<x<2,所以f(|x|)的定义域为(−2,0)∪(0,2).故选:B6、已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x−5)f(x−1)<0的解集为()A.(−2,52)∪(4,+∞)B.(4,+∞)C.(−∞,−2)∪[52,4]D.(−∞,−2)答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x−5>0f(x−1)<0、{2x−5<0f(x−1)>0求解集即可. 由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0,对于(2x−5)f(x−1)<0,当{2x−5>0f(x−1)<0,即{x>52x−1<−3或{x>52x−1>3,可得x>4;当{2x−5<0f(x−1)>0,即{x<52−3<x−1<3,可得−2<x<52;综上,解集为(−2,52)∪(4,+∞).故选:A7、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1, 故选:C 8、函数f (x )=√−x 2+5x+6x+1的定义域( )A .(−∞,−1]∪[6,+∞)B .(−∞,−1)∪[6,+∞)C .(−1,6]D .[2,3] 答案:C分析:解不等式组{−x 2+5x +6≥0x +1≠0得出定义域.{−x 2+5x +6≥0x +1≠0,解得−1<x ⩽6即函数f (x )的定义域(−1,6] 故选:C 多选题9、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C[0,1]项错误,D项正确.故选:ABD10、下列各组函数是同一函数的是()A.y=|x|x与y=1B.y=√(x−1)2与y=x−1C.y=(√x)2x 与y=(√x)2D.y=x3+xx2+1与y=x答案:CD分析:根据同一函数的概念,逐一分析各个选项,即可得答案.对于A:函数y=|x|x的定义域为x≠0,函数y=1定义域为R,两函数定义域不同,故不是同一函数;对于B:函数y=√(x−1)2定义域为R,化简可得y=|x−1|,与y=x−1解析式不同,故不是同一函数;对于C:函数y=(√x)2x 定义域为x>0,化简可得y=1(x>0),函数y=(√x)2定义域为x>0,化简可得y=1(x>0),故为同一函数;对于D:函数y=x3+xx2+1定义域为R,化简可得y=x,与y=x为同一函数.故选:CD11、如图所示是函数y=f(x)的图象,图中x正半轴曲线与虚线无限接近但是永不相交,则以下描述正确的是()A.函数f(x)的定义域为[−4,4)B.函数f(x)的值域为[0,+∞)C.此函数在定义域内是增函数D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应答案:BD分析:利用函数的图象判断.由图象知:A.函数f(x)的定义域为[−4,0]∪[1,4),故错误;B.函数f(x)的值域为[0,+∞),故正确;C. 函数f(x)在[−4,0],[1,4)上递增,但在定义域内不单调,故错误;D.对于任意的y∈(5,+∞),都有唯一的自变量x与之对应,故正确;故选:BD12、已知函数y=(m−1)x m2−m为幂函数,则该函数为()A.奇函数B.偶函数C.区间(0,+∞)上的增函数D.区间(0,+∞)上的减函数答案:BC分析:由幂函数的概念可得m的值,根据幂函数的性质可得结果.由y=(m−1)x m2−m为幂函数,得m−1=1,即m=2,则该函数为y=x2,故该函数为偶函数,且在区间(0,+∞)上是增函数,故选:BC.13、已知函数f(x)是定义在[−4,0)∪(0,4]上的奇函数,当x∈(0,4]时,f(x)的图象如图所示,那么满足不等式f(x)−3x+1−3≥0的x的可能取值是()3A .-4B .-1C .12D .2 答案:AC分析:把“求f(x)−3x+1−33≥0的解集”转化为“求f (x )≥3x −1的解集”,进而转化为观察两个函数图象的特征,即可求出不等式的解集.因为函数f (x )是定义在[−4,0)∪(0,4]上的奇函数,由题意,画出函数f (x )在[−4,0)∪(0,4]上的图象(如图),在同一坐标系内画出y =3x −1的图象,因为f (2)=89,所以f (−2)=−f (2)=−89=3−2−1,又f (1)=2=31−1,所以f (x )的图象与y =3x −1的图象交于(−2,−89)和(1,2)两点,f (x )−3x+1−33≥0即为f (x )≥3x −1,由图象可得,只需−4≤x ≤−2或0<x ≤1,故A ,C 可能取到故选:AC . 填空题14、函数y =√x 2−1的单调递减区间为___________. 答案:(−∞,−1](或(−∞,−1)都对)解析:利用复合函数的单调性,同增异减,即可得到答案; 令t =x 2−1,则y =√t ,∵ t =x 2−1在(−∞,−1)单调递减,y =√t 在(0,+∞)单调递增, 根据复合函数的单调性可得:y =√x 2−1在(−∞,−1)单调递减,所以答案是:(−∞,−1).15、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,的大小评价在[a,b]这段时间内企业污水治理设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果表示区间端点连线斜率的负数,−f(b)−f(a)b−a在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.16、已知幂函数f(x)的图象过点(3,13),则此函数的解析式为______.