湖南省茶陵县第三中学人教版高二数学必修5课件:第1章 解三角形 小结
- 格式:ppt
- 大小:1.45 MB
- 文档页数:18
高中数学 必修 5 知识点第一章 解三角形 (一)解三角形:1、正弦定理:在C 中 , a 、 b 、 c 分 别 为 角、、C 的对边,,则有a bc 2Rsin sinsin C( R 为C 的外接圆的半径 )2、正弦定理的变形公式:①a 2Rsin ,b 2Rsin ,c 2Rsin C ;② sina , sinb ,sin Cc ;③ a : b : c sin :sin :sin C ;2R2R2 R3、三角形面积公式:S1bc sin 1 1ac sin .Cab sin C2224、余弦定理:在2222bc cosb 2c 2 a 2C 中,有 a bc,推论: cos2bc第二章数列1、数列中 a n 与 S n 之间的关系:a nS 1 , (n 1)注意通项能否合并。
S n S n 1,( n2).2、等差数列:⑴定义:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,即 a - ann 1=d ,(n ≥ 2, n ∈N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a 、 A 、b 成等差数列 A ab2⑶通项公式: a na 1 ( n 1)d a m (n m) d或 a npn q ( p 、q 是常数) .⑷前 n 项和公式:S n na 1 n n 1 dn a 1 a n22⑸常用性质:①若 mnp q m,n, p, q N ,则 a m a na p a q ;②下标为等差数列的项 a k ,a k m , a k 2m,,仍组成等差数列;③数列a nb ( ,b 为常数)仍为等差数列;④若 { a n } 、 { b n } 是等差数列,则 { ka n } 、 { ka n pb n } ( k 、 p 是非零常数 ) 、{ a p nq }( p, q N * )、, 也成等差数列。
⑤单调性: a n 的公差为 d ,则:ⅰ) ⅱ) ⅲ) d 0 a n 为递增数列;d0 a n 为递减数列;da n 为常数列;⑥数列 { a n } 为等差数列a npn q ( p,q 是常数)⑦若等差数列a n的前 n 项和 S ,则 S 、S 2 k S k 、S 3k S 2k 是等差数列。
知识建构一、知识网络二、基本知识、方法归纳整理1.解三角形常见类型及解法已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能出现一解、两解、无解的情况,这时应结合“三角形中大边对大角”及几何图形帮助理解,此时一般用正弦定理,但也可用余弦定理.(1)利用正弦定理讨论:若已知a 、b 、A,由正弦定理A a sin =B b sin ,得sinB=aA b sin . 若sinB>1,无解;若sinB=1,一解;若sinB<1,两解.(2)利用余弦定理讨论:已知a 、b 、A,由余弦定理a 2=c 2+b 2-2cbcosA,即c 2-(2bcosA)c+b 2-a 2=0,这是关于c 的一元二次方程.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个同正数解,则三角形有两解.3.三角形形状的判定方法判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:a=2RsinA,a 2+b 2-c 2=2abcosC 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系.如sinA=sinB ⇔A=B;sin(A-B)=0⇔A=B;sin2A=sin2B ⇔A=B 或A+B=2π,等等;二是利用正弦定理、余弦定理,化角为边,如:sinA=R a 2,cosA=bca cb 2222-+等,通过代数恒等变换,求出三条边之间的关系进行判断.4.解斜三角形应用题的步骤(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语.(2)根据题意画出图形.(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理有关知识建立数学模型,然后求解.实践探究1.就三角形的面积计算问题作一探索,你现在已经学习了哪些计算公式,还可发现和证明一些新的计算公式吗?解:已学过的三角形面积公式有(1)已知一边和边上的高:S=21ah a ,S=21bh b ,S=21ch c . (2)已知两边及其夹角:S=21absinC,S=21bcsinA,S=21casinB. 还可以得到如下面积公式:(p=a+b+c)(3)S △ABC =r·p=R·r(sinA+sinB+sinC).(4)S △ABC =))()((c p b p a p p ---. (5)S △ABC =Rabc 4. (6)S △ABC =)sin(2sin sin 2C B C B a +∙∙=)sin(2sin sin 2C A C A b +∙=)sin(2sin sin 2B A B A c +∙. 证明:(3)如图所示.S △ABC =S △OAB+S △OBC+S △OAC =21c·OE+21a·OF+21b·OD =21cr+21ar+21br =21r(a+b+c) =rp.