答案:f(x)=x−1##f(x)=1x分析:设出幂函数f(x),代入点(3,13)即可求解.由题意,设f(x)=xα,代入点(3,13)得13=3α,解得α=−1,则f(x)=x−1.所以答案是:f(x)=x−1.解答题17、已知函数f(x)=x2x2+1(1)证明:f(x)为偶函数;(2)判断g(x)=f(x)+x的单调性并用定义证明;(3)解不等式f(x)−f(x−2)+2x>2答案:(1)证明见解析(2)g(x)为R上的增函数,证明见解析(3)(1,+∞)分析:(1)根据奇偶性的定义证明即可;(2)首先得到g(x)的解析式,再利用定义法证明函数的单调性,按照设元、作差、变形、判断符号,下结论的步骤完成即可;(3)根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;(1)证明:f(x)的定义域为R,又f(−x)=(−x)2(−x)2+1=x2x2+1=f(x),故f(x)为偶函数;(2)解:g(x)=f(x)+x=x2x2+1+x,所以g(x)为R上的增函数,证明:任取x1,x2∈R,且x1>x2,g(x1)−g(x2)=x12x12+1+x1−(x22x22+1+x2)=x1−x2+x12x12+1−x22x22+1=x1−x2+x12(x22+1)−x22(x12+1) (x12+1)(x22+1)=x1−x2+x12−x22(x12+1)(x22+1)=(x1−x2)[1+x1+x2(x12+1)(x22+1)]=(x1−x2)[x12x22+x12+x22+1+x1+x2 (x12+1)(x22+1)]=(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)].∵x1>x2,∴x2−x2>0,又x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)>0,∴(x1−x2)[x12x22+(x1+12)2+(x2+12)2+12(x12+1)(x22+1)]>0,即g(x1)>g(x2),∴g(x)为R上的增函数;(3)解:不等式f(x)−f(x−2)+2x>2,等价于f(x)+x>f(x−2)+2−x=f(2−x)+2−x即g(x)>g(2−x),∵g(x)为R上的增函数,∴x>2−x,解得x>1,故不等式的解集为(1,+∞).18、函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),当x<0时,f(x)<0,且f(1)=13.(1)证明f(x)是奇函数;(2)证明f(x)在R上是单调递增函数;(3)若f(x)+f(x−3)≥−1,求实数x的取值范围.答案:(1)证明见解析;(2)证明见解析;(3)[0,+∞).分析:(1)先用赋值法求出f(0)=0,令y=−x,即可根据定义证明f(x)是奇函数;(2)利用定义法证明f(x)是R上的增函数;(3)先把f(x)+f(x−3)≥−1转化为f(2x−3)≥f(−3),利用单调性解不等式即可.(1)令x =y =0,则f (0)=f (0)+f (0),解得f (0)=0,令y =−x ,则f (0)=f (x )+f (−x ),即f (x )+f (−x )=0,即f (−x )=−f (x ), 易知f (x )的定义域为R ,关于原点对称,所以函数f (x )是奇函数;(2)任取x 1,x 2∈R ,且x 1<x 2,则x 1−x 2<0,因为当x <0时,f (x )<0,所以f (x 1−x 2)<0,则f (x 1)−f (x 2)=f (x 1)+f (−x 2)=f (x 1−x 2)<0,即f (x 1)<f (x 2),所以函数f (x )是R 上的增函数;(3)由f (1)=13,得f (2)=23,f (3)=1,又由f (x )是奇函数得f (−3)=−1. 由f (x )+f (x −3)≥−1,得f (2x −3)≥f (−3),因为函数f (x )是R 上的增函数, 所以2x −3≥−3,解得x ≥0,故实数x 的取值范围为[0,+∞).。
人教版数学《第19章一次函数》单元强化训练卷(B)一.选择题(共10小题)1.下面各组变量的关系中,成正比例关系的有()A.人的身高与年龄B.汽车从甲地到乙地,所用时间与行驶速度C.正方形的面积与它的边长D.圆的周长与它的半径2.一次函数y1=mx+n与y2=mnx(m、n为常数,且mn≠0)在同一平面直角坐标内的图象可能是()A.B.C.D.3.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y 与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有()A.1个B.2个C.3个D.4个4.一次函数y=−x+12的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限5.若P(m,y1),Q(m﹣1,y2)是一函数y=﹣x+3图象上的两点,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定6.在弹性限度内,弹簧伸长的长度与所挂物体的质量成正比.某弹簧不挂物体时长15cm;当所挂物体质量为3kg时,弹簧长16.8cm.则弹簧长度y(cm)与所挂物体质量x(kg)之间的函数表达式为()A.y=﹣0.6x+15B.y=0.6x﹣15C.y=﹣0.6x﹣15D.y=0.6x+157.在平面直角坐标系中,已知一次函数y=﹣x+5的图象经过A(﹣3,y1),B(2,y2)两点,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.满足k>0,b=3的一次函数y=kx+b的图象大致是()A.B.C.D.9.已知A(﹣1,a),B(2,b)两点都在关于x的一次函数y=﹣x+m的图象上,则a,b 的大小关系为()A.a≥b B.a>b C.a<b D.无法确定10.正比例函数y=kx(k≠0)和一次函数y=x﹣k在同一个直角坐标系内的图象大致是()A.B.C.D.二.填空题(共5小题)11.如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为千米.12.如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程2x=kx+b的解是.13.在y=(k﹣1)x+k2﹣1中,若y是x的正比例函数,则k值为.14.如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.15.甲、乙两车分别从A,B两地同时相向匀速行驶.当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,当甲车到达B地时,乙车距离A地千米.三.解答题(共8小题)16.东明一中门口有甲乙两个图书超市,他们都经营同一种练习本,两个超市的标价都是1元.甲超市的优惠条件是:购买10本以上,从第11本开始按标价的7折卖;乙超市的优惠条件是:从第1本开始就按标价的8.5折卖.(1)请分别求出购买的数量x(本)与所花的钱数y甲(元),y乙(元)之间的函数表达式;(2)小明要买22的练习本,到哪家超市购买较省钱?17.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)在平面直角坐标系中,画出这个函数的图象;(2)求一次函数y=kx+b的表达式.18.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B 型节能灯共需50元,1只A型节能灯和3只B型节能灯共需26元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元;(2)学校准备购买这两种型号的节能灯共200只,要求购买A型号的节能灯a只,记购买两种型号的节能灯的总费用为W元.①求W与a的函数关系式;②当a=80时,求购买两种型号的节能灯的总费用是多少?19.一个正比例函数的图象经过点A(﹣3,6),B(2,a),C(b,﹣1),求a,b的值.20.如图,已知直线y=kx+b的图象经过点A(0,﹣4),B(3,2),且与x轴交于点C.(1)求直线y=kx+b的解析式;(2)求△BOC的面积.21.已知,点P(2,m)是第一象限内的点,直线P A交y轴于点B(0,2),交x轴负半轴于点A.联结OP,S△AOP=6.(1)求△BOP的面积;(2)求点A的坐标和m的值.22.小明在学习一次函数后,对形如y=k(x﹣m)+n(其中k,m,n为常数,且k≠0)的一次函数图象和性质进行了探究,过程如下:【特例探究】(1)如图所示,小明分别画出了函数y=(x﹣1)+2,y=﹣(x﹣1)+2,y=2(x﹣1)+2的图象.请你根据列表、描点、连线的步骤在图中画出函数y=﹣2(x﹣1)+2的图象.【深入探究】(2)通过对上述几个函数图象的观察、思考,你发现y=k(x﹣1)+2(k为常数,且k ≠0)的图象一定会经过的点的坐标是.【得到性质】(3)函数y=k(x﹣m)+n(其中k、m、n为常数,且k≠0)的图象一定会经过的点的坐标是.【实践运用】(4)已知一次函数y=k(x+2)+3(k为常数,且k≠0)的图象一定过点N,且与y轴相交于点A ,若△OAN 的面积为2,则k 的值为 .23.小明、小刚两人同时从家步行到乙地游玩,小明开始以50m /min 的速度行走,行走了一段路程后开始加快速度,两人到小明家的距离s (m )与行走时间t (min )之间的函数图象如图所示,根据图象提供的信息解答下列问题.(1)a = min .(2)若小刚的速度是小明提速后速度的35. ①小刚到达乙地的时间为 min ;②求两人相遇时离乙地的距离.。
函数的表示法训练题(附答案)1.下列各图中,不能是函数f(x)图象的是()解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f(1x)=11+x,则f(x)等于()A.11+x(x≠-1)B.1+xx(x≠0)C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)解析:选C.f(1x)=11+x=1x1+1x(x≠0),∴f(t)=t1+t(t≠0且t≠-1),∴f(x)=x1+x(x≠0且x≠-1).3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=() A.3x+2B.3x-2C.2x+3D.2x-3解析:选B.设f(x)=kx+b(k≠0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.4.已知f(2x)=x2-x-1,则f(x)=________.解析:令2x=t,则x=t2,∴f(t)=t22-t2-1,即f(x)=x24-x2-1.答案:x24-x2-11.下列表格中的x与y能构成函数的是()A.x非负数非正数y1-1B.x奇数0偶数y10-1C.x有理数无理数y1-1D.x自然数整数有理数y10-1解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()A.1B.3C.15D.30解析:选C.