由正弦定理,得a=2RsinA,b=2RsinB,c=2RsinC,∴S △ABC =21r(a+b+c)=21r(2RsinA+2RsinB+2RsinC)=R·r(sinA+sinB+sinC). (4)由余弦定理知cosC=abc b a 2222-+,∴S △ABC =21ab·sinC=21ab·C 2cos 1- =21ab·2222)2(1abc b a -+- =4122222)()2(c b a ab -+- =41])([(])[(2222b a c c b a --∙-+ =2222c b a c b a c b a c b a ++-∙+-∙-+∙++ =))()((a p b p c p p --- =))()((c p b p a p p ---.(5)由正弦定理知A a sin =B b sin =Cc sin =2R, ∴S △ABC =21absinC=21ab·R c 2=Rabc 4. (6)由正弦定理知A a sin =B b sin =Cc sin =2R, ∴S △ABC =21absinC=21·a·2R·sinB·sinC =21·a·A a sin ·sinB·sinC=A C B a sin 2sin sin 2∙=)sin(2sin sin 2C B C B a +∙∙. 同理,S △ABC =)sin(2sin sin 2C A C A b +∙=)sin(2sin sin 2B A B A c +∙. 2.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 的对边,其外接圆半径为1,且(sinB+sinC+sinA)(sinB+sinC-sinA)=3sinBsinC,b 、c 是方程x 2-3x+4cosA=0的两根(b>c).(1)求角A 的度数及a 、b 、c 的值;(2)判定△ABC 的形状,并求其内切圆的半径.解:(1)由韦达定理b+c=3,b·c=4cosA,由正弦定理b=2RsinB=2sinB,c=2sinC.∴2(sinB+sinC)=3,sinB·sinC=cosA.∵(sinB+sinC+sinA )(sinB+sinC-sinA)=3sinBsinC,利用平方差公式展开为(sinB+sinC )2-sin 2A=3sinBsinC,把sinB +sinC =23,sinB·sinC=cosA 代入上式可得49-sin 2A=3cosA.整理得4cos 2A-12cosA+5=0,即(2cosA-5)(2cosA-1)=0,∴cosA=21,cosA=25(舍去).∴∠A=60°.∴⎩⎨⎧=∙=+.2,3c b c b∵b>c,∴b=2,c=1.由余弦定理a 2=b 2+c 2-2bccosA=22+12-2×2×1×21=3,∴a=3.(2)∵b 2=a 2+c 2(由勾股定理).∴△ABC 是直角三角形.如图所示,设内切圆半径是r,则∠OAB=30°,在△OAD 中,AD=rcot30°=3r,∴3r+r=1.∴内切圆半径r=213-.3.在△ABC 中,设=a,=b,=c.(1)当△ABC 为正三角形时,求证:a·b=b·c=c·a;(2)若a·b=b·c=c·a,问△ABC 是否是正三角形?(1)证明:不妨设|BC |=|CA |=||=1,则·=||||cos60°=21,同理可得·=21,·=21,∴b·(-a)=(-b)·c=(-c)·a.∴a·b=b·c=c·a.(2)解:若a·b=b·c=c·a,则·=·=·, ∴·=·=·,即|a||b|cosC=|b||c|cosA=|a||c|cosB,各除以|a||b||c|,得||cos c C =||cos a A =||cos b B,①由正弦定理可得C c sin ||=A a sin ||=Bb sin ||, ② 由①②得C tan 1=A tan 1=B tan 1. ∵A 、B 、C ∈(0,π),∴A=B=C,即△ABC 为正三角形.4.如图所示,有两条相交成60°角的直线xx′、yy′,交点是O,甲、乙分别在Ox 、Oy 上,起初甲离O 点3 km,乙离O 点1 km,后来两人同时以每小时4 km 的速度,甲沿xx′方向,乙沿y′y 方向步行(设甲、乙初始位置分别为A 、B).(1)甲、乙两人之间的初始距离是多少?(2)什么时间两人的距离最短?解:(1)△AOB 中,OA=3,OB=1,∠AOB=60°.∴AB 2=OA 2+OB 2-2×OA×OB×cos60°=7.∴AB=7,即甲、乙两人最初相距7 km.(2)设t 小时后甲由A 到P,乙由B 到Q.①当3-4t≥0,即t≤34时,则△POQ 中,OQ=1+4t,OP=3-4t,∠POQ=60°, ∴PQ 2=(1+4t)2+(3-4t)2-2×(1+4t)×(3-4t)×cos60°. ②当3-4t<0,即t>34时,△POQ 中,OQ=1+4t,OP=4t-3,∠POQ=120°. ∴PQ 2=(1+4t)2+(4t-3)2-2×(1+4t)×(4t-3)×cos120°.综合①②知,当t≥0时,PQ 2=(4t+1)2+(4t-3)2+2×(4t+1)(4t-3)×21=(4t+1)2+(4t-3)2+(4t+1)(4t-3)=48t 2-24t+7=48(t-41)2+4. ∴当t=41时,PQ min =2, 即41小时后,甲、乙两人的距离最短.。