法一:令1-2x=t,则x=1-t2(t≠1),∴f(t)=--1,∴f(12)=16-1=15.法二:令1-2x=12,得x=14,∴f(12)=16-1=15.3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A.2x+1B.2x-1C.2x-3D.2x+7解析:选B.∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1解析:选D.设f(x)=(x-1)2+c,由于点(0,0)在函数图象上,∴f(0)=(0-1)2+c=0,∴c=-1,∴f(x)=(x-1)2-1.6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为()A.y=12x(x>0)B.y=24x(x>0)C.y=28x(x>0)D.y=216x(x>0)解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,所以y=22a=22×x4=28x. 7.已知f(x)=2x+3,且f(m)=6,则m等于________.解析:2m+3=6,m=32.答案:328.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则的值等于________.解析:由题意,f(3)=1,∴=f(1)=2.答案:29.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.答案:f(x)=x2-2x-110.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).解:令a=0,则f(-b)=f(0)-b(-b+1)=1+b(b-1)=b2-b+1.再令-b=x,即得f(x)=x2+x+1.11.已知f(x+1x)=x2+1x2+1x,求f(x).解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,∴f(x+1x)=f(1+1x)=1+1x2+1x=(1+1x)2-(1+1x)+1.∴f(x)=x2-x+1(x≠1).12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.解:∵f(2+x)=f(2-x),∴f(x)的图象关于直线x=2对称.于是,设f(x)=a(x-2)2+k(a≠0),则由f(0)=3,可得k=3-4a,∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.∵ax2-4ax+3=0的两实根的平方和为10,∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,∴a=1.∴f(x)=x2-4x+3.。
函数概念与性质1.函数定义域1、函数x x x y +-=)1(的定义域为A .{}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x2、函数x x y +-=1的定义域为A .{}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x3、若函数)(x f y =的定义域是[]2,0,则函数1)2()(-=x x f x g 的定义域是A .[]1,0B .[)1,0C .[)(]4,11,0D .()1,04、函数的定义域为)4323ln(1)(22+--++-=x x x x xx f A .(][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 -5、函数)20(3)(≤<=x x f x 的反函数的定义域为A .()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,96、函数41lg)(--=x xx f 的定义域为 A .()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41,7、函数21lg )(x x f -=的定义域为A .[]1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11,8、已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N MA .{}1->x xB .{}1<x xC .{}11<<-x xD .Φ9、函数)13lg(13)(2++-=x xx x f 的定义域是A .⎪⎭⎫ ⎝⎛+∞-,31 B .⎪⎭⎫ ⎝⎛-1,31 C .⎪⎭⎫ ⎝⎛-31,31 D .⎪⎭⎫ ⎝⎛-∞-31,10、函数的定义域2log 2-=x y 是A .()+∞,3 B .[)+∞,3 C .()+∞,4 D .[)+∞,411、函数的定义域x y 2log =是A .(]1,0 B .()+∞,0 C .()+∞,1 D .[)+∞,112、函数)1(log 12)(2---=x x x f 的定义域为 .2.函数与值域练习题一、填空题1、定义在R 上的函数()f x 满足()()()2(,),(1)2f x y f x f y xy x y R f +=++∈=,则(0)f = ,(2)f -= 。
高中同步测控优化训练(十)第二章 函数(二)(B 卷)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设f :x →y =2x 是A →B 的映射,已知集合B ={0,1,2,3,4},则A 满足 A.A ={1,2,4,8,16} B.A ={0,1,2,log 23} C.A ⊆{0,1,2,log 23} D.不存在满足条件的集合 解析:A 中每个元素在集合中都有象,令2x =0,方程无解. 分别令2x =1,2,3,4,解得x =0,1,log 23,2. 答案:C2.若a 、b 是任意实数,且a >b ,则 A.a 2>b 2B.a b <1 C.lg(a -b )>0 D.(21)a <(21)b答案:D3.设1<x <a ,那么log a x 2、(log a x )2、log a (log a x )之间的大小顺序是 A.log a x 2<(log a x )2<log a (log a x ) B.log a x 2<log a (log a x )<(log a x )2 C.log a (log a x )<(log a x )2<log a x 2 D.(log a x )2<log a x 2<log a (log a x )解法一:令x =2,a =4,则log a x 2=log 44=1, (log a x )2=(log 42)2=41log a (log a x )=log 4(log 42)=-21,∴log a (log a x )<(log a x )2<log a x 2. 解法二:∵1<x <a ,∴0<log a x <1. log a x 2=2log a x >log a x >0,0<(log a x )2<log a x ,log a (log a x )<log a 1=0, ∴log a (log a x )<(log a x )2<log a x 2. 答案:C 4.已知函数f (x )=⎩⎨⎧≤>0),(x 3),0(log2xx x 则f [f (41)]的值是A.9B.91C.-9D.-91解析:f (41)=log 241=-2,f (-2)=3-2=91.答案:B5.当函数f (x )=2-|x -1|-m 的图象与x 轴有交点时,实数m 的取值范围是 A.-1≤m <0 B.0≤m ≤1 C.0<m ≤1 D.m ≥1解析:函数f (x )=2-|x -1|-m 的图象与x 轴有交点,即方程2-|x -1|-m =0有解,∴m=2-|x -1|. ∴0<m ≤1. 答案:C6.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系内的图象可能是ABC解析:∵f (3)=a 3>0,∴g (3)=log a 3<0. ∴0<a <1. 答案:C 7.若函数y =21log(2-log 2x )的值域是(-∞,0),则其定义域是A.x <2B.0<x <2C.0<x <4D.2<x <4 解析:令2-log 2x =u ,由题意知u >1log 2x <1,故0<x <2. 答案:B8.世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于 一个A.新加坡(270万)B.香港(560万)C.瑞士(700万)D.上海(1200万) 解析:本题考查指数型函数的应用.若按10001的年增长率计算,则两年后增长的人口数y =560000(1+10001)2-560000≈1120.56(万).答案:D9.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是A.(101,1) B.(0,101)∪(1,+∞)C.( 101,10)D.(0,1)∪(10,+∞)解析:若函数f (x )的图象关于y 轴对称,则在y 轴两侧的对称区间上 ,它们的单调性相反. 由题可知,0≤|lg x |<1, 即-1<lg x <1,lg 101<lg x <lg10,所以101<x <10.答案:C现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是A.v =log 2tB.v =21logtC.v =212-t D.v =2t -2解析:五组数据,取近似值1.99≈2;4.04≈4;5.1≈5,18.01≈18,代入验证可知v =212-t最接近.答案:C第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分) 11.方程log 3(1-2·3x )=2x +1的解x =_______. 解析:32x +1=1-2·3x ,即3(3x )2+2·3x -1=0. 解得3x =31,故x =-1.答案:-112.3log9(lg2-1)2+5log25(log0.5-2)2等于_________.解析:3log9(log2-1)2+5log25(log0.5-2)2=22529)25.0(lg log21)12(lg log 21259-∙-∙+=9log9(1-lg2)+25log25(2-lg0.5)=1-lg2+2-lg0.5=3-lg(2×0.5)=3. 答案:313.国家规定的个人稿酬纳税方法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,他的稿费为_______元.解析:若其稿费为4000元,则应纳税3200×14%=448>420. 故稿费应小于4000元,设为x 元. 则(x -800)14%=420,解得x =3800(元).答案:380014.若函数f (x )=lg(x 2+ax -a -1)在区间[2,+∞)上单调递增,则实数a 的取值范围是_________.解析:本题考查复合函数单调性的判定方法,要注意判断函数的单调性必须在函数的定义域内进行.∵函数f (x )在区间[2,+∞)上单调递增,∴-2a ≤2,且x =2时,x 2+ax -a -1>0,即⎪⎩⎪⎨⎧>--+≤-,0124,22a a a∴⎩⎨⎧->-≥.3,4a a ∴a >-3,即实数a 的取值范围是(-3,+∞). 答案:(-3,+∞)三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .(1)写出本年度预计的年利润y 与投入增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内. 分析:年利润=(出厂价-投入成本)×年销售量.解:(1)由题意,得y =[1.2(1+0.75x )-1×(1+x )]×1000(1+0.6x )(0<x <1). 整理,得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的利润比上年度有所增加,只需⎩⎨⎧<<>⨯--,10,01000)12.1(x y 即⎩⎨⎧<<>+-,10,020602x x x 解得0<x <31,即为保证本年度的利润比上年度有所增加,投入成本的比例应满足0<x <31.16.(本小题满分10分)已知y =log 4(2x +3-x 2). (1)求定义域;(2)求f (x )的单调区间;(3)求y 的最大值,并求取最大值时x 的值. 解:(1)由2x +3-x 2>0,解得-1<x <3. ∴f (x )的定义域为{x |-1<x <3}. (2)令u =2x +3-x 2,则u >0,y =log 4u . 由于u =2x +3-x 2=-(x -1)2+4.再考虑定义域可知,其增区间是(-1,1),减区间是[1,3).又y =log 4u 在(0,+∞)上为增函数,故该函数单调递增区间为(-1,1),减区间为[1,3].(3)∵u =2x +3-x 2=-(x -1)2+4≤4,∴y =log 4u ≤log 44=1.故当x =1,u 取最大值4时,y 取最大值1.17.(本小题满分12分)某电器公司生产A 型电脑.1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A 型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.(1)求1997年每台A 型电脑的生产成本;(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:5=2.236,6=2.449)分析:出厂价=单位商品的成本+单位商品的利润.解:(1)一方面可以根据1993年的出厂价求得1997年的出厂价;另一方面根据题意可把1997年的出厂价用1997年的生产成本表示,列出方程求解.设1997年每台电脑的生产成本为x 元,依题意,得 x (1+50%)=5000×(1+20%)×80%,解得x =3200(元).(2)因为1993年至1997年四年间成本平均每年降低的百分率相等,因此可把1997年每台的生产成本用这个百分率来表示,而这个量应与第(1)问中求得的1997年每台电脑的生产成本相等,据此列出方程求解.设1993年至1997年间每年平均生产成本降低的百分率为y ,则依题意,得5000(1-y )4=3200,解得y 1=1-552,y 2=1+552(舍去).所以,y =1-552≈0.11=11%.即1997年每台电脑的生产成本为3200元,1993年至1997年生产成本平均每年降低11%. 18.(本小题满分12分)已知二次函数f (x )的二次项系数为负数,且对任意x 恒有f (2-x )=f (2+x )成立,解不等式f [21log(x 2+x +21)]>f [21log(2x 2-x +85)].解:因为对任意x ,恒有f (2-x )=f (2+x )成立,可得二次函数f (x )的对称轴是x =2. ∵x 2+x +21=(x +21)2+41≥41,2x 2-x +85=2(x -41)2+21≥21,∴21log(x 2+x +21)≤21log41=2,21log(2x 2-x +85)≤21log(21)=1.∵二次函数f (x )的二次项系数为负数, ∴在对称轴左侧f (x )为增函数.∴21log(x 2+x +21)>21log(2x 2-x +85)x 2+x +21<2x 2-x +85x 2-2x +81>0x <-4144-或x >4144+.故不等式的解集为(-∞,4414-)∪(4144+,+∞).19.(本小题满分12分)已知函数f (x )=xx ax122-+的定义域恰为不等式log 2(x +3)+21logx ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围.解:由log 2(x +3)+ 21logx ≤3得log 2(x +3)≤3+log 2x =log 28x . ∴⎩⎨⎧->+≥.3,38x x x ∴x ≥73.设x 2>x 1≥73,f (x 2)-f (x 1)=112122221212x x ax x x ax-+--+=212121))(1(x x x x x ax -+.∵f (x )在[73,+∞)上单调递减,∴f (x 2)<f (x 1),即212121))(1(x x x x x ax -+<0.∵x 1x 2>0,x 1-x 2<0,∴ax 1x 2+1>0,即a >-211x x .由x 2>x 1≥73知x 1x 2>499,∴-211x x <-949∴a ≥-949.。
高三数学函数专题训练题(附详解)第1卷(选择题)一、单选题1. 已知定义在R 上的可导函数f(x)的导函数为f(x),满足f '(x) < f(x),且f(-x) = f(2+x),f(2)=1,则不等式f(x)< e x 的解集为( ) A.(-∞,2) B.(2,+∞) C.(1,+∞) D.(0,+∞)2. 函数y=sinx+2|sinx|,x ∈[0,2x]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围为( )A. k ∈ [0,3]B. k ∈ [1,3]C. k ∈(1,3)D. k ∈(0,3) 3. 已知sina 1+cosa= 2,则 tana =( )A. - 43B. - 34C. 43D. 24. 定义在R 上的奇函数f(x)满足f(x+4) = f(x),当x ∈(0,2)时,f(x)=3x -1,则f(2022)+f(2023)=( )A. -2023B. -1C. 1D. 32022 5. 设a=log 20.3,b=0.2,c=(12)0.2,则a,b,c 三者的大小关系为( ) A. a<b<c B. c<a<b C. b<c<a D. a<c<b6. 设函数f(x)(x ∈R)的导函数为f '(x),满足f '(x)>f(x),则当a>0时,f(a)与e a f(0)的大小关系为( )A. f(a)>e a f(0)B. f(a)<e a f(0)C. f(a)=e a f(0)D. 不能确定7. 已知f(x)=2x2x +1+ax+cos2x ,若f (π3)=2,则f(-π3)等于( )A. -2B. -1C. 0D. 18. 已知函数f(x)=√3sin(ωx+φ)(ω>0,-π2<φ<π2),A (13,0)为f(x)图像的对称中心,B 、C 是该图像上相邻的最高点和最低点,且|BC|=4,则下列结论正确的是( ) A. 函数f(x)的对称轴方程为x=43+4k(k ∈Z)B. 若函数f(x )在区间(0,m)内有5个零点,则在此区间内f(x )有且只有2个极小值点C. 函数f(x )在区间(0,2)上单调递增D. f(x -π3)的图象关于y 轴对称9. 已知函数f(x)={|x|x+4√x 36−x,−4<x<2,2≤x<6,若方程f(x)+αx 2=0有5个不等实根,则实数α的取值范围是( )A. (-∞,- √24) ∪ {- 13}B. [- 13,- 14] C. [13,√24] D. ( √24,+∞)∪ { 13} 10. 已知F 1,F 2分别为双曲线x 2-y 23=1的左、右焦点,直线l 过点F 2,且与双曲线右支交于A ,B 两点,O 为坐标原点,△AF 1F 2、△BF 1F 2的内切圆的圆心分别为O 1,O 2,则△OO 1O 2面积的取值范围是( ) A. (1,2√33) B. [1,2√33)C. [1,2√33] D. (1,2√33] 11. 设定义在R 上的函数f(x)与g(x)的导函数分别为f '(x)和g'(x),若g(x)-f(3-x)=2,f '(x)=g'(x-1),且g(x+2)为奇函数,g(1)=1。
一、选择题1.若集合{3},{x M y y P y y -====||则M P ⋂=A .{1}y y >|B .{1}y y ≥|C .{0}y y >|D .{0}y y ≥|2.己知函数()y f x =||的图象如下图所示,则函数()y f x =的图象不可能...的是3.定义域为),0()0,(+∞⋃-∞的偶函数)(x f 在区间(0,+∞)上的图象如图所示,则不等式0)(')(>x f x f 的解集是A.⋃-∞)0,((0,1)B.),1()0,1(+∞⋃-C.),1()1,(+∞⋃--∞D.(-1,0)⋃(0,1)4.已知)(x f 是定义在R 上的偶函数,且以2为周期,则“)(x f 为]1,0[上的增函数”是“()f x 为]4,3[上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )充要条件【解析】因为)(x f 为偶函数,所以当)(x f 在]1,0[上是增函数,则)(x f 在]0,1[-上则为减函数,又函数)(x f 的周期是4,所以在区间]4,3[也为减函数.若)(x f 在区间]4,3[为减函数,根据函数的周期可知)(x f 在]0,1[-上则为减函数,又函数)(x f 为偶函数,根据对称性可知,)(x f 在]1,0[上是增函数,综上可知,“)(x f 在]1,0[上是增函数”是“)(x f 为区间]4,3[上的减函数”成立的充要条件,选D. C B B D 二、填空题 5.函数x x f 6log21)(-=的定义域为 .6.已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f _____________。
7.已知)3)(2()(++-=m x m x m x f ,22)(-=x x g ,若R x ∈∀,0)(<x f 或0)(<x g ,则m 的取值范围是_________。
8.曲线31y x x =++在点()1,3处的切线方程是 。
9.已知函数||)(a x e x f -=(a 为常数)。
若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 。
【解析】令a x t -=,则a x t -=在区间),[+∞a 上单调递增,而t e y =为增函数,所以要是函数ax ex f -=)(在),1[+∞单调递增,则有1≤a ,所以a 的取值范围是]1,(-∞。
10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 .解∵()f x 是定义在R 上且周期为2的函数,∴()()11f f -=,即21=2b a +-+①。
又∵311=1222f f a ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, ∴141=23b a +-+②。
联立①②,解得,=2. =4a b -。
∴3=10a b +-。
5.(0。
6. 27. )0,4(-8. 410x y --=9.]1,(-∞ 10. -10三、解答题11.求二次函数22()2(21)542f x x a x a a =--+-+在[0,1]上最小值()g a 的解析式12.已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的解析式课后练习函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a = ( )A .2B .3C .4D .5函数f(x)y =在定义域(3,23-)内的图象如图所示,记f(x)y =的导函数为(x)'f y =,则不等式0)('≤x f 的解集为 CA.)2,1[]21,23[⋃-B.]38,34[]21,1[⋃-C .[]3,2]1,31[⋃- D.)3,34[]34,21[]31,23(⋃⋃--已知2()ln ,() 3.f x x x g x x ax ==-+- (Ⅰ)求函数2()[,]f x e e 在上的最小值;(Ⅱ)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围;解:(Ⅰ)()ln 1f x x '=+当1(0,),()0,()x f x f x e'∈<单调递减,当1(,),()0,()x f x f x e '∈+∞>单调递增1,e e< 所以函数2()[,]f x e e 在上单调递增,()min ln f x e e e ∴==(Ⅱ)22ln 3x x x ax ≥-+-,则32ln a x x x≤++,设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x+-'=,① (0,1),()0,()x h x h x '∈<单调递减,② (1,),()0,()x h x h x '∈+∞>单调递增,所以m i n()(1)4h x h ==,对一切(0,),2()x f x g x ∈+∞≥恒成立,所以min ()4a h x ≤=;函数训练题B (学生用)一、选择题1. 若集合{3},{x M y y P y y -====||则M P ⋂=A .{1}y y >|B .{1}y y ≥|C .{0}y y >|D .{0}y y ≥|2. 己知函数()y f x =||的图象如下图所示,则函数()y f x =的图象不可能...的是3. 定义域为),0()0,(+∞⋃-∞的偶函数)(x f 在区间(0,+∞)上的图象如图所示,则不等式0)(')(>x f x f 的解集是A.⋃-∞)0,((0,1)B.),1()0,1(+∞⋃-C.),1()1,(+∞⋃--∞D.(-1,0)⋃(0,1)4. 已知)(x f 是定义在R 上的偶函数,且以2为周期,则“)(x f 为]1,0[上的增函数”是“()f x 为]4,3[上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )充要条件二、填空题 5. 函数x x f 6log21)(-=的定义域为 .6. 已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f _____________。
7. 已知)3)(2()(++-=m x m x m x f ,22)(-=xx g ,若R x ∈∀,0)(<x f 或0)(<x g ,则m 的取值范围是_________。
8. 曲线31y x x =++在点()1,3处的切线方程是 。
9. 已知函数||)(a x e x f -=(a 为常数)。
若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 。
10. 设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 . 三、解答题11.求二次函数22()2(21)542f x x a x a a =--+-+在[0,1]上最小值()g a 的解析式12.已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的解析式课后练习函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a = ( )A .2B .3C .4D .5函数f(x)y =在定义域(3,23-)内的图象如图所示,记f(x)y =的导函数为(x)'f y =,则不等式0)('≤x f 的解集为A.)2,1[]21,23[⋃-B.]38,34[]21,1[⋃-C .[]3,2]1,31[⋃- D.)3,34[]34,21[]31,23(⋃⋃--已知2()ln ,() 3.f x x x g x x ax ==-+- (Ⅰ)求函数2()[,]f x e e 在上的最小值;(Ⅱ)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